
Cao Journal of Inequalities and Applications        (2020) 2020:162 
https://doi.org/10.1186/s13660-020-02428-3

R E S E A R C H Open Access

A new Hermite–Hadamard type inequality
for coordinate convex function
Haisong Cao1*

*Correspondence:
hscao123@163.com
1School of Mathematics and
Statistics, North China University of
Water Resources and Electric Power,
Zhengzhou, P.R. China

Abstract
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1 Introduction
Let I ⊆ R be an interval. Then a real-valued function f : I → R is said to be convex (con-
cave) if the inequality

f
(
ta + (1 – t)b

) ≤ (≥)tf (a) + (1 – t)f (b)

holds for all a, b ∈ I and t ∈ [0, 1]. Recently, the generalizations, extensions, variants and
applications of convexity have attracted the attention of many researchers (e.g., [4, 20–
22]). In particular, many inequalities can be found in the literature (e.g., [13, 15, 17]) via
the convexity theory.

The well known Hermite–Hadamard inequality for convex function is formulated as
follows:

Let f : I ⊆R →R be a convex function defined on the interval I = [a, b] with a < b. Then
the following inequality holds:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1)

In recent years, more and more refinements of the Hermite–Hadamard inequality for
convex functions have been extensively investigated by a number of authors (e.g., [1–3, 5,
6, 8–10, 12, 14, 16, 18, 23]).

In [11], A.E. Farissi improved the Hermite–Hadamard inequality as follows:
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Theorem 1.1 ([11]) Let f : I →R be a convex function on I = [a, b] with a < b. Then for all
λ ∈ [0, 1],

f
(

a + b
2

)
≤ l(λ) ≤ 1

b – a

∫ b

a
f (x) dx ≤ L(λ) ≤ f (a) + f (b)

2
, (2)

where

l(λ) = λf
(

λb + (2 – λ)a
2

)
+ (1 – λ)f

(
(1 + λ)b + (1 – λ)a

2

)

and

L(λ) =
1
2
(
f
(
λb + (1 – λ)a

)
+ λf (a) + (1 – λ)f (b)

)
.

Consider the two-dimensional interval � := [a, b]×[c, d] with a < b and c < d. A function
f : � → R is said to be coordinate convex on � if the partial mappings fy : [a, b] → R,
fy(u) = f (u, y) and fx : [c, d] →R, fx(v) = f (x, v), are convex for all y ∈ [c, d] and x ∈ [a, b].

In [7], S.S. Dragomir established the following Hadamard-type inequalities for coordi-
nate convex functions in a rectangle from the plane R

2.

Theorem 1.2 ([7]) Let f : � = [a, b] × [c, d] → R be a coordinate convex function on �.
Then

f
(

a + b
2

,
c + d

2

)
≤ 1

2

[
1

b – a

∫ b

a
f
(

x,
c + d

2

)
dx +

1
d – c

∫ d

c
f
(

a + b
2

, y
)

dy
]

≤ 1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 1
4

[
1

b – a

∫ b

a

[
f (x, c) + f (x, d)

]
dx +

1
d – c

∫ d

c

[
f (a, y) + f (b, y)

]
dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

. (3)

In [19], M.E. Özdemir defined a new mapping associated with coordinate convexity and
proved the following inequalities based on the properties of this mapping.

Theorem 1.3 ([19]) Let f : � ⊂ R
2 → R be a coordinate convex function on � = [a, b] ×

[c, d]. Then

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 1
4

[
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

+
f ( a+b

2 , c) + f ( a+b
2 , d) + f (a, c+d

2 ) + f (b, c+d
2 )

2
+ f

(
a + b

2
,

c + d
2

)]
. (4)

In this paper, we present some new Hermite–Hadamard inequalities for coordinate con-
vex function by defining two sequences F(x, y; n) and H(x, y; n), which also are generaliza-
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tions of some existing results. Moreover, we also discuss the monotonicity of the sequences
F(x, y; n) and H(x, y; n).

2 Main results
In this section, a refinement of the Hermite–Hadamard inequality by defining two se-
quences F(x, y; n) and H(x, y; n) is presented.

Theorem 2.1 Let f : � ⊂ R
2 → R be a coordinate convex function on � = [a, b] × [c, d].

