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1 Introduction
Let Mn be the set of n × n complex matrices. For A ∈ Mn, the singular values and eigen-
values of A are denoted by σi(A) and λi(A), respectively, i = 1, . . . , n. The singular values
σ1(A),σ2(A), . . . ,σn(A) of a matrix A are the eigenvalues of |A| = (A∗A) 1

2 arranged in de-
creasing order and repeated according to multiplicity. The Ky Fan k-norm, a particular
unitarily invariant norm, is defined as ‖ · ‖(k) =

∑k
j=1 σj(A), 1 ≤ k ≤ n. If A is Hermitian,

then all eigenvalues of A are real and ordered as λ1(A) ≥ · · · ≥ λn(A).
Let A, B ∈Mn. Bhatia and Kittaneh [8] proved an arithmetic–geometric mean inequality

for unitarily invariant norms

∥
∥A∗B

∥
∥ ≤ 1

2
∥
∥AA∗ + BB∗∥∥. (1)

As a generalization of (1), Bhatia and Davis [7] proved that

∥
∥A∗XB

∥
∥ ≤ 1

2
∥
∥AA∗X + XBB∗∥∥ (2)

for A, X, B ∈Mn.
Albadawi [3] obtained a stronger version of the Hölder inequality for unitarily invariant

norms. Let A, X, B ∈ Mn and 1
p + 1

q = 1, p, q > 1, r ≥ 0. Then

∥
∥
∣
∣A∗XB

∣
∣r∥∥ ≤ ∥

∥
∣
∣AA∗X

∣
∣

rp
2
∥
∥

1
p
∥
∥
∣
∣XBB∗∣∣

rq
2
∥
∥

1
q , (3)
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which is a generalization of Horn and Zhan’s result [10] (also called the Hölder inequality)

∥
∥
∣
∣A∗B

∣
∣r∥∥ ≤ ∥

∥
(
AA∗) rp

2
∥
∥

1
p
∥
∥
(
BB∗) rq

2
∥
∥

1
q . (4)

Recently, Audenaert [5] proved that if A, B ∈Mn and 1
p + 1

q = 1, p, q > 1, r ≥ 0, α ∈ [0, 1],
then

∥
∥
∣
∣A∗B

∣
∣r∥∥ ≤ ∥

∥
(
αAA∗ + (1 – α)BB∗)rp/2∥∥

1
p
∥
∥
(
(1 – α)AA∗ + αBB∗)rp/2∥∥

1
q , (5)

which is a unification of inequalities (1) and (4). By setting r = 1 and p = p′ = 2 in (5) we
have

∥
∥
∣
∣A∗B

∣
∣
∥
∥ ≤ ∥

∥αAA∗ + (1 – α)BB∗∥∥ 1
2
∥
∥(1 – α)AA∗ + αBB∗∥∥ 1

2 . (6)

Lin [12] gave a new proof of inequality (6). Zou and Jiang [16] generalized it to the follow-
ing inequality: Let A, B, X ∈ Mn and q ∈ [0, 1]. Then

∥
∥AXB∗∥∥2 ≤ ∥

∥qA∗AX + (1 – q)XB∗B
∥
∥
∥
∥(1 – q)A∗AX + qXB∗B

∥
∥. (7)

Al-khlyleh and Kittaneh [2, Theorem 2.5] presented an inequality that refines inequality
(7) for the particular unitarily invariant norm, Hilbert–Schmidt norm. For more results
on interpolation between the arithmetic–geometric mean inequality and the Cauchy–
Schwarz inequality for matrices, see [1].

In this paper, we provide alternative proofs of inequalities (5) and (7), which provide new
perspectives to the elegant results.

2 Main results
For presenting the new proofs, we need the following several lemmas.

Lemma 2.1 (see [6, Proposition IX.1.2]) Let A, B ∈ Mn be any two matrices such that the
product AB is Hermitian. Then, for every unitarily invariant norm, we have

‖AB‖ ≤ ∥
∥R(BA)

∥
∥. (8)

Lemma 2.2 (see [6, p. 41]) Let A, B ∈ Mn and suppose that f is convex and increasing on
[0,∞). If

k∑

j=1

σj(A) ≤
k∑

j=1

σj(B), k = 1, . . . , n,

then

k∑

j=1

f
(
σj(A)

) ≤
k∑

j=1

f
(
σj(B)

)
, k = 1, . . . , n.
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Lemma 2.3 (see [6, p. 35]) Let A, B ∈Mn. Then

k∑

j=1

σj(A + B) ≤
k∑

j=1

σj(A) + σj(B), k = 1, . . . , n.

