Skip to main content

New proofs on two recent inequalities for unitarily invariant norms


In this short note, we provide alternative proofs for several recent results due to Audenaert (Oper. Matrices 9:475–479, 2015) and Zou (J. Math. Inequal. 10:1119–1122, 2016; Linear Algebra Appl. 552:154–162, 2019).


Let \(\mathbb{M}_{n}\) be the set of \(n\times n\) complex matrices. For \(A\in\mathbb{M}_{n}\), the singular values and eigenvalues of A are denoted by \(\sigma_{i}(A)\) and \(\lambda_{i}(A)\), respectively, \(i=1,\ldots,n\). The singular values \(\sigma_{1}(A), \sigma _{2}(A),\ldots, \sigma_{n}(A)\) of a matrix A are the eigenvalues of \(|A|=(A^{*}A)^{\frac{1}{2}}\) arranged in decreasing order and repeated according to multiplicity. The Ky Fan k-norm, a particular unitarily invariant norm, is defined as \(\|\cdot\|_{(k)}=\sum_{j=1}^{k}\sigma _{j}(A)\), \(1\leq k \leq n\). If A is Hermitian, then all eigenvalues of A are real and ordered as \(\lambda_{1}(A)\geq\cdots\geq\lambda_{n}(A)\).

Let \(A,B\in\mathbb{M}_{n}\). Bhatia and Kittaneh [8] proved an arithmetic–geometric mean inequality for unitarily invariant norms

$$\begin{aligned} \bigl\Vert A^{*}B \bigr\Vert \leq \frac{1}{2} \bigl\Vert AA^{*}+BB^{*} \bigr\Vert . \end{aligned}$$

As a generalization of (1), Bhatia and Davis [7] proved that

$$\begin{aligned} \bigl\Vert A^{*}XB \bigr\Vert \leq \frac{1}{2} \bigl\Vert AA^{*}X+XBB^{*} \bigr\Vert \end{aligned}$$

for \(A,X,B\in\mathbb{M}_{n}\).

Albadawi [3] obtained a stronger version of the Hölder inequality for unitarily invariant norms. Let \(A, X, B\in\mathbb {M}_{n}\) and \(\frac{1}{p}+\frac{1}{q}=1\), \(p,q>1\), \(r\geq0\). Then

$$\begin{aligned} \bigl\Vert \bigl\vert A^{*}XB \bigr\vert ^{r} \bigr\Vert \leq \bigl\Vert \bigl\vert AA^{*}X \bigr\vert ^{\frac{rp}{2}} \bigr\Vert ^{\frac{1}{p}} \bigl\Vert \bigl\vert XBB^{*} \bigr\vert ^{\frac{rq}{2}} \bigr\Vert ^{\frac{1}{q}}, \end{aligned}$$

which is a generalization of Horn and Zhan’s result [10] (also called the Hölder inequality)

$$\begin{aligned} \bigl\Vert \bigl\vert A^{*}B \bigr\vert ^{r} \bigr\Vert \leq \bigl\Vert \bigl(AA^{*}\bigr)^{\frac{rp}{2}} \bigr\Vert ^{\frac{1}{p}} \bigl\Vert \bigl(BB^{*}\bigr)^{\frac{rq}{2}} \bigr\Vert ^{\frac{1}{q}}. \end{aligned}$$

Recently, Audenaert [5] proved that if \(A, B\in\mathbb{M}_{n}\) and \(\frac{1}{p}+\frac{1}{q}=1\), \(p, q>1\), \(r\geq0\), \(\alpha\in [0,1]\), then

$$\begin{aligned} \bigl\Vert \bigl\vert A^{*}B \bigr\vert ^{r} \bigr\Vert \leq \bigl\Vert \bigl(\alpha AA^{*}+(1-\alpha)BB^{*} \bigr)^{rp/2} \bigr\Vert ^{\frac {1}{p}} \bigl\Vert \bigl((1- \alpha) AA^{*}+\alpha BB^{*}\bigr)^{rp/2} \bigr\Vert ^{\frac{1}{q}}, \end{aligned}$$

which is a unification of inequalities (1) and (4). By setting \(r=1\) and \(p=p'=2\) in (5) we have

$$\begin{aligned} \bigl\Vert \bigl\vert A^{*}B \bigr\vert \bigr\Vert \leq \bigl\Vert \alpha AA^{*}+(1-\alpha)BB^{*} \bigr\Vert ^{\frac{1}{2}} \bigl\Vert (1-\alpha) AA^{*}+\alpha BB^{*} \bigr\Vert ^{\frac{1}{2}}. \end{aligned}$$

Lin [12] gave a new proof of inequality (6). Zou and Jiang [16] generalized it to the following inequality: Let \(A, B, X\in\mathbb{M}_{n}\) and \(q\in[0,1]\). Then

$$\begin{aligned} \bigl\Vert AXB^{*} \bigr\Vert ^{2} \leq \bigl\Vert qA^{*}AX+(1-q)XB^{*}B \bigr\Vert \bigl\Vert (1-q)A^{*}AX+qXB^{*}B \bigr\Vert . \end{aligned}$$

Al-khlyleh and Kittaneh [2, Theorem 2.5] presented an inequality that refines inequality (7) for the particular unitarily invariant norm, Hilbert–Schmidt norm. For more results on interpolation between the arithmetic–geometric mean inequality and the Cauchy–Schwarz inequality for matrices, see [1].