Then

f
(

a + b
2

,
c + d

2

)
≤ H(x, y; n) ≤ 1

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ F(x, y; n) ≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

(5)

for all x ∈ [a, b], y ∈ [c, d] and n ∈ N, where

H(x, y; n) =
1

2n+1

2n∑

i=1

[
1

b – a

∫ b

a
f
(

x, c + i
d – c

2n –
d – c
2n+1

)
dx

+
1

d – c

∫ d

c
f
(

a + i
b – a

2n –
b – a
2n+1 , y

)
dy

]

and

F(x, y; n)

=
1

2n+2

2n∑

i=1

[
1

b – a

∫ b

a

[
f
(

x,
(

1 –
i

2n

)
c +

i
2n d

)
+ f

(
x,

(
1 –

i – 1
2n

)
c +

i – 1
2n d

)]
dx

+
1

d – c

∫ d

c

[
f
((

1 –
i

2n

)
a +

i
2n b, y

)
+ f

((
1 –

i – 1
2n

)
a +

i – 1
2n b, y

)]
dy

]
.

Proof Since f is coordinate convex on � = [a, b] × [c, d], its partial mapping gx(y) = f (x, y)
is convex on [c, d] for all x ∈ [a, b], and so, applying (1) to gx(y),

gx

(
c + d

2

)
≤ 1

d – c

∫ d

c
gx(y) dy ≤ gx(c) + gx(d)

2
. (6)

On the one hand, by (6), we have

1
d – c

∫ d

c
gx(y) dy =

1
d – c

2n∑

i=1

∫ c+i d–c
2n

c+(i–1) d–c
2n

gx(y) dy

≤ 1
2n+1

2n∑

i=1

[
gx

((
1 –

i
2n

)
c +

i
2n d

)
+ gx

((
1 –

i – 1
2n

)
c +

i – 1
2n d

)]

= y(x; n). (7)
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On the other hand, by the convexity of gx(y), we obtain

y(x; n) ≤ 1
2n+1

2n∑

i=1

[(
1 –

i
2n

)
gx(c) +

i
2n gx(d) +

(
1 –

i – 1
2n

)
gx(c) +

i – 1
2n gx(d)

]

=
1

2n+1

[

gx(c)
2n∑

i=1

(
2 –

i
2n–1 +

1
2n

)
+ gx(d)

2n∑

i=1

(
i

2n–1 –
1
2n

)]

=
gx(c) + gx(d)

2
. (8)

By (7) and (8), we have

1
d – c

∫ d

c
gx(y) dy ≤ y(x; n) ≤ gx(c) + gx(d)

2
. (9)

Integrating both sides of (9) with respect to x on [a, b], we have

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 1
2n+1

2n∑

i=1

[
1

b – a

∫ b

a
f
(

x,
(

1 –
i

2n

)
c +

i
2n d

)
dx

+
1

b – a

∫ b

a
f
(

x,
(

1 –
i – 1
2n

)
c +

i – 1
2n d

)
dx

]

≤ 1
2

[
1

b – a

∫ b

a
f (x, c) dx +

1
b – a

∫ b

a
f (x, d) dx

]
. (10)

By a similar process, we can obtain

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 1
2n+1

2n∑

i=1

[
1

d – c

∫ d

c
f
((

1 –
i

2n

)
a +

i
2n b, y

)
dy

+
1

d – c

∫ d

c
f
((

1 –
i – 1
2n

)
a +

i – 1
2n b, y

)
dy

]

≤ 1
2

[
1

d – c

∫ d

c
f (a, y) dy +

1
d – c

∫ d

c
f (b, y) dy

]
. (11)

By (10) and (11), we have

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 1
2n+2

2n∑

i=1

[
1

b – a

∫ b

a
f
(

x,
(

1 –
i

2n

)
c +

i
2n d

)
dx

+
1

b – a

∫ b

a
f
(

x,
(

1 –
i – 1
2n

)
c +

i – 1
2n d

)
dx
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+
1

d – c

∫ d

c
f
((

1 –
i

2n

)
a +

i
2n b, y

)
dy

+
1

d – c

∫ d

c
f
((

1 –
i – 1
2n

)
a +

i – 1
2n b, y

)
dy

]

= F(x, y; n)

≤ 1
4

[
1

b – a

∫ b

a
f (x, c) dx +

1
b – a

∫ b

a
f (x, d) dx

+
1

d – c

∫ d

c
f (a, y) dy +

1
d – c

∫ d

c
f (b, y) dy

]
.