Lemma 2.4 (see [14, p. 63]) If A ∈Mn, then

λj(RA) ≤ σj(A), j = 1, . . . , n. (9)

Lemma 2.5 (see [4] and [13, p. 228]) Let A, B ∈Mn be positive semidefinite and 0 ≤ q ≤ 1.
Then

σj
(
AqB1–q) ≤ σj

(
qA + (1 – q)B

)
, j = 1, . . . , n. (10)

Audenaert [5] proved the following theorem. We give a different proof of the result.

Theorem 2.6 Let A, B ∈Mn and 1
p + 1

q = 1, p, q > 1, r ≥ 0, α ∈ [0, 1]. Then

∥
∥
∣
∣A∗B

∣
∣r∥∥ ≤ ∥

∥
(
αAA∗ + (1 – α)BB∗) rp

2
∥
∥

1
p
∥
∥
(
(1 – α)AA∗ + αBB∗) rq

2
∥
∥

1
q . (11)

Proof By Fan’s dominance theorem (see [11, Theorem 1.4]) (11) is equivalent to

∥
∥
∣
∣A∗B

∣
∣r∥∥

(k) ≤ ∥
∥
(
αAA∗ + (1 – α)BB∗) rp

2
∥
∥

1
p
(k)

∥
∥
(
(1 – α)AA∗ + αBB∗) rq

2
∥
∥

1
q
(k) (12)

for k = 1, . . . , n.
First, let us show this inequality for the Ky Fan 1-norm, that is, the spectral norm:

∥
∥
∣
∣A∗B

∣
∣r∥∥2

(1) = σ 2
1
(∣
∣A∗B

∣
∣r)

= λmax
(∣
∣A∗B

∣
∣2r)

= λr
max

(
BB∗AA∗)

= λr
max

[(
BB∗)αAA∗(BB∗)1–α]

≤ σ r
1
((

BB∗)αAA∗(BB∗)1–α)

=
∥
∥
(
BB∗)αAA∗(BB∗)1–α∥

∥r
(1)

≤ ∥
∥
(
BB∗)α(

AA∗)1–α∥
∥r

(1)

∥
∥
(
AA∗)α(

BB∗)1–α∥
∥r

(1),

which means that

σ 2
1
(∣
∣A∗B

∣
∣r) ≤ σ r

1
((

BB∗)α(
AA∗)1–α)

σ r
1
((

AA∗)α(
BB∗)1–α)

. (13)

Second, using a standard argument via the antisymmetric product (see [5, p. 18]), (13)
yields

k∏

j=1

σj
(∣
∣A∗B

∣
∣r) ≤

k∏

j=1

σ
r
2

j
((

BB∗)α(
AA∗)1–α) k∏

j=1

σ
r
2

j
((

AA∗)α(
BB∗)1–α)
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for k = 1, . . . , n. Since weak log-majorization implies weak majorization (see, [9, p. 174]),
by (10) we have

k∑

j=1

σj
(∣
∣A∗B

∣
∣r) ≤

k∑

j=1

σ
r
2

j
((

BB∗)α(
AA∗)1–α)

σ
r
2

j
((

AA∗)α(
BB∗)1–α)

≤
k∑

j=1

σ
r
2

j
(
(1 – α)AA∗ + αBB∗)σ

r
2

j
(
αAA∗ + (1 – α)BB∗)

for k = 1, . . . , n. The left-hand side is ‖|A∗B|r‖(k). By the Hölder inequality the right-hand
side is bounded from above by

[ k∑

j=1

σ
rp
2

j
(
(1 – α)AA∗ + αBB∗)

] 1
p
[ k∑

j=1

σ
rq
2

j
(
αAA∗ + (1 – α)BB∗)

] 1
q

=
∥
∥
(
(1 – α)AA∗ + αBB∗) rp

2
∥
∥

1
p
(k)

∥
∥
(
αAA∗ + (1 – α)BB∗) rq

2
∥
∥

1
q
(k).