In this paper, we provide alternative proofs of inequalities (5) and (7), which provide new perspectives to the elegant results.

Main results

For presenting the new proofs, we need the following several lemmas.

Lemma 2.1

(see [6, Proposition IX.1.2])

Let\(A, B\in\mathbb{M}_{n}\)be any two matrices such that the productABis Hermitian. Then, for every unitarily invariant norm, we have

$$\begin{aligned} \Vert AB \Vert \leq \bigl\Vert \mathfrak{R}(BA) \bigr\Vert . \end{aligned}$$

Lemma 2.2

(see [6, p. 41])

Let\(A, B\in\mathbb{M}_{n}\)and suppose thatfis convex and increasing on\([0, \infty)\). If

$$\begin{aligned} \sum_{j=1}^{k} \sigma_{j}(A)\leq\sum_{j=1}^{k} \sigma_{j}(B),\quad k=1,\ldots , n, \end{aligned}$$


$$\begin{aligned} \sum_{j=1}^{k}f \bigl(\sigma_{j}(A)\bigr)\leq \sum_{j=1}^{k}f \bigl(\sigma_{j}(B)\bigr),\quad k=1,\ldots, n. \end{aligned}$$

Lemma 2.3

(see [6, p. 35])

Let\(A, B\in\mathbb {M}_{n}\). Then

$$\begin{aligned} \sum_{j=1}^{k} \sigma_{j}(A+B)\leq\sum_{j=1}^{k} \sigma_{j}(A)+\sigma _{j}(B),\quad k=1,\ldots, n. \end{aligned}$$

Lemma 2.4

(see [14, p. 63])

If\(A\in\mathbb {M}_{n}\), then

$$\begin{aligned} \lambda_{j}(\mathfrak{R}A) \leq \sigma_{j} (A),\quad j=1,\ldots,n. \end{aligned}$$

Lemma 2.5

(see [4] and [13, p. 228])

Let\(A, B\in\mathbb{M}_{n}\)be positive semidefinite and\(0\leq q \leq1\). Then

$$\begin{aligned} \sigma_{j}\bigl(A^{q}B^{1-q} \bigr) \leq\sigma_{j} \bigl(qA+(1-q)B\bigr),\quad j=1,\ldots,n. \end{aligned}$$

Audenaert [5] proved the following theorem. We give a different proof of the result.

Theorem 2.6

Let\(A, B\in\mathbb{M}_{n}\)and\(\frac{1}{p}+\frac{1}{q}=1\), \(p,q>1\), \(r\geq0\), \(\alpha\in[0,1]\). Then

$$\begin{aligned} \bigl\Vert \bigl\vert A^{*}B \bigr\vert ^{r} \bigr\Vert \leq \bigl\Vert \bigl(\alpha AA^{*}+(1- \alpha)BB^{*}\bigr)^{\frac{rp}{2}} \bigr\Vert ^{\frac{1}{p}} \bigl\Vert \bigl((1-\alpha) AA^{*}+\alpha BB^{*}\bigr)^{\frac{rq}{2}} \bigr\Vert ^{\frac{1}{q}}. \end{aligned}$$


By Fan’s dominance theorem (see [11, Theorem 1.4]) (11) is equivalent to

$$\begin{aligned} \bigl\Vert \bigl\vert A^{*}B \bigr\vert ^{r} \bigr\Vert _{(k)}\leq \bigl\Vert \bigl(\alpha AA^{*}+(1-\alpha)BB^{*}\bigr)^{\frac {rp}{2}} \bigr\Vert ^{\frac{1}{p}}_{(k)} \bigl\Vert \bigl((1-\alpha) AA^{*}+\alpha BB^{*}\bigr)^{\frac{rq}{2}} \bigr\Vert ^{\frac{1}{q}}_{(k)} \end{aligned}$$

for \(k=1,\ldots,n\).

