Skip to main content

A new Hermite–Hadamard type inequality for coordinate convex function

Abstract

In the article, we establish a new Hermite–Hadamard type inequality for the coordinate convex function by constructing two monotonic sequences. The given result is the generalization and improvement of some previously obtained results.

1 Introduction

Let \(I \subseteq \mathbb{R}\) be an interval. Then a real-valued function \(f: I \to \mathbb{R}\) is said to be convex (concave) if the inequality

$$ f\bigl(ta + (1-t)b\bigr) \leq (\geq )tf(a) + (1-t)f(b) $$

holds for all \(a, b \in I \) and \(t \in [0, 1]\). Recently, the generalizations, extensions, variants and applications of convexity have attracted the attention of many researchers (e.g., [4, 2022]). In particular, many inequalities can be found in the literature (e.g., [13, 15, 17]) via the convexity theory.

The well known Hermite–Hadamard inequality for convex function is formulated as follows:

Let \(f: I\subseteq \mathbb{R}\to \mathbb{R}\) be a convex function defined on the interval \(I=[a,b]\) with \(a< b\). Then the following inequality holds:

$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr) \leq \frac{1}{b-a} \int _{a}^{b}f(x)\,dx \leq \frac{f(a)+f(b)}{2}. \end{aligned}$$
(1)

In recent years, more and more refinements of the Hermite–Hadamard inequality for convex functions have been extensively investigated by a number of authors (e.g., [13, 5, 6, 810, 12, 14, 16, 18, 23]).

In [11], A.E. Farissi improved the Hermite–Hadamard inequality as follows:

Theorem 1.1

([11])

Let\(f:I\to \mathbb{R}\)be a convex function on\(I=[a,b]\)with\(a< b\). Then for all\(\lambda \in [0,1]\),

$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr) \leq l(\lambda ) \leq \frac{1}{b-a} \int _{a}^{b}f(x)\,dx \leq L(\lambda ) \leq \frac{f(a)+f(b)}{2}, \end{aligned}$$
(2)

where

$$ l(\lambda )=\lambda f \biggl(\frac{\lambda b+(2-\lambda )a}{2} \biggr)+(1- \lambda )f \biggl( \frac{(1+\lambda )b+(1-\lambda )a}{2} \biggr) $$

and

$$ L(\lambda )=\frac{1}{2} \bigl(f\bigl(\lambda b+(1-\lambda )a\bigr)+\lambda f(a)+(1- \lambda ) f(b) \bigr). $$

Consider the two-dimensional interval \(\Delta :=[a,b]\times [c,d]\) with \(a < b\) and \(c< d\). A function \(f:\Delta \to \mathbb{R}\) is said to be coordinate convex on Δ if the partial mappings \(f_{y}:[a,b] \to \mathbb{R}\), \(f_{y}(u)=f(u,y)\) and \(f_{x}:[c,d] \to \mathbb{R}\), \(f_{x}(v)=f(x,v)\), are convex for all \(y \in [c,d]\) and \(x \in [a,b]\).

In [7], S.S. Dragomir established the following Hadamard-type inequalities for coordinate convex functions in a rectangle from the plane \(\mathbb{R}^{2}\).

Theorem 1.2

([7])

Let\(f: \Delta =[a,b]\times [c,d] \to \mathbb{R}\)be a coordinate convex function on Δ. Then

$$\begin{aligned} \begin{aligned}[b] f \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)&\leq \frac{1}{2} \biggl[ \frac{1}{b-a} \int _{a}^{b}f \biggl(x, \frac{c+d}{2} \biggr)\,dx+ \frac{1}{d-c} \int _{c}^{d}f \biggl(\frac{a+b}{2}, y \biggr)\,dy \biggr] \\ &\leq \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d}f(x,y)\,dy \,dx \\ &\leq \frac{1}{4} \biggl[\frac{1}{b-a} \int _{a}^{b}\bigl[f(x,c)+f(x,d)\bigr]\,dx+ \frac{1}{d-c} \int _{c}^{d}\bigl[f(a,y)+f(b,y)\bigr]\,dy \biggr] \\ &\leq \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4}. \end{aligned} \end{aligned}$$
(3)

In [19], M.E. Özdemir defined a new mapping associated with coordinate convexity and proved the following inequalities based on the properties of this mapping.