Thus (12) holds, and so does the conclusion. This completes the proof. �

In fact, by a similar technique used in the theorem, we may present a new proof of the
following result due to Zou [10], which is a unified version of inequalities (2) and (3).

Theorem 2.7 Let A, B, X ∈Mn and 1
p + 1

q = 1, p, q > 1, r ≥ max{ 1
p , 1

q }, α ∈ [0, 1]. Then

∥
∥
∣
∣A∗XB

∣
∣2r∥∥ ≤ ∥

∥
(
αAA∗X + (1 – α)XBB∗)rp∥∥

1
p

× ∥
∥
(
(1 – α)AA∗X + αXBB∗)rq∥∥

1
q . (14)

Proof There is a subtle difference between the proof of (14) and that of the previous the-
orem although most techniques are similar. For the readers’ convenience, we present the
proof simply.

By Fan’s dominance theorem (14) is equivalent to

∥
∥
∣
∣A∗XB

∣
∣2r∥∥

(k) ≤ ∥
∥
(
αAA∗X + (1 – α)XBB∗)rp∥∥

1
p
(k)

× ∥
∥
(
(1 – α)AA∗X + αXBB∗)rq∥∥

1
q
(k)

for all k = 1, . . . , n.
If X is a positive semidefinite matrix, then for Ky Fan 1-norm, we have

∥
∥
∣
∣A∗XB

∣
∣2r∥∥

(1) = σ1
(∣
∣A∗XB

∣
∣2r)

= λmax
(∣
∣A∗XB

∣
∣2r)

= λr
max

(
B∗X

1
2 X

1
2 AA∗X

1
2 X

1
2 B

)

= λr
max

(
X

1
2 BB∗X

1
2 X

1
2 AA∗X

1
2
)

= λr
max

((
X

1
2 BB∗X

1
2
)αX

1
2 AA∗X

1
2
(
X

1
2 BB∗X

1
2
)1–α)
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≤ σ r
1
((

X
1
2 BB∗X

1
2
)αX

1
2 AA∗X

1
2
(
X

1
2 BB∗X

1
2
)1–α)

=
∥
∥
(
X

1
2 BB∗X

1
2
)αX

1
2 AA∗X

1
2
(
X

1
2 BB∗X

1
2
)1–α∥

∥r
(1)

≤ ∥
∥
(
X

1
2 BB∗X

1
2
)α(

X
1
2 AA∗X

1
2
)1–α∥

∥r
(1)

× ∥
∥
(
X

1
2 AA∗X

1
2
)α(

X
1
2 BB∗X

1
2
)1–α∥

∥r
(1),

which means that

σ 2
1
(∣
∣A∗XB

∣
∣r) ≤ σ r

1
((

X
1
2 BB∗X

1
2
)α(

X
1
2 AA∗X

1
2
)1–α)

× σ r
1
((

X
1
2 AA∗X

1
2
)α(

X
1
2 BB∗X

1
2
)1–α)

. (15)

Using a standard argument via the antisymmetric product (see [5, p. 18]), (15) yields

k∏

j=1

σ 2
j
(∣
∣A∗XB

∣
∣r) ≤

k∏

j=1

σ r
j
((

X
1
2 BB∗X

1
2
)α(

X
1
2 AA∗X

1
2
)1–α)

×
k∏

j=1

σ r
j
((

X
1
2 AA∗X

1
2
)α(

X
1
2 BB∗X

1
2
)1–α)

for k = 1, . . . , n. Since weak log-majorization implies weak majorization (see, [9, p. 174]),
we have

k∑

j=1

σ 2
j
(∣
∣A∗XB

∣
∣r) ≤

k∑

j=1

σ r
j
((

X
1
2 BB∗X

1
2
)α(

X
1
2 AA∗X

1
2
)1–α)

× σ r
j
((

X
1
2 AA∗X

1
2
)α(

X
1
2 BB∗X

1
2
)1–α)

≤
k∑

j=1

σ r
j
(
(1 – α)