First, let us show this inequality for the Ky Fan 1-norm, that is, the spectral norm:

$$\begin{aligned} \begin{aligned} \bigl\Vert \bigl\vert A^{*}B \bigr\vert ^{r} \bigr\Vert _{(1)}^{2}&= \sigma_{1}^{2}\bigl( \bigl\vert A^{*}B \bigr\vert ^{r}\bigr) \\ &= \lambda_{\max}\bigl( \bigl\vert A^{*}B \bigr\vert ^{2r}\bigr) \\ &=\lambda_{\max}^{r}\bigl(BB^{*}AA^{*}\bigr) \\ &=\lambda_{\max}^{r}\bigl[\bigl(BB^{*}\bigr)^{\alpha}AA^{*} \bigl(BB^{*}\bigr)^{1-\alpha}\bigr] \\ &\leq\sigma_{1}^{r}\bigl(\bigl(BB^{*} \bigr)^{\alpha}AA^{*}\bigl(BB^{*}\bigr)^{1-\alpha}\bigr) \\ &= \bigl\Vert \bigl(BB^{*}\bigr)^{\alpha}AA^{*}\bigl(BB^{*} \bigr)^{1-\alpha} \bigr\Vert _{(1)}^{r} \\ &\leq \bigl\Vert \bigl(BB^{*}\bigr)^{\alpha}\bigl(AA^{*} \bigr)^{1-\alpha} \bigr\Vert _{(1)}^{r} \bigl\Vert \bigl(AA^{*}\bigr)^{\alpha }\bigl(BB^{*}\bigr)^{1-\alpha} \bigr\Vert _{(1)}^{r}, \end{aligned} \end{aligned}$$

which means that

$$\begin{aligned} \sigma_{1}^{2}\bigl( \bigl\vert A^{*}B \bigr\vert ^{r}\bigr) \leq\sigma_{1}^{r} \bigl(\bigl(BB^{*}\bigr)^{\alpha }\bigl(AA^{*}\bigr)^{1-\alpha}\bigr) \sigma_{1}^{r}\bigl(\bigl(AA^{*}\bigr)^{\alpha} \bigl(BB^{*}\bigr)^{1-\alpha}\bigr). \end{aligned}$$

Second, using a standard argument via the antisymmetric product (see [5, p. 18]), (13) yields

$$\begin{aligned} \prod_{j=1}^{k} \sigma_{j}\bigl( \bigl\vert A^{*}B \bigr\vert ^{r} \bigr) \leq& \prod_{j=1}^{k}\sigma _{j}^{\frac{r}{2}}\bigl(\bigl(BB^{*}\bigr)^{\alpha} \bigl(AA^{*}\bigr)^{1-\alpha}\bigr)\prod_{j=1}^{k} \sigma_{j}^{\frac{r}{2}}\bigl(\bigl(AA^{*}\bigr)^{\alpha} \bigl(BB^{*}\bigr)^{1-\alpha}\bigr) \end{aligned}$$

for \(k=1,\ldots,n\). Since weak log-majorization implies weak majorization (see, [9, p. 174]), by (10) we have

$$\begin{aligned} \sum_{j=1}^{k} \sigma_{j}\bigl( \bigl\vert A^{*}B \bigr\vert ^{r} \bigr) \leq&\sum_{j=1}^{k}\sigma _{j}^{\frac{r}{2}}\bigl(\bigl(BB^{*}\bigr)^{\alpha} \bigl(AA^{*}\bigr)^{1-\alpha}\bigr)\sigma _{j}^{\frac{r}{2}} \bigl(\bigl(AA^{*}\bigr)^{\alpha}\bigl(BB^{*}\bigr)^{1-\alpha}\bigr) \\ \leq&\sum_{j=1}^{k}\sigma_{j}^{\frac{r}{2}} \bigl((1-\alpha)AA^{*}+\alpha BB^{*}\bigr)\sigma_{j}^{\frac{r}{2}} \bigl(\alpha AA^{*}+(1-\alpha)BB^{*}\bigr) \end{aligned}$$

for \(k=1,\ldots,n\). The left-hand side is \(\||A^{*}B|^{r}\|_{(k)}\). By the Hölder inequality the right-hand side is bounded from above by

$$\begin{aligned} \begin{aligned} & \Biggl[\sum _{j=1}^{k}\sigma_{j}^{\frac{rp}{2}} \bigl((1-\alpha )AA^{*}+\alpha BB^{*}\bigr) \Biggr]^{\frac{1}{p}} \Biggl[\sum _{j=1}^{k}\sigma _{j}^{\frac{rq}{2}} \bigl(\alpha AA^{*}+(1-\alpha)BB^{*}\bigr) \Biggr]^{\frac {1}{q}} \\ &\quad= \bigl\Vert \bigl((1-\alpha)AA^{*}+\alpha BB^{*}\bigr)^{\frac{rp}{2}} \bigr\Vert _{(k)}^{\frac {1}{p}} \bigl\Vert \bigl(\alpha AA^{*}+(1- \alpha) BB^{*}\bigr)^{\frac{rq}{2}} \bigr\Vert _{(k)}^{\frac{1}{q}}. \end{aligned} \end{aligned}$$

Thus (12) holds, and so does the conclusion. This completes the proof. □

In fact, by a similar technique used in the theorem, we may present a new proof of the following result due to Zou [10], which is a unified version of inequalities (2) and (3).