Theorem 1.3

([19])

Let\(f: \Delta \subset \mathbb{R}^{2}\to \mathbb{R}\)be a coordinate convex function on\(\Delta =[a,b]\times [c,d]\). Then

$$\begin{aligned} \begin{aligned}[b] &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\quad \leq \frac{1}{4} \biggl[\frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\qquad{} + \frac{f (\frac{a+b}{2},c )+f (\frac{a+b}{2},d )+f (a,\frac{c+d}{2} ) +f (b,\frac{c+d}{2} )}{2}+f \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr) \biggr]. \end{aligned} \end{aligned}$$
(4)

In this paper, we present some new Hermite–Hadamard inequalities for coordinate convex function by defining two sequences \({F(x,y;n)}\) and \({H(x,y;n)}\), which also are generalizations of some existing results. Moreover, we also discuss the monotonicity of the sequences \({F(x,y;n)}\) and \({H(x,y;n)}\).

2 Main results

In this section, a refinement of the Hermite–Hadamard inequality by defining two sequences \({F(x,y;n)}\) and \({H(x,y;n)}\) is presented.

Theorem 2.1

Let\(f: \Delta \subset \mathbb{R}^{2}\to \mathbb{R}\)be a coordinate convex function on\(\Delta =[a,b]\times [c,d]\). Then

$$\begin{aligned} \begin{aligned}[b] f\biggl(\frac{a+b}{2},\frac{c+d}{2} \biggr)&\leq H(x,y;n)\leq \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\leq F(x,y;n) \leq \frac{f(a,c)+f(b,c)+f(a,d)+f(b,d)}{4} \end{aligned} \end{aligned}$$
(5)

for all\(x\in [a, b]\), \(y \in [c, d]\)and\(n \in \mathbb{N}\), where

$$ \begin{aligned} H(x,y;n)&=\frac{1}{2^{n+1}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{b-a} \int _{a}^{b} f \biggl(x,c+i\frac{d-c}{2^{n}}- \frac{d-c}{2^{n+1}} \biggr)\,dx\\ &\quad {}+ \frac{1}{d-c} \int _{c}^{d} f \biggl(a+i\frac{b-a}{2^{n}}- \frac{b-a}{2^{n+1}},y \biggr)\,dy \biggr] \end{aligned} $$

and

$$\begin{aligned} &F(x,y;n)\\ &\quad =\frac{1}{2^{n+2}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{b-a} \int _{a}^{b} \biggl[ f \biggl(x,\biggl(1- \frac{i}{2^{n}}\biggr)c+\frac{i}{2^{n}}d \biggr)+f \biggl(x,\biggl(1- \frac{i-1}{2^{n}}\biggr)c+\frac{i-1}{2^{n}}d \biggr) \biggr]\,dx \\ &\qquad{}+ \frac{1}{d-c} \int _{c}^{d} \biggl[ f \biggl(\biggl(1- \frac{i}{2^{n}}\biggr)a+\frac{i}{2^{n}}b,y \biggr)+f \biggl(\biggl(1- \frac{i-1}{2^{n}}\biggr)a+\frac{i-1}{2^{n}}b,y \biggr) \biggr]\,dy \biggr]. \end{aligned}$$

Proof

Since f is coordinate convex on \(\Delta =[a,b]\times [c,d]\), its partial mapping \(g_{x}(y)=f(x,y)\) is convex on \([c,d]\) for all \(x\in [a,b]\), and so, applying (1) to \(g_{x}(y)\),

$$\begin{aligned} g_{x}\biggl(\frac{c+d}{2}\biggr)\leq \frac{1}{d-c} \int _{c}^{d} g_{x}(y)\,dy\leq \frac{g_{x}(c)+g_{x}(d)}{2}. \end{aligned}$$
(6)