(
X

1
2 AA∗X

1
2
)

+ α
(
X

1
2 BB∗X

1
2
))

× σ r
j
(
α
(
X

1
2 AA∗X

1
2
)

+ (1 – α)
(
X

1
2 BB∗X

1
2
))

for k = 1, . . . , n. The left-hand side is ‖|A∗XB|2r‖(k). By the Hölder inequality the right-hand
side is bounded from above by

[ k∑

j=1

σ
rp
j

(
(1 – α)

(
X

1
2 AA∗X

1
2
)

+ α
(
X

1
2 BB∗X

1
2
))

] 1
p

×
[ k∑

j=1

σ
rq
j

(
α
(
X

1
2 AA∗X

1
2
)

+ (1 – α)
(
X

1
2 BB∗X

1
2
))

] 1
q

=
∥
∥
(
(1 – α)X

1
2 AA∗X

1
2 + αX

1
2 BB∗X

1
2
)rp∥∥

1
p
(k)

× ∥
∥
(
αX

1
2 AA∗X

1
2 + (1 – α)X

1
2 BB∗X

1
2
)rq∥∥

1
q
(k).
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Thus

∥
∥
∣
∣A∗XB

∣
∣2r∥∥

(k) ≤ ∥
∥
(
(1 – α)X

1
2 AA∗X

1
2 + αX

1
2 BB∗X

1
2
)rp∥∥

1
p
(k)

× ∥
∥
(
αX

1
2 AA∗X

1
2 + (1 – α)X

1
2 BB∗X

1
2
)rq∥∥

1
q
(k).

Since (1 – α)X 1
2 AA∗X 1

2 + αX 1
2 BB∗X 1

2 and αX 1
2 AA∗X 1

2 + (1 – α)X 1
2 BB∗X 1

2 are Hermitian,
since r ≥ max{ 1

p , 1
q }, the previous inequalities become

∥
∥
∣
∣A∗XB

∣
∣2r∥∥

(k)

≤
∥
∥
∥
∥

(
(1 – α)AA∗X + αBB∗X + (1 – α)XAA∗ + αXBB∗

2

)rp∥∥
∥
∥

1
p

(k)

×
∥
∥
∥
∥

(
αAA∗X + (1 – α)BB∗X + αXAA∗ + αXBB∗

2

)rq∥∥
∥
∥

1
q

(k)
(
by (8) and Lemma 2.2

)

≤ ∥
∥
(
(1 – α)AA∗X + αXBB∗)rp∥∥

1
p
(k) × ∥

∥
(
αAA∗X + (1 – α)XBB∗)rq∥∥

1
q
(k).

(
by Lemmas 2.2 and 2.3

)
(16)

Next, we consider the case where X is any matrix. By the singular value decomposition
we know that there exist unitary matrices U and V such that X = UDV ∗, and then by (16)
we have

∥
∥
∣
∣A∗XB

∣
∣2r∥∥

(k) =
∥
∥
∣
∣A∗UDV ∗B

∣
∣2r∥∥

(k)

≤
∥
∥
∥
∥

(
(1 – α)(A∗U)∗(A∗U)D + α(V ∗B)(V ∗B)∗D

2

+
(1 – α)D(A∗U)∗(A∗U) + αD(V ∗B)(V ∗B)∗

2

)rp∥∥
∥
∥

×
∥
∥
∥
∥

(
α(A∗U)∗(A∗U)D + (1 – α)(V ∗B)(V ∗B)∗D

2

+
αD(A∗U)∗(A∗U) + (1 – α)D(V ∗B)(V ∗B)∗

2

)rq∥∥
∥
∥

1
q

(k)

≤ ∥
∥
(
(1 – α)

(
A∗U

)∗(A∗U
)
D + αD

(
V ∗B

)(
V ∗B

)∗)rp∥∥
1
p
(k)

× ∥
∥
(
α
(
A∗U

)∗(A∗U
)
D + (1 – α)D

(
V ∗B

)(
V ∗B

)∗)rq∥∥
1
q
(k)

≤ ∥
∥
[
U∗((1 – α)AA∗X + αXBB∗)V

]rp∥∥
1
p
(k)

× ∥
∥
[
U∗(αAA∗X + (1 – α)XBB∗)V

]rq∥∥
1
q
(k)

=
∥
∥
(
(1 – α)AA∗X + αXBB∗)rp∥∥

1
p
(k)

× ∥
∥U∗(αAA∗X + (1 – α)XBB∗)rq∥∥

1
q
(k),
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where the last equality is due to the fact that ‖|U∗
1 PU2|r‖ = ‖|P|r‖ for any P ∈ Mn and

unitary matrices U1, U2. This completes the proof. �

Finally, we give an alterative proof of (7) due to Zou and Jiang [16, Theorem 2.1].