Theorem 2.7

Let\(A, B, X\in\mathbb{M}_{n}\)and\(\frac{1}{p}+\frac{1}{q}=1\), \(p,q>1\), \(r\geq\max \{\frac{1}{p},\frac{1}{q} \}\), \(\alpha\in[0,1]\). Then

$$\begin{aligned} \begin{aligned}[b] \bigl\Vert \bigl\vert A^{*}XB \bigr\vert ^{2r} \bigr\Vert &\leq \bigl\Vert \bigl(\alpha AA^{*}X+(1-\alpha)XBB^{*}\bigr)^{rp} \bigr\Vert ^{\frac{1}{p}} \\ & \quad\times \bigl\Vert \bigl((1-\alpha) AA^{*}X+\alpha XBB^{*} \bigr)^{rq} \bigr\Vert ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$


There is a subtle difference between the proof of (14) and that of the previous theorem although most techniques are similar. For the readers’ convenience, we present the proof simply.

By Fan’s dominance theorem (14) is equivalent to

$$\begin{aligned} \begin{aligned} \bigl\Vert \bigl\vert A^{*}XB \bigr\vert ^{2r} \bigr\Vert _{(k)} &\leq \bigl\Vert \bigl(\alpha AA^{*}X+(1-\alpha)XBB^{*} \bigr)^{rp} \bigr\Vert ^{\frac{1}{p}}_{(k)} \\ & \quad\times \bigl\Vert \bigl((1-\alpha) AA^{*}X+\alpha XBB^{*} \bigr)^{rq} \bigr\Vert ^{\frac{1}{q}}_{(k)} \end{aligned} \end{aligned}$$

for all \(k=1,\ldots,n\).

If X is a positive semidefinite matrix, then for Ky Fan 1-norm, we have

$$\begin{aligned} \bigl\Vert \bigl\vert A^{*}XB \bigr\vert ^{2r} \bigr\Vert _{(1)}&= \sigma_{1}\bigl( \bigl\vert A^{*}XB \bigr\vert ^{2r} \bigr) \\ &= \lambda_{\max}\bigl( \bigl\vert A^{*}XB \bigr\vert ^{2r}\bigr) \\ &=\lambda_{\max}^{r}\bigl(B^{*}X^{\frac{1}{2}}X^{\frac{1}{2}}AA^{*}X^{\frac {1}{2}}X^{\frac{1}{2}}B \bigr) \\ &=\lambda_{\max}^{r}\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}X^{\frac {1}{2}}AA^{*}X^{\frac{1}{2}} \bigr) \\ &=\lambda_{\max}^{r}\bigl(\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}} \bigr)^{\alpha }X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}}\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac {1}{2}} \bigr)^{1-\alpha}\bigr) \\ &\leq\sigma_{1}^{r}\bigl(\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}} \bigr)^{\alpha }X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}}\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac {1}{2}} \bigr)^{1-\alpha}\bigr) \\ &= \bigl\Vert \bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}} \bigr)^{\alpha}X^{\frac {1}{2}}AA^{*}X^{\frac{1}{2}} \bigl(X^{\frac{1}{2}}BB^{*}X^{\frac {1}{2}}\bigr)^{1-\alpha} \bigr\Vert _{(1)}^{r} \\ &\leq \bigl\Vert \bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}} \bigr)^{\alpha}\bigl(X^{\frac {1}{2}}AA^{*}X^{\frac{1}{2}} \bigr)^{1-\alpha} \bigr\Vert _{(1)}^{r} \\ &\quad\times \bigl\Vert \bigl(X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}}\bigr)^{\alpha} \bigl(X^{\frac {1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{1-\alpha} \bigr\Vert _{(1)}^{r}, \end{aligned}$$

which means that

$$\begin{aligned} \begin{aligned}[b] \sigma_{1}^{2} \bigl( \bigl\vert A^{*}XB \bigr\vert ^{r}\bigr)&\leq \sigma_{1}^{r}\bigl(\bigl(X^{\frac {1}{2}}BB^{*}X^{\frac{1}{2}} \bigr)^{\alpha}\bigl(X^{\frac{1}{2}}AA^{*}X^{\frac {1}{2}} \bigr)^{1-\alpha}\bigr) \\ & \quad\times\sigma_{1}^{r}\bigl(\bigl(X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}} \bigr)^{\alpha }\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}} \bigr)^{1-\alpha}\bigr). \end{aligned} \end{aligned}$$