On the one hand, by (6), we have

$$\begin{aligned} \begin{aligned}[b] \frac{1}{d-c} \int _{c}^{d} g_{x}(y)\,dy&= \frac{1}{d-c}\sum_{i=1}^{2^{n}} \int _{c+(i-1)\frac{d-c}{2^{n}}}^{c+i\frac{d-c}{2^{n}}}g_{x}(y)\,dy \\ &\leq \frac{1}{2^{n+1}}\sum_{i=1}^{2^{n}} \biggl[g_{x} \biggl(\biggl(1- \frac{i}{2^{n}}\biggr)c+ \frac{i}{2^{n}}d \biggr)+g_{x} \biggl(\biggl(1- \frac{i-1}{2^{n}} \biggr)c+\frac{i-1}{2^{n}}d \biggr) \biggr] \\ &=y(x;n). \end{aligned} \end{aligned}$$
(7)

On the other hand, by the convexity of \(g_{x}(y)\), we obtain

$$\begin{aligned} \begin{aligned}[b] y(x;n)&\leq \frac{1}{2^{n+1}}\sum _{i=1}^{2^{n}} \biggl[\biggl(1- \frac{i}{2^{n}} \biggr)g_{x}(c)+\frac{i}{2^{n}}g_{x}(d)+\biggl(1- \frac{i-1}{2^{n}}\biggr)g_{x}(c)+ \frac{i-1}{2^{n}}g_{x}(d) \biggr] \\ &=\frac{1}{2^{n+1}} \Biggl[g_{x}(c)\sum _{i=1}^{2^{n}}\biggl(2- \frac{i}{2^{n-1}}+ \frac{1}{2^{n}}\biggr)+g_{x}(d)\sum_{i=1}^{2^{n}} \biggl( \frac{i}{2^{n-1}}-\frac{1}{2^{n}}\biggr) \Biggr] \\ &=\frac{g_{x}(c)+g_{x}(d)}{2}. \end{aligned} \end{aligned}$$
(8)

By (7) and (8), we have

$$\begin{aligned} \frac{1}{d-c} \int _{c}^{d} g_{x}(y)\,dy\leq y(x;n)\leq \frac{g_{x}(c)+g_{x}(d)}{2}. \end{aligned}$$
(9)

Integrating both sides of (9) with respect to x on \([a,b]\), we have

$$\begin{aligned} \begin{aligned}[b] &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\quad \leq \frac{1}{2^{n+1}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{b-a} \int _{a}^{b} f \biggl(x,\biggl(1-\frac{i}{2^{n}} \biggr)c+\frac{i}{2^{n}}d \biggr)\,dx\\ &\qquad {}+\frac{1}{b-a} \int _{a}^{b} f \biggl(x,\biggl(1-\frac{i-1}{2^{n}} \biggr)c+\frac{i-1}{2^{n}}d \biggr)\,dx \biggr] \\ &\quad \leq \frac{1}{2} \biggl[\frac{1}{b-a} \int _{a}^{b} f(x,c)\,dx+ \frac{1}{b-a} \int _{a}^{b} f(x,d)\,dx \biggr]. \end{aligned} \end{aligned}$$
(10)

By a similar process, we can obtain

$$\begin{aligned} \begin{aligned}[b] &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\quad \leq \frac{1}{2^{n+1}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{d-c} \int _{c}^{d} f \biggl(\biggl(1-\frac{i}{2^{n}} \biggr)a+\frac{i}{2^{n}}b,y \biggr)\,dy\\ &\qquad {}+\frac{1}{d-c} \int _{c}^{d} f \biggl(\biggl(1-\frac{i-1}{2^{n}} \biggr)a+\frac{i-1}{2^{n}}b,y \biggr)\,dy \biggr] \\ &\quad \leq \frac{1}{2} \biggl[\frac{1}{d-c} \int _{c}^{d} f(a,y)\,dy+ \frac{1}{d-c} \int _{c}^{d} f(b,y)\,dy \biggr]. \end{aligned} \end{aligned}$$
(11)

