Skip to main content

The connectedness of the solutions set for set-valued vector equilibrium problems under improvement sets

Abstract

In this paper, we provide the connectedness of the sets of weak efficient solutions, Henig efficient solutions and Benson proper efficient solutions for set-valued vector equilibrium problems under improvement sets.

Introduction

In recent years, many scholars paid attention to developing concepts to unify various kinds of solution notions of vector optimization problems, for instance, efficiency, weak efficiency, proper efficiency and ε-efficiency. Chicoo et al. [1] putted forward a new concept of improvement set E and defined E-optimal solution in finite dimensional Euclidean space. E-optimal solution unifies some known concepts of exact and approximate solutions of vector optimization problems. Gutiérrez et al. [2] extended the notion of improvement set and E-optimal solution to a locally convex topological vector spaces. Much follow-up work about the improvement set E one finds in [312]. Chen et al. [13] introduced a new vector equilibrium problem based on improvement set E named the unified vector equilibrium problem (UVEP), linear scalarization characterizations of the efficient solutions, weak efficient solutions, Benson proper efficient solutions for (UVEP) were established, and some continuity results of parametric (UVEP) were obtained by applying scalarization method.

Vector equilibrium problems (shortly, VEP) provides a unified model of many significant problems (see [1416]). An important topic about (VEP) is the connectedness of the solutions set. Lee et al. [17] and Cheng [18] discussed the path-connectedness and connectedness of weakly efficient solutions set for vector variational inequalities in finite dimensional Euclidean space, respectively. Applying the scalarization approaches, Gong [19] studied the connectedness of the sets of Henig efficient solutions and weakly efficient solutions for the vector Hartman–Stampacchia variational inequality in normed vector spaces (in short, n.v.s.). By employing scalarization results, Gong [20] investigated the connectedness and path-connectedness of sets of weak efficient solutions and various proper efficient solutions for (VEP)in locally convex spaces (in short, l.c.s.). By the density results, Gong and Yao [21] first showed the connectedness of efficient solutions set for (VEP) in l.c.s. Chen et al. [22] studied the connectedness and the compactness of weak efficient solutions set for set-valued vector equilibrium problems (shortly, SVEP) in n.v.s. Chen et al. [23] discussed the connectedness of the sets of ϵ-weak efficient solutions and ϵ-efficient solutions for (VEP) in l.c.s.

All the papers mentioned above, the hypotheses of compactness and monotonicity are essential in discussing the connectedness of the sets of various kinds of efficient solutions for (VEP). Han and Huang [24] studied the connectedness of the sets of (weakly) efficient solutions and various proper efficient solutions for the (GVEP) not using the conditions of compactness and monotonicity in n.v.s. Han and Huang [25] investigated the connectedness of the sets of weakly efficient solutions and ε-efficient solutions for the(SVEP) by using the scalarization results and the density results in n.v.s, respectively. The improvement set E is a tool to unify some exact and approximate solution notions, hence, it is very meaningful in establishing the connectedness of the solutions set for VEP based on improvement set.

Motivated by the work of [13, 24, 25], in this paper, by using the scalarization results, we study the connectedness of the sets of weakly efficient solutions, Henig efficient solutions and Benson proper efficient solutions for set-valued vector equilibrium problems under improvement sets. The main results unify and extend some exact and approximate cases.

Preliminaries

Throughout this paper, let X, Y be real locally convex Hausdorff topological vector spaces and let Z be a real vector topological space. Let \(Y^{\ast }\) be the topological dual space of Y and let C be a pointed closed convex cone in Y with its topological interior \(\operatorname{int} C\neq \emptyset \).

Let Q be a nonempty subset of Y, denote the closure of Q by clQ and the topological interior of Q by intQ. The cone hull of Q is defined by

$$ \operatorname{cone}Q:=\{tq\mid t\geq 0, q\in Q\}. $$

We say Q is solid if \(\operatorname{int} Q\neq \emptyset \).

The positive polar cone \(C^{\ast }\) and the strict positive polar cone \(C^{\sharp }\) of C are defined as

$$ C^{\ast }:=\bigl\{ y^{\ast }\in Y^{\ast }\mid y^{\ast }(y) \geq 0, \forall y \in C\bigr\} $$

and

$$ C^{\sharp }:=\bigl\{ y^{\ast }\in Y^{\ast }\mid y^{\ast }(y) >0, \forall y \in C\setminus \{0_{Y}\}\bigr\} , $$

respectively.

A nonempty convex set \(B \subset C\) is said to be a base of C if

$$ C =\operatorname{cone}B\quad \mbox{and}\quad 0_{Y}\notin \operatorname{cl}B. $$

It is clear that \(C^{\sharp }\neq \emptyset \) if and only if C has a base. Let B be a base of C, because of \(0_{Y}\notin \operatorname{cl}B\), by the separation theorem of convex sets, there exists \(0\neq \varphi \in Y^{\ast }\) such that

$$ \delta =\inf \bigl\{ \varphi (b)\mid b\in B \bigr\} > \varphi (0_{Y})=0. $$

Define

$$ V_{B}=\biggl\{ y\in Y\ \bigl| \varphi (y) \bigr| < \frac{\delta }{2} \biggr\} . $$

Then \(V_{B}\) is an open convex balanced neighborhood of zero in Y. For each convex neighborhood U of zero with \(U\subseteq V_{B}\), \(B + U\) is a convex set and \(0 \notin \operatorname{cl}(B + U)\), let \(C_{U}(B) := \operatorname{cone}(U + B)\).