Using a standard argument via the antisymmetric product (see [5, p. 18]), (15) yields

$$\begin{aligned} \begin{aligned} \prod _{j=1}^{k}\sigma_{j}^{2} \bigl( \bigl\vert A^{*}XB \bigr\vert ^{r}\bigr) &\leq \prod _{j=1}^{k}\sigma _{j}^{r} \bigl(\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{\alpha} \bigl(X^{\frac {1}{2}}AA^{*}X^{\frac{1}{2}}\bigr)^{1-\alpha}\bigr) \\ &\quad\times \prod_{j=1}^{k}\sigma_{j}^{r} \bigl(\bigl(X^{\frac{1}{2}}AA^{*}X^{\frac {1}{2}}\bigr)^{\alpha} \bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{1-\alpha}\bigr) \end{aligned} \end{aligned}$$

for \(k=1,\ldots,n\). Since weak log-majorization implies weak majorization (see, [9, p. 174]), we have

$$\begin{aligned} \begin{aligned} \sum _{j=1}^{k}\sigma_{j}^{2} \bigl( \bigl\vert A^{*}XB \bigr\vert ^{r}\bigr) &\leq \sum _{j=1}^{k}\sigma _{j}^{r} \bigl(\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{\alpha} \bigl(X^{\frac {1}{2}}AA^{*}X^{\frac{1}{2}}\bigr)^{1-\alpha}\bigr) \\ &\quad\times \sigma_{j}^{r}\bigl(\bigl(X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}} \bigr)^{\alpha }\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}} \bigr)^{1-\alpha}\bigr) \\ &\leq\sum_{j=1}^{k} \sigma_{j}^{r}\bigl((1-\alpha) \bigl(X^{\frac {1}{2}}AA^{*}X^{\frac{1}{2}} \bigr)+\alpha\bigl(X^{\frac{1}{2}}BB^{*}X^{\frac {1}{2}}\bigr)\bigr) \\ &\quad\times \sigma_{j}^{r}\bigl(\alpha\bigl(X^{\frac{1}{2}}AA^{*}X^{\frac {1}{2}} \bigr)+(1-\alpha) \bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)\bigr) \end{aligned} \end{aligned}$$

for \(k=1,\ldots,n\). The left-hand side is \(\||A^{*}XB|^{2r}\|_{(k)}\). By the Hölder inequality the right-hand side is bounded from above by

$$\begin{aligned} \begin{aligned} & \Biggl[\sum _{j=1}^{k}\sigma_{j}^{rp} \bigl((1-\alpha) \bigl(X^{\frac {1}{2}}AA^{*}X^{\frac{1}{2}}\bigr)+\alpha \bigl(X^{\frac{1}{2}}BB^{*}X^{\frac {1}{2}}\bigr)\bigr) \Biggr]^{\frac{1}{p}} \\ & \qquad\times \Biggl[\sum_{j=1}^{k}\sigma _{j}^{rq}\bigl(\alpha\bigl(X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}} \bigr)+(1-\alpha ) \bigl(X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)\bigr) \Biggr]^{\frac{1}{q}} \\ &\quad= \bigl\Vert \bigl((1-\alpha)X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}}+\alpha X^{\frac {1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{rp} \bigr\Vert _{(k)}^{\frac{1}{p}} \\ & \qquad\times \bigl\Vert \bigl(\alpha X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}}+(1- \alpha) X^{\frac {1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{rq} \bigr\Vert _{(k)}^{\frac{1}{q}}. \end{aligned} \end{aligned}$$


$$\begin{aligned} \begin{aligned} \bigl\Vert \bigl\vert A^{*}XB \bigr\vert ^{2r} \bigr\Vert _{(k)} &\leq \bigl\Vert \bigl((1-\alpha)X^{\frac{1}{2}}AA^{*}X^{\frac {1}{2}}+\alpha X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{rp} \bigr\Vert _{(k)}^{\frac{1}{p}} \\ & \quad\times \bigl\Vert \bigl(\alpha X^{\frac{1}{2}}AA^{*}X^{\frac {1}{2}}+(1- \alpha) X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\bigr)^{rq} \bigr\Vert _{(k)}^{\frac{1}{q}}. \end{aligned} \end{aligned}$$