By (10) and (11), we have

$$\begin{aligned} &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\quad \leq \frac{1}{2^{n+2}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{b-a} \int _{a}^{b} f \biggl(x,\biggl(1-\frac{i}{2^{n}} \biggr)c+\frac{i}{2^{n}}d \biggr)\,dx\\ &\qquad {}+\frac{1}{b-a} \int _{a}^{b} f \biggl(x,\biggl(1-\frac{i-1}{2^{n}} \biggr)c+\frac{i-1}{2^{n}}d \biggr)\,dx \\ &\qquad{}+ \frac{1}{d-c} \int _{c}^{d} f \biggl(\biggl(1-\frac{i}{2^{n}} \biggr)a+ \frac{i}{2^{n}}b,y \biggr)\,dy\\ &\qquad {}+\frac{1}{d-c} \int _{c}^{d} f \biggl(\biggl(1- \frac{i-1}{2^{n}} \biggr)a+\frac{i-1}{2^{n}}b,y \biggr)\,dy \biggr] \\ &\quad =F(x,y;n) \\ &\quad \leq \frac{1}{4} \biggl[\frac{1}{b-a} \int _{a}^{b} f(x,c)\,dx+ \frac{1}{b-a} \int _{a}^{b} f(x,d)\,dx\\ &\qquad {}+\frac{1}{d-c} \int _{c}^{d} f(a,y)\,dy+ \frac{1}{d-c} \int _{c}^{d} f(b,y)\,dy \biggr]. \end{aligned}$$

Furthermore, by the convexity of \(f(x,y)\), we have

$$\begin{aligned}& \frac{1}{b-a} \int _{a}^{b} f(x,c)\,dx\leq \frac{f(a,c)+f(b,c)}{2}, \\& \frac{1}{b-a} \int _{a}^{b} f(x,d)\,dx\leq \frac{f(a,d)+f(b,d)}{2}, \\& \frac{1}{d-c} \int _{c}^{d} f(a,y)\,dy\leq \frac{f(a,c)+f(a,d)}{2}, \\& \frac{1}{d-c} \int _{c}^{d} f(b,y)\,dy\leq \frac{f(b,c)+f(b,d)}{2}. \end{aligned}$$

Therefore,

$$ \begin{aligned}[b] &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx\\ &\quad \leq F(x,y;n) \leq \frac{f(a,c)+f(b,c)+f(a,d)+f(b,d)}{4}. \end{aligned} $$
(12)

Moreover, by (1), we have

$$\begin{aligned} \begin{aligned}[b] \frac{1}{d-c} \int _{c}^{d} g_{x}(y)\,dy&= \frac{1}{d-c}\sum_{i=1}^{2^{n}} \int _{c+(i-1)\frac{d-c}{2^{n}}}^{c+i\frac{d-c}{2^{n}}}g_{x}(y)\,dy \\ &\geq \frac{1}{2^{n}}\sum_{i=1}^{2^{n}}g_{x} \biggl(c+i \frac{d-c}{2^{n}}-\frac{d-c}{2^{n+1}} \biggr) \\ &=x(x;n). \end{aligned} \end{aligned}$$
(13)

By the convexity of \(g_{x}(y)\) and Jensen’s inequality, we obtain

$$\begin{aligned} x(x;n)\geq g_{x} \Biggl[\frac{1}{2^{n}}\sum _{i=1}^{2^{n}} \biggl(c+i \frac{d-c}{2^{n}}- \frac{d-c}{2^{n+1}} \biggr) \Biggr]=g_{x} \biggl( \frac{c+d}{2} \biggr). \end{aligned}$$
(14)

It follows from (13) and (14) that

$$\begin{aligned} \frac{1}{d-c} \int _{c}^{d} g_{x}(y)\,dy\geq x(x;n)\geq g_{x} \biggl( \frac{c+d}{2} \biggr). \end{aligned}$$
(15)