Furthermore, by the convexity of f (x, y), we have

1
b – a

∫ b

a
f (x, c) dx ≤ f (a, c) + f (b, c)

2
,

1
b – a

∫ b

a
f (x, d) dx ≤ f (a, d) + f (b, d)

2
,

1
d – c

∫ d

c
f (a, y) dy ≤ f (a, c) + f (a, d)

2
,

1
d – c

∫ d

c
f (b, y) dy ≤ f (b, c) + f (b, d)

2
.

Therefore,

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ F(x, y; n) ≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

. (12)

Moreover, by (1), we have

1
d – c

∫ d

c
gx(y) dy =

1
d – c

2n∑

i=1

∫ c+i d–c
2n

c+(i–1) d–c
2n

gx(y) dy

≥ 1
2n

2n∑

i=1

gx

(
c + i

d – c
2n –

d – c
2n+1

)

= x(x; n). (13)

By the convexity of gx(y) and Jensen’s inequality, we obtain

x(x; n) ≥ gx

[
1
2n

2n∑

i=1

(
c + i

d – c
2n –

d – c
2n+1

)]

= gx

(
c + d

2

)
. (14)

It follows from (13) and (14) that

1
d – c

∫ d

c
gx(y) dy ≥ x(x; n) ≥ gx

(
c + d

2

)
. (15)
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Integrating both sides of (15) with respect to x on [a, b], we have

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≥ 1
2n

2n∑

i=1

[
1

b – a

∫ b

a
f
(

x, c + i
d – c

2n –
d – c
2n+1

)
dx

]

≥ 1
b – a

∫ b

a
f
(

x,
c + d

2

)
dx. (16)

By a similar process, we can obtain

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx (17)

≥ 1
2n

2n∑

i=1

[
1

d – c

∫ d

c
f
(

a + i
b – a

2n –
b – a
2n+1 , y

)
dy

]
(18)

≥ 1
d – c

∫ d

c
f
(

a + b
2

, y
)

dy. (19)

By (16) and (17), we have

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≥ 1
2n+1

2n∑

i=1

[
1

b – a

∫ b

a
f
(

x, c + i
d – c

2n –
d – c
2n+1

)
dx

+
1

d – c

∫ d

c
f
(

a + i
b – a

2n –
b – a
2n+1 , y

)
dy

]

= H(x, y; n)

≥ 1
2

[
1

b – a

∫ b

a
f
(

x,
c + d

2

)
dx +

1
d – c

∫ d

c
f
(

a + b
2

, y
)

dy
]

.

Moreover, by the convexity of f (x, y), we have

1
b – a

∫ b

a
f
(

x,
c + d

2

)
dx ≥ f

(
a + b

2
,

c + d
2

)
,

1
d – c

∫ d

c
f
(

a + b
2

, y
)

dy ≥ f
(

a + b
2

,
c + d

2

)
.

Therefore,

1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx ≥ H(x, y; n) ≥ f

(
a + b

2
,

c + d
2

)
. (20)
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By (12) and (20), we have

f
(

a + b
2

,
c + d

2

)
≤ H(x, y; n) ≤ 1

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ F(x, y; n) ≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

. �

Remark 2.1 Let n = 0. Then inequality (5) reduces to (3). Therefore, our Theorem 1.2 is a
generalization of Theorem 1.2 of [7].

In the following, we discuss the monotonicity of F(x; y; n) and H(x; y; n) which are defined
as in Theorem 2.1.

Theorem 2.2 Let f : � ⊂ R
2 → R be a coordinate convex function on � = [a, b] × [c, d].

Then F(x, y; n) decreasing, H(x, y; n) is increasing and

lim
n→∞ F(x, y; n) = lim

n→∞ H(x, y; n) =
1

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx.

Proof On the one hand, we have

x(x; n) =
1
2n

2n∑

i=1

gx

(
c + i

d – c
2n –

d – c
2n+1

)

=
1
2n

2n∑

i=1

gx

(
1
2

(2n+2 – 4i + 3)c + (4i – 3)d + (2n+2 – 4i + 1)c + (4i – 1)d
2n+2

)

≤ 1
2n+1

2n∑

i=1

gx

(
(2n+2 – 4i + 3)c + (4i – 3)d

2n+2

)

+
1

2n+1

2n∑

i=1

gx

(
(2n+2 – 4i + 1)c + (4i – 1)d

2n+2

)
.