Since \((1-\alpha)X^{\frac{1}{2}}AA^{*}X^{\frac{1}{2}}+\alpha X^{\frac {1}{2}}BB^{*}X^{\frac{1}{2}}\) and \(\alpha X^{\frac{1}{2}}AA^{*}X^{\frac {1}{2}}+(1-\alpha) X^{\frac{1}{2}}BB^{*}X^{\frac{1}{2}}\) are Hermitian, since \(r\geq\max \{\frac{1}{p},\frac{1}{q} \} \), the previous inequalities become

$$\begin{aligned} \begin{aligned}[b] & \bigl\Vert \bigl\vert A^{*}XB \bigr\vert ^{2r} \bigr\Vert _{(k)} \\ &\quad\leq \biggl\Vert \biggl(\frac{(1-\alpha)AA^{*}X+\alpha BB^{*}X+(1-\alpha) XAA^{*}+\alpha XBB^{*}}{2} \biggr)^{rp} \biggr\Vert _{(k)}^{\frac{1}{p}} \\ &\qquad \times \biggl\Vert \biggl(\frac{\alpha AA^{*}X+(1-\alpha) BB^{*}X+\alpha XAA^{*}+\alpha XBB^{*}}{2} \biggr)^{rq} \biggr\Vert _{(k)}^{\frac{1}{q}} \\ &\qquad \bigl(\text{by (8) and Lemma 2.2}\bigr) \\ &\quad\leq \bigl\Vert \bigl((1-\alpha)AA^{*}X+\alpha XBB^{*} \bigr)^{rp} \bigr\Vert _{(k)}^{\frac{1}{p}}\times \bigl\Vert \bigl(\alpha AA^{*}X+(1-\alpha) XBB^{*} \bigr)^{rq} \bigr\Vert _{(k)}^{\frac{1}{q}}. \\ &\qquad \bigl(\text{by Lemmas 2.2 and 2.3}\bigr) \end{aligned} \end{aligned}$$

Next, we consider the case where X is any matrix. By the singular value decomposition we know that there exist unitary matrices U and V such that \(X=UDV^{*}\), and then by (16) we have

$$\begin{aligned} \begin{aligned} \bigl\Vert \bigl\vert A^{*}XB \bigr\vert ^{2r} \bigr\Vert _{(k)}& = \bigl\| \bigl|A^{*}UDV^{*}B\bigr|^{2r}\bigr\| _{(k)} \\ &\leq \biggl\Vert \biggl(\frac{(1-\alpha)(A^{*}U)^{*}(A^{*}U)D+\alpha (V^{*}B)(V^{*}B)^{*}D}{2} \\ & \quad+\frac{(1-\alpha) D(A^{*}U)^{*}(A^{*}U)+\alpha D(V^{*}B)(V^{*}B)^{*}}{2}\vphantom{\frac{(1-\alpha)(A^{*}U)^{*}(A^{*}U)D+\alpha (V^{*}B)(V^{*}B)^{*}D}{2}}\vphantom{\frac{(1-\alpha)(A^{*}U)^{*}(A^{*}U)D+\alpha (V^{*}B)(V^{*}B)^{*}D}{2}} \biggr)^{rp}\biggr\Vert \\ &\quad\times\biggl\Vert \biggl(\frac{\alpha(A^{*}U)^{*}(A^{*}U)D+(1-\alpha) (V^{*}B)(V^{*}B)^{*}D}{2} \\ & \quad+\frac {\alpha D(A^{*}U)^{*}(A^{*}U)+(1-\alpha) D(V^{*}B)(V^{*}B)^{*}}{2}\vphantom{\frac {\alpha(A^{*}U)^{*}(A^{*}U)D+(1-\alpha) (V^{*}B)(V^{*}B)^{*}D}{2}} \biggr)^{rq}\biggr\Vert _{(k)}^{\frac{1}{q}} \\ &\leq \bigl\Vert \bigl((1-\alpha) \bigl(A^{*}U\bigr)^{*}\bigl(A^{*}U\bigr)D+\alpha D \bigl(V^{*}B\bigr) \bigl(V^{*}B\bigr)^{*} \bigr)^{rp} \bigr\Vert _{(k)}^{\frac{1}{p}} \\ & \quad\times \bigl\Vert \bigl(\alpha \bigl(A^{*}U\bigr)^{*}\bigl(A^{*}U\bigr)D+(1-\alpha) D\bigl(V^{*}B\bigr) \bigl(V^{*}B\bigr)^{*} \bigr)^{rq} \bigr\Vert _{(k)}^{\frac{1}{q}} \\ &\leq \bigl\Vert \bigl[U^{*}\bigl((1-\alpha)AA^{*}X+\alpha XBB^{*}\bigr)V \bigr]^{rp} \bigr\Vert _{(k)}^{\frac{1}{p}} \\ & \quad\times \bigl\Vert \bigl[U^{*}\bigl(\alpha AA^{*}X+(1-\alpha) XBB^{*}\bigr)V \bigr]^{rq} \bigr\Vert _{(k)}^{\frac{1}{q}} \\ &= \bigl\Vert \bigl((1-\alpha)AA^{*}X+\alpha XBB^{*}\bigr)^{rp} \bigr\Vert _{(k)}^{\frac {1}{p}} \\ &\quad \times \bigl\Vert U^{*}\bigl(\alpha AA^{*}X+(1-\alpha) XBB^{*}\bigr)^{rq} \bigr\Vert _{(k)}^{\frac{1}{q}}, \end{aligned} \end{aligned}$$

where the last equality is due to the fact that \(\||U_{1}^{*}PU_{2}|^{r}\| =\||P|^{r}\|\) for any \(P\in\mathbb{M}_{n}\) and unitary matrices \(U_{1}, U_{2}\). This completes the proof. □

Finally, we give an alterative proof of (7) due to Zou and Jiang [16, Theorem 2.1].