Integrating both sides of (15) with respect to x on \([a,b]\), we have

$$\begin{aligned} \begin{aligned}[b] &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\quad \geq \frac{1}{2^{n}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{b-a} \int _{a}^{b} f \biggl(x,c+i\frac{d-c}{2^{n}}- \frac{d-c}{2^{n+1}} \biggr)\,dx \biggr] \\ &\quad \geq \frac{1}{b-a} \int _{a}^{b} f\biggl(x,\frac{c+d}{2}\biggr)\,dx. \end{aligned} \end{aligned}$$
(16)

By a similar process, we can obtain

$$\begin{aligned} &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \end{aligned}$$
(17)
$$\begin{aligned} &\quad \geq \frac{1}{2^{n}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{d-c} \int _{c}^{d} f \biggl(a+i\frac{b-a}{2^{n}}- \frac{b-a}{2^{n+1}},y \biggr)\,dy \biggr] \end{aligned}$$
(18)
$$\begin{aligned} &\quad \geq \frac{1}{d-c} \int _{c}^{d} f\biggl(\frac{a+b}{2},y\biggr)\,dy. \end{aligned}$$
(19)

By (16) and (17), we have

$$\begin{aligned} &\frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\quad \geq \frac{1}{2^{n+1}}\sum_{i=1}^{2^{n}} \biggl[\frac{1}{b-a} \int _{a}^{b} f \biggl(x,c+i\frac{d-c}{2^{n}}- \frac{d-c}{2^{n+1}} \biggr)\,dx\\ &\qquad {}+ \frac{1}{d-c} \int _{c}^{d} f \biggl(a+i\frac{b-a}{2^{n}}- \frac{b-a}{2^{n+1}},y \biggr)\,dy \biggr] \\ &\quad =H(x,y;n) \\ &\quad \geq \frac{1}{2} \biggl[\frac{1}{b-a} \int _{a}^{b} f\biggl(x,\frac{c+d}{2}\biggr)\,dx+ \frac{1}{d-c} \int _{c}^{d} f\biggl(\frac{a+b}{2},y\biggr)\,dy \biggr]. \end{aligned}$$

Moreover, by the convexity of \(f(x,y)\), we have

$$\begin{aligned}& \frac{1}{b-a} \int _{a}^{b} f\biggl(x,\frac{c+d}{2}\biggr)\,dx \geq f\biggl(\frac{a+b}{2}, \frac{c+d}{2}\biggr), \\& \frac{1}{d-c} \int _{c}^{d} f\biggl(\frac{a+b}{2},y\biggr)\,dy \geq f\biggl(\frac{a+b}{2}, \frac{c+d}{2}\biggr). \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx\geq H(x,y;n) \geq f\biggl( \frac{a+b}{2},\frac{c+d}{2}\biggr). \end{aligned}$$
(20)

By (12) and (20), we have

$$\begin{aligned} \begin{aligned} f\biggl(\frac{a+b}{2},\frac{c+d}{2}\biggr)&\leq H(x,y;n)\leq \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\leq F(x,y;n) \leq \frac{f(a,c)+f(b,c)+f(a,d)+f(b,d)}{4}. \end{aligned} \end{aligned}$$

 □

Remark 2.1

Let \(n = 0\). Then inequality (5) reduces to (3). Therefore, our Theorem 1.2 is a generalization of Theorem 1.2 of [7].

In the following, we discuss the monotonicity of \(F(x; y; n)\) and \(H(x; y; n)\) which are defined as in Theorem 2.1.

Theorem 2.2

Let\(f: \Delta \subset \mathbb{R}^{2}\to \mathbb{R}\)be a coordinate convex function on\(\Delta =[a,b]\times [c,d]\). Then\({F(x,y;n)}\)decreasing, \({H(x,y;n)}\)is increasing and

$$ \lim_{n\rightarrow \infty }F(x,y;n)=\lim_{n\rightarrow \infty }H(x,y;n)= \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx. $$