Theorem 2.8 Let A, B, X ∈Mn and q ∈ [0, 1]. Then

∥
∥AXB∗∥∥2 ≤ ∥

∥qA∗AX + (1 – q)XB∗B
∥
∥ × ∥

∥(1 – q)A∗AX + qXB∗B
∥
∥.

Proof First, consider the special case where A, B, X are Hermitian and A = B. Then

∥
∥AXB∗∥∥ =

∥
∥AXA∗∥∥ = ‖AXA‖

≤ 1
2
∥
∥A2X + XA2∥∥

(
by (2)

)

=
∥
∥R

(
qA2X + (1 – q)XA2)∥∥

≤ ∥
∥qA2X + (1 – q)XA2∥∥

(
by (9)

)

=
∥
∥qA∗AX + (1 – q)XB∗B

∥
∥. (17)

Similarly,

∥
∥AXB∗∥∥ ≤ ∥

∥(1 – q)A∗AX + qXB∗B
∥
∥. (18)

Thus by (17) and (18)

∥
∥AXB∗∥∥2 ≤ ∥

∥qA∗AX + (1 – q)XB∗B
∥
∥ × ∥

∥(1 – q)A∗AX + qXB∗B
∥
∥,

which is just the desired inequality in this particular case.
Next, consider the more general situation where A and B are Hermitian and X is any

matrix. Let

T =

(
A 0
0 B

)

, Y =

(
0 X

X∗ 0

)

.

Then by the particular case considered before

∥
∥TYT∗∥∥ = ‖TYT‖ ≤ 1

2
∥
∥T2Y + YT2∥∥

≤ ∥
∥qT2Y + (1 – q)YT2∥∥. (19)

Multiplying out the block-matrices, we have

TYT =

(
0 AXB

BX∗A 0

)

,

1
2

T2Y +
1
2

YT2 =
1
2

(
0 A2X + XB2

B2X∗ + X∗A2 0

)

.
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Hence we obtain the following inequality from (19):

∥
∥
∥
∥
∥

(
0 AXB

BX∗A 0

)∥
∥
∥
∥
∥

≤ 1
2

∥
∥
∥
∥
∥

(
0 A2X + XB2

B2X∗ + X∗A2 0

)∥
∥
∥
∥
∥

,

which means that

‖AXB‖ ≤ 1
2
∥
∥A2X + XB2∥∥.

So by (17) we have

∥
∥AXB∗∥∥ = ‖AXB‖

≤ 1
2
∥
∥A2X + XB2∥∥

=
∥
∥qA∗AX + (1 – q)XB∗B

∥
∥. (20)

The following inequality can be proved in exactly the same way:

∥
∥AXB∗∥∥ = ‖AXB‖

≤ ∥
∥(1 – q)A2X + qXB2∥∥

=
∥
∥(1 – q)A∗AX + qXB∗B

∥
∥. (21)

In this case, from (20) and (21) we have

∥
∥AXB∗∥∥2 ≤ ∥

∥qA∗AX + (1 – q)XB∗B
∥
∥ × ∥

∥(1 – q)A∗AX + qXB∗B
∥
∥. (22)

Finally, Let A = UA1 and B = VB1 be polar decompositions of A and B. Then

A∗AX + XB∗B = A∗
1U∗UA1X + XB∗

1V ∗VB1 = A2
1X + XB2

1,

whereas

∥
∥AXB∗∥∥ =

∥
∥UA1XB∗

1V ∗∥∥ =
∥
∥A1XB∗

1
∥
∥.

So the theorem follows from inequality (22). This completes the proof. �
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