Theorem 2.8

Let\(A, B, X\in\mathbb{M}_{n}\)and\(q\in[0,1]\). Then

$$\begin{aligned} \bigl\Vert AXB^{*} \bigr\Vert ^{2} \leq \bigl\Vert qA^{*}AX+(1-q)XB^{*}B \bigr\Vert \times \bigl\Vert (1-q)A^{*}AX+qXB^{*}B \bigr\Vert . \end{aligned}$$


First, consider the special case where A, B, X are Hermitian and \(A=B\). Then

$$\begin{aligned} \begin{aligned}[b] \bigl\Vert AXB^{*} \bigr\Vert &= \bigl\Vert AXA^{*} \bigr\Vert = \Vert AXA \Vert \\ &\leq\frac{1}{2} \bigl\Vert A^{2}X+XA^{2} \bigr\Vert \quad\bigl(\text{by (2)}\bigr) \\ &= \bigl\Vert \mathfrak{R}\bigl(qA^{2}X+(1-q)XA^{2} \bigr) \bigr\Vert \\ &\leq \bigl\Vert qA^{2}X+(1-q)XA^{2} \bigr\Vert \quad\bigl( \text{by (9)}\bigr) \\ &= \bigl\Vert qA^{*}AX+(1-q)XB^{*}B \bigr\Vert . \end{aligned} \end{aligned}$$


$$\begin{aligned} \begin{aligned} \bigl\Vert AXB^{*} \bigr\Vert \leq \bigl\Vert (1-q)A^{*}AX+qXB^{*}B \bigr\Vert . \end{aligned} \end{aligned}$$

Thus by (17) and (18)

$$\begin{aligned} \bigl\Vert AXB^{*} \bigr\Vert ^{2} \leq& \bigl\Vert qA^{*}AX+(1-q)XB^{*}B \bigr\Vert \times \bigl\Vert (1-q)A^{*}AX+qXB^{*}B \bigr\Vert , \end{aligned}$$

which is just the desired inequality in this particular case.

Next, consider the more general situation where A and B are Hermitian and X is any matrix. Let

$$T=\left ( \textstyle\begin{array}{c@{\quad}c} A & 0 \\ 0 & B \end{array}\displaystyle \right ),\qquad Y=\left ( \textstyle\begin{array}{c@{\quad}c} 0 & X \\ X^{*} & 0 \end{array}\displaystyle \right ). $$

Then by the particular case considered before

$$\begin{aligned} \begin{aligned} [b]\bigl\Vert TYT^{*} \bigr\Vert &= \Vert TYT \Vert \leq\frac{1}{2} \bigl\Vert T^{2}Y+YT^{2} \bigr\Vert \\ &\leq \bigl\Vert qT^{2}Y+(1-q)YT^{2} \bigr\Vert . \end{aligned} \end{aligned}$$

Multiplying out the block-matrices, we have

$$\begin{aligned}& TYT = \left ( \textstyle\begin{array}{c@{\quad}c} 0 & AXB \\ BX^{*}A & 0 \end{array}\displaystyle \right ), \\& \frac{1}{2}T^{2}Y+\frac{1}{2}YT^{2} = \frac{1}{2} \left ( \textstyle\begin{array}{c@{\quad}c} 0 & A^{2}X+XB^{2} \\ B^{2}X^{*}+X^{*}A^{2} & 0 \end{array}\displaystyle \right ). \end{aligned}$$

Hence we obtain the following inequality from (19):

$$\begin{aligned} \left \Vert \left ( \textstyle\begin{array}{c@{\quad}c} 0 & AXB \\ BX^{*}A & 0 \end{array}\displaystyle \right )\right \Vert \leq \frac{1}{2}\left \Vert \left ( \textstyle\begin{array}{c@{\quad}c} 0 & A^{2}X+XB^{2} \\ B^{2}X^{*}+X^{*}A^{2} & 0 \end{array}\displaystyle \right )\right \Vert , \end{aligned}$$

which means that

$$\begin{aligned} \Vert AXB \Vert \leq \frac{1}{2} \bigl\Vert A^{2}X+XB^{2} \bigr\Vert . \end{aligned}$$

So by (17) we have

$$\begin{aligned} \begin{aligned}[b] \bigl\Vert AXB^{*} \bigr\Vert &= \Vert AXB \Vert \\ &\leq \frac{1}{2} \bigl\Vert A^{2}X+XB^{2} \bigr\Vert \\ &= \bigl\Vert qA^{*}AX+(1-q)XB^{*}B \bigr\Vert . \end{aligned} \end{aligned}$$