Proof

On the one hand, we have

$$\begin{aligned} x(x;n)&=\frac{1}{2^{n}}\sum_{i=1}^{2^{n}}g_{x} \biggl(c+i \frac{d-c}{2^{n}}-\frac{d-c}{2^{n+1}} \biggr) \\ &=\frac{1}{2^{n}}\sum_{i=1}^{2^{n}}g_{x} \biggl(\frac{1}{2} \frac{(2^{n+2}-4i+3)c+(4i-3)d+(2^{n+2}-4i+1)c+(4i-1)d}{2^{n+2}} \biggr) \\ &\leq \frac{1}{2^{n+1}}\sum_{i=1}^{2^{n}}g_{x} \biggl( \frac{(2^{n+2}-4i+3)c+(4i-3)d}{2^{n+2}} \biggr) \\ &\quad +\frac{1}{2^{n+1}}\sum_{i=1}^{2^{n}}g_{x} \biggl( \frac{(2^{n+2}-4i+1)c+(4i-1)d}{2^{n+2}} \biggr). \end{aligned}$$

Setting \(A=\{1,3,\ldots , 2^{n+1}-1\}\) and \(B=\{2,4,\ldots , 2^{n+1}\}\), thus we obtain

$$\begin{aligned}& \sum_{i=1}^{2^{n}}g_{x} \biggl( \frac{(2^{n+2}-4i+3)c+(4i-3)d}{2^{n+2}} \biggr)=\sum_{A}g_{x} \biggl(\frac{(2^{n+2}-2i+1)c+(2i-1)d}{2^{n+2}} \biggr), \\& \sum_{i=1}^{2^{n}}g_{x} \biggl( \frac{(2^{n+2}-4i+1)c+(4i-1)d}{2^{n+2}} \biggr)=\sum_{B}g_{x} \biggl(\frac{(2^{n+2}-2i+1)c+(2i-1)d}{2^{n+2}} \biggr), \end{aligned}$$

which implies that

$$ x(x;n)\leq \frac{1}{2^{n+1}}\sum_{A\cup B}g_{x} \biggl( \frac{(2^{n+2}-2i+1)c+(2i-1)d}{2^{n+2}} \biggr)=x(x;n+1). $$

Since integration is sign-preserving, we know

$$ H(x,y;n)\leq H(x,y;n+1). $$

So \({H(x,y;n)}\) is increasing.

On the other hand, we have

$$\begin{aligned} y(x;n+1)&= \frac{1}{2^{n+2}} \Biggl[f(a)+f(b)+2\sum _{i=1}^{2^{n+1}-1}f \biggl[ \biggl(1-\frac{i}{2^{n+1}} \biggr)a+\frac{i}{2^{n+1}}b \biggr] \Biggr] \\ &=\frac{1}{2^{n+2}} \Biggl[f(a)+f(b)+2\sum_{i=1}^{2^{n+1}-1}f \biggl( \frac{(2^{n+1}-i)a+ib}{2^{n+1}} \biggr) \Biggr]. \end{aligned}$$

Setting \(C =\{2, 4, 6, \dots , 2^{n+1}-2\}\), we obtain

$$\begin{aligned} y(x;n+1)&= \frac{1}{2^{n+2}} \biggl[f(a)+f(b)+2\sum _{i\in C}f \biggl( \frac{(2^{n+1}-i)a+ib}{2^{n+1}} \biggr)+2\sum _{i\in A}f \biggl( \frac{(2^{n+1}-i)a+ib}{2^{n+1}} \biggr) \biggr] \\ &=\frac{1}{2^{n+2}} \Biggl[f(a)+f(b)+2\sum_{i=1}^{2^{n}-1}f \biggl( \frac{(2^{n}-i)a+ib}{2^{n}} \biggr) \\ &\quad +2\sum_{i=1}^{2^{n}}f \biggl( \frac{1}{2} \frac{(2^{n}-i)a+ib+(2^{n}-i+1)a+(i-1)b}{2^{n}} \biggr) \Biggr] \\ &\leq \frac{1}{2^{n+2}} \Biggl[f(a)+f(b)+2\sum_{i=1}^{2^{n}-1}f \biggl( \frac{(2^{n}-i)a+ib}{2^{n}} \biggr)+\sum_{i=1}^{2^{n}}f \biggl( \frac{(2^{n}-i)a+ib}{2^{n}} \biggr) \\ &\quad +\sum_{i=1}^{2^{n}}f \biggl( \frac{(2^{n}-i+1)a+(i-1)b}{2^{n}} \biggr) \Biggr] \\ &=\frac{1}{2^{n+1}} \Biggl[f(a)+f(b)+2\sum_{i=1}^{2^{n}-1}f \biggl( \frac{(2^{n}-i)a+ib}{2^{n}} \biggr) \Biggr] \\ &=y(x;n). \end{aligned}$$

So \({y(x;n)}\) is decreasing.