Setting A = {1, 3, . . . , 2n+1 – 1} and B = {2, 4, . . . , 2n+1}, thus we obtain

2n∑

i=1

gx

(
(2n+2 – 4i + 3)c + (4i – 3)d

2n+2

)
=

∑

A

gx

(
(2n+2 – 2i + 1)c + (2i – 1)d

2n+2

)
,

2n∑

i=1

gx

(
(2n+2 – 4i + 1)c + (4i – 1)d

2n+2

)
=

∑

B

gx

(
(2n+2 – 2i + 1)c + (2i – 1)d

2n+2

)
,

which implies that

x(x; n) ≤ 1
2n+1

∑

A∪B

gx

(
(2n+2 – 2i + 1)c + (2i – 1)d

2n+2

)
= x(x; n + 1).

Since integration is sign-preserving, we know

H(x, y; n) ≤ H(x, y; n + 1).
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So H(x, y; n) is increasing.
On the other hand, we have

y(x; n + 1) =
1

2n+2

[

f (a) + f (b) + 2
2n+1–1∑

i=1

f
[(

1 –
i

2n+1

)
a +

i
2n+1 b

]]

=
1

2n+2

[

f (a) + f (b) + 2
2n+1–1∑

i=1

f
(

(2n+1 – i)a + ib
2n+1

)]

.

Setting C = {2, 4, 6, . . . , 2n+1 – 2}, we obtain

y(x; n + 1) =
1

2n+2

[
f (a) + f (b) + 2

∑

i∈C

f
(

(2n+1 – i)a + ib
2n+1

)
+ 2

∑

i∈A

f
(

(2n+1 – i)a + ib
2n+1

)]

=
1

2n+2

[

f (a) + f (b) + 2
2n–1∑

i=1

f
(

(2n – i)a + ib
2n

)

+ 2
2n∑

i=1

f
(

1
2

(2n – i)a + ib + (2n – i + 1)a + (i – 1)b
2n

)]

≤ 1
2n+2

[

f (a) + f (b) + 2
2n–1∑

i=1

f
(

(2n – i)a + ib
2n

)
+

2n∑

i=1

f
(

(2n – i)a + ib
2n

)

+
2n∑

i=1

f
(

(2n – i + 1)a + (i – 1)b
2n

)]

=
1

2n+1

[

f (a) + f (b) + 2
2n–1∑

i=1

f
(

(2n – i)a + ib
2n

)]

= y(x; n).

So y(x; n) is decreasing.
Since integration is sign-preserving,we know

F(x, y; n) ≥ F(x, y; n + 1).

For the proof of the last assertions, since f (x, y) is continuous on [a, b] × [c, d], we use
the following well known equalities:

lim
n→∞

b – a
n

n∑

i=1

f
(

a + i
b – a

n
, y

)
=

∫ b

a
f (x, y) dx,

lim
n→∞

d – c
n

n∑

i=1

f
(

x, c + i
d – c

n

)
=

∫ d

c
f (x, y) dy.

So we obtain

lim
n→∞ F(x, y; n) = lim

n→∞ H(x, y; n) =
1

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx. �
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By the above theorems, the following corollary can be easily obtained:

Corollary 2.1 Let f : � = [a, b] × [c, d] →R be a coordinate convex on �. Then

f
(

a + b
2

,
c + d

2

)

≤ H(x, y; 0) =
1
2

[
1

b – a

∫ b

a
f
(

x,
c + d

2

)
dx +

1
d – c

∫ d

c
f
(

a + b
2

, y
)

dy
]

≤ H(x, y; 1) ≤ · · · ≤ H(x, y; n) ≤ · · ·

≤ 1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ · · · ≤ F(x, y; n) ≤ · · · ≤ F(x, y; 1)

≤ F(x, y; 0) =
1
4

[
1

b – a

∫ b

a

[
f (x, c) + f (x, d)

]
dx +

1
d – c

∫ d

c

[
f (a, y) + f (b, y)

]
dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

. (21)

Remark 2.2 Corollary 2.1 shows that inequalities (21) are better than (3) and (4).

3 Conclusions
In this paper, we present some new Hermite–Hadamard inequalities for coordinate con-
vex functions by defining two sequences F(x, y; n) and H(x, y; n),

f
(

a + b
2

,
c + d

2

)
≤ H(x, y; n) ≤ 1

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ F(x, y; n) ≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

,

which also are generalizations of some existing results. Moreover, we show the mono-
tonicity of the sequences F(x, y; n) and H(x, y; n) in Theorem 2.2.
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