The following inequality can be proved in exactly the same way:

$$\begin{aligned} \begin{aligned}[b] \bigl\Vert AXB^{*} \bigr\Vert &= \Vert AXB \Vert \\ &\leq \bigl\Vert (1-q)A^{2}X+qXB^{2} \bigr\Vert \\ &= \bigl\Vert (1-q)A^{*}AX+qXB^{*}B \bigr\Vert . \end{aligned} \end{aligned}$$

In this case, from (20) and (21) we have

$$\begin{aligned} \bigl\Vert AXB^{*} \bigr\Vert ^{2} \leq \bigl\Vert qA^{*}AX+(1-q)XB^{*}B \bigr\Vert \times \bigl\Vert (1-q)A^{*}AX+qXB^{*}B \bigr\Vert . \end{aligned}$$

Finally, Let \(A=UA_{1}\) and \(B=VB_{1}\) be polar decompositions of A and B. Then

$$\begin{aligned} A^{*}AX+XB^{*}B=A_{1}^{*}U^{*} UA_{1}X+XB_{1}^{*}V^{*}VB_{1}=A_{1}^{2}X+XB_{1}^{2}, \end{aligned}$$


$$\begin{aligned} \bigl\Vert AXB^{*} \bigr\Vert = \bigl\Vert UA_{1}XB_{1}^{*}V^{*} \bigr\Vert = \bigl\Vert A_{1}XB_{1}^{*} \bigr\Vert . \end{aligned}$$

So the theorem follows from inequality (22). This completes the proof. □


  1. 1.

    Ahmad, A., Omar, H., Kittaneh, F.: Interpolating inequalities for functions of positive semidefinite matrices. Banach J. Math. Anal. 12, 955–969 (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Al-khlyleh, M., Kittaneh, F.: Interpolating inequalities related to a recent result of Audenaert. Linear Multilinear Algebra 65, 922–929 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Albadawi, H.: Hölder-type inequalities involving unitarily invariant norms. Positivity 16, 255–270 (2012)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ando, T.: Matrix Young inequalities. Oper. Theory, Adv. Appl. 75, 33–38 (1995)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Audenaert, K.M.R.: Interpolating between the arithmetic–geometric mean and Cauchy–Schwarz matrix norm inequalities. Oper. Matrices 9, 475–479 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Google Scholar 

  7. 7.

    Bhatia, R., Davis, C.: More matrix forms of the arithmetic–geometric mean inequality. SIAM J. Matrix Anal. Appl. 14, 132–136 (1993)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bhatia, R., Kittaneh, F.: On the singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 272–277 (1990)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)

    Google Scholar 

  10. 10.

    Horn, R.A., Zhan, X.: Inequalities for C-S seminorms and Lieb functions. Linear Algebra Appl. 291, 103–113 (1999)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Li, C.-K., Mathias, R.: Generalizations of Ky Fan’s dominance theorem. SIAM J. Matrix Anal. Appl. 19, 89–106 (1998)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lin, M.: Remarks on two recent results of Audenaert. Linear Algebra Appl. 489, 24–29 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Zhan, X.: Matrix Inequalities. Springer, Berlin (2002)

    Google Scholar 

  14. 14.

    Zhan, X.: Matrix Theory. Am. Math. Soc., Providence (2013)

    Google Scholar 

  15. 15.

    Zou, L.: Unification of the arithmetic–geometric mean and Hölder inequalities for unitarily invariant norms. Linear Algebra Appl. 552, 154–162 (2019)

    Article  Google Scholar 

  16. 16.

    Zou, L., Jiang, Y.: A note on interpolation between the arithmetic–geometric mean and Cauchy–Schwarz matrix norm inequalities. J. Math. Inequal. 10, 1119–1122 (2016)

    MathSciNet  Article  Google Scholar 

Download references


Not applicable.

Availability of data and materials

Not applicable.


The work is supported by Hainan Provincial Natural Science Foundation for High-level Talents grant no. 2019RC171, the Ministry of Education of Hainan grant no. Hnky2019ZD-13, China Scholarship Council grant no. 201908460006, the Ministry of Education of Hainan grant no. Hnky2019ZD-13, the Provincial Key Laboratory, Hainan Normal University grant no. JSKX201904, and National Natural Science Foundation of China grant 11671105.

Author information




Both authors contributed almost the same amount of work to the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Junjian Yang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lu, L. New proofs on two recent inequalities for unitarily invariant norms. J Inequal Appl 2020, 133 (2020).

Download citation


  • 15A45
  • 15A60


  • Arithmetic–geometric mean inequality
  • Hölder inequality
  • Unitarily invariant norm
  • Norm inequality