Since integration is sign-preserving,we know

$$ F(x,y;n)\geq F(x,y;n+1). $$

For the proof of the last assertions, since \(f(x,y)\) is continuous on \([a,b]\times [c,d]\), we use the following well known equalities:

$$\begin{aligned}& \lim_{n\rightarrow \infty }\frac{b-a}{n}\sum_{i=1}^{n} f \biggl(a+i \frac{b-a}{n},y \biggr)= \int _{a}^{b} f(x,y)\,dx, \\& \lim_{n\rightarrow \infty }\frac{d-c}{n}\sum_{i=1}^{n} f \biggl(x,c+i \frac{d-c}{n} \biggr)= \int _{c}^{d} f(x,y)\,dy. \end{aligned}$$

So we obtain

$$ \lim_{n\rightarrow \infty }F(x,y;n)=\lim_{n\rightarrow \infty }H(x,y;n)= \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx. $$

 □

By the above theorems, the following corollary can be easily obtained:

Corollary 2.1

Let\(f: \Delta =[a,b]\times [c,d] \to \mathbb{R}\)be a coordinate convex on Δ. Then

$$\begin{aligned} \begin{aligned}[b] &f \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)\\ &\quad \leq H(x,y;0)= \frac{1}{2} \biggl[\frac{1}{b-a} \int _{a}^{b}f \biggl(x, \frac{c+d}{2} \biggr)\,dx+\frac{1}{d-c} \int _{c}^{d}f \biggl(\frac{a+b}{2}, y \biggr)\,dy \biggr] \\ &\quad \leq H(x,y;1) \leq \cdots \leq H(x,y;n) \leq \cdots \\ &\quad \leq \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d}f(x,y)\,dy \,dx \\ &\quad \leq \cdots \leq F(x,y;n) \leq \cdots \leq F(x,y;1) \\ &\quad \leq F(x,y;0)= \frac{1}{4} \biggl[\frac{1}{b-a} \int _{a}^{b}\bigl[f(x,c)+f(x,d)\bigr]\,dx+ \frac{1}{d-c} \int _{c}^{d}\bigl[f(a,y)+f(b,y)\bigr]\,dy \biggr] \\ &\quad \leq \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4}. \end{aligned} \end{aligned}$$
(21)

Remark 2.2

Corollary 2.1 shows that inequalities (21) are better than (3) and (4).

3 Conclusions

In this paper, we present some new Hermite–Hadamard inequalities for coordinate convex functions by defining two sequences \({F(x,y;n)}\) and \({H(x,y;n)}\),

$$\begin{aligned} f\biggl(\frac{a+b}{2},\frac{c+d}{2}\biggr)&\leq H(x,y;n)\leq \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y)\,dy \,dx \\ &\leq F(x,y;n) \leq \frac{f(a,c)+f(b,c)+f(a,d)+f(b,d)}{4}, \end{aligned}$$

which also are generalizations of some existing results. Moreover, we show the monotonicity of the sequences \({F(x,y;n)}\) and \({H(x,y;n)}\) in Theorem 2.2.

References

  1. Akkurt, A., Sarikaya, M.Z., Budak, H., Yildirim, H.: On the Hadamard’s type inequalities for co-ordinated convex functions via fractional integrals. J. King Saud Univ., Sci. 29(3), 380–387 (2017)

    Article  Google Scholar 

  2. Alomari, M., Darus, M.: The Hadamard’s inequalities for s-convex function of 2-variables on the co-ordinates. Int. Math. Forum 40(3), 1965–1975 (2008)

    MATH  Google Scholar 

  3. Alomari, M., Darus, M.: Co-ordinates s-convex function in the first sense with some Hadamard-type inequalities. Int. J. Contemp. Math. Sci. 32(3), 1557–1567 (2008)

    MATH  Google Scholar 

  4. Baloch, I.A., Chu, Y.M.: Petrović-type inequalities for harmonic h-convex functions. J. Funct. Spaces 2020, 1–7 (2020)

    Article  MATH  Google Scholar 

  5. Bessenyei, M., Páles, Z.: Hadamard-type inequalities for generalized convex functions. Math. Inequal. Appl. 6(3), 379–392 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Chen, F.X.: A note on the Hermite–Hadamard inequality for convex functions on the co-ordinates. J. Math. Inequal. 8(4), 915–923 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dragomir, S.S.: On the Hadamard’s type inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001)

    Article  MATH  Google Scholar 

  8. Dragomir, S.S.: Hermite–Hadamard’s type inequalities for operator convex functions. Appl. Math. Comput. 218(3), 766–772 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Dragomir, S.S.: Hermite–Hadamard’s type inequalities for convex functions of self-adjoint operators in Hilbert spaces. Linear Algebra Appl. 436(5), 1503–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dragomir, S.S., Fitzpatrick, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32(4), 687–696 (1999)

    MATH  Google Scholar 

  11. Farissi, A.E.: Simple proof and refinement of Hermite–Hadamard inequality. J. Math. Inequal. 4(3), 365–369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, X.: A note on the Hermite–Hadamard inequality. J. Math. Inequal. 4(4), 587–591 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hudzik, H., Maligranda, L.: Some remarks on s-convex functions. Aequ. Math. 48, 100–111 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iqbal, A., Khan, M.A., Ullah, S., Chu, Y.M.: Some new Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications. J. Funct. Spaces 2020, 1–18 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khan, M.A., Hanif, M., Khan, Z.A.H., Ahmad, K., Chu, Y.M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, 1 (2019)

    Article  Google Scholar 

  16. Khan, M.A., Khurshid, Y., Du, T.S., Chu, Y.M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Khan, M.A., Mohammad, N., Nwaeze, E.R., Chu, Y.M.: Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 99, 1–20 (2020)

    Article  MathSciNet  Google Scholar 

  18. Latif, M.A., Rashid, S., Dragomir, S.S., Chu, Y.M.: Hermite–Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications. J. Inequal. Appl. 2019(1), 1 (2019)

    Article  Google Scholar 

  19. Özdemir, M.E., Yildiz, C., Akdemir, A.O.: On some new the Hadamard-type inequalities for co-ordinated quasi-convex functions. Hacet. J. Math. Stat. 41(5), 697–707 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Ullah, S.Z., Khan, M.A., Chu, Y.M.: A note on generalized convex functions. J. Inequal. Appl. 2019(1), 1 (2019)

    Article  MathSciNet  Google Scholar 

  21. Ullah, S.Z., Khan, M.A., Chu, Y.M.: Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, 1 (2019)

    Article  MathSciNet  Google Scholar 

  22. Wang, M.K., Zhang, W., Chu, Y.M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39(5), 1440–1450 (2019)

    Article  MathSciNet  Google Scholar 

  23. Yildirim, M.E., Akkurt, A., Yildirim, H.: Hermite–Hadamard type inequalities for co-ordinated \((\alpha _{1}, m_{1})-(\alpha _{2}, m_{2})\)-convex functions via fractional integrals. Contemp. Anal. Appl. Math. 4(1), 48–63 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Funding

There was no funding for this research article.

Author information

Authors and Affiliations

Authors

Contributions

The author provided the questions and gave the proof for all results. He read and approved this manuscript.

Corresponding author

Correspondence to Haisong Cao.

Ethics declarations

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H. A new Hermite–Hadamard type inequality for coordinate convex function. J Inequal Appl 2020, 162 (2020). https://doi.org/10.1186/s13660-020-02428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-020-02428-3

MSC

Keywords