Remark 2.1

([26])

  1. (i)

    \(C_{U}(B)\) is a pointed convex cone;

  2. (ii)

    \(C\setminus \{0_{Y}\} \subseteq \operatorname{int} C_{U}(B)\).

For convenience, we denote by \(N(0)\) the family of neighborhoods of zero in Y. Assume that B is a base of C and write

$$ B^{st}:=\bigl\{ \mu \in C^{\sharp }\mid \mbox{there exists } t > 0 \mbox{ such that } \mu (b)\geq t, \forall b \in B\bigr\} . $$

By the separation theorem of the convex sets (see [27]), we know \(B^{st}\neq \emptyset \).

Lemma 2.2

([28])

Let B is a base of C and \(y^{\ast }\in Y^{\ast }\setminus \{0_{Y^{\ast }}\}\). Then \(y^{\ast } \in B^{st}\)if and only if there exists a convex neighborhood \(N(0)\)such that \(y^{\ast } (u-b) \leq 0\), \(\forall u\in U\), \(\forall b\in B\).

Lemma 2.3

([27])

Let \(\operatorname{int}C\neq \emptyset \), then

  1. (i)

    \(\operatorname{int}C\cup \{0_{Y}\}\)is a convex cone:

  2. (ii)

    \(\operatorname{int}C=C+\operatorname{int}C\):

  3. (iii)

    \(\operatorname{int}( \operatorname{int}C)=\operatorname{int}C\).

Definition 2.4

([2])

Let E be a nonempty subset in Y. E is said to be an improvement set with respect to C if \(0_{Y} \notin E\) and \(E + C = E\). The class of the improvement sets with respect to C in Y is denoted by \(\Im _{Y}\).

Lemma 2.5

([3])

Let \(E\in \Im _{Y}\)and be solid, then \(\operatorname{int} E=E+ \operatorname{int} C\).

Lemma 2.6

([3])

Let \(E\in \Im _{Y}\)and \(\emptyset \neq N\subset Y\), then

$$ \operatorname{cl}\bigl(\operatorname{cone}(N + E)\bigr) =\operatorname{cl}\bigl( \operatorname{cone}(N + \operatorname{int}E)\bigr). $$

Definition 2.7

([29])

Let \(\emptyset \neq A\subset X\). The set-valued map \(F: A \rightrightarrows Y\) is said to be nearly C-convexlike (closely C-convexlike) on A if \(\operatorname{cl}(F (A) + C)\) is a convex set in Y.

Definition 2.8

([5])

Let \(\emptyset \neq A\subset X\) and \(E \in \Im _{Y}\). The set-valued map \(F: A \rightrightarrows Y\) is said to be E-subconvexlike on A if \(F (A) + \operatorname{int}E\) is a convex set in Y.

Definition 2.9

([3])

Let \(\emptyset \neq A\subset X\) and \(E \in \Im _{Y}\). The set-valued map \(F: A \rightrightarrows Y\) is said to be nearly E-subconvexlike on A if \(\operatorname{cl}(\operatorname{cone}(F (A) + E))\) is a convex set in Y.

Theorem 2.10

Let \(E\in \Im _{Y}\)and \(\emptyset \neq A\subset X\). If the set-valued map \(F:A\rightrightarrows Y\)is E-subconvexlike on A, then F is nearly E-subconvexlike on A.

Proof

It follows directly from Definition 2.8, Definition 2.9 and Lemma 2.6. □

Lemma 2.11

([30])

Let \(\emptyset \neq M\subset Y\)and \(\operatorname{int}C\neq \emptyset \). Then

$$ \operatorname{int} \bigl(\operatorname{cl}(M+C)\bigr)=M+\operatorname{int}C. $$

Theorem 2.12

Let \(E \in \Im _{Y}\)be a convex set and \(\operatorname{int}C\neq \emptyset \). If the set-valued map \(F: A \rightrightarrows Y\)is nearly C-convexlike on A, then F is nearly E-subconvexlike on A.

Proof

As F is nearly C-convexlike on A, then \(\operatorname{cl}(F(A)+C)\) is convex, taking into account Lemma 2.3(i), one finds that \(\operatorname{int} (\operatorname{cl}(F(A)+C))\) is convex, by Lemma 2.11, \(F(A)+\operatorname{int}C\) is convex too.

Moreover, observe that E is convex, then \(F(A)+\operatorname{int}C+E\) is convex. From Lemma 2.5, it follows that \(F(A)+\operatorname{int}E\) is convex. Therefore, in view of Lemma 2.6, we see that \(\operatorname{cl}(\operatorname{cone}(F(A) + E))\) is convex. □

Lemma 2.13

([31])

Let M and N be two nonempty convex subsets of a real topological linear space X with \(\operatorname{int}M \neq \emptyset \). Then \(N \cap \operatorname{int}M=\emptyset \)if and only if there are a linear functional \(l\in X^{\ast }\setminus \{0_{X^{\ast }}\}\)and a real number α with \(l(m) \leq \alpha \leq l(n)\)for all \(m \in M\)and all \(n \in N\), and

$$ l(m) < \alpha \quad \textit{for all }m \in \operatorname{int}M. $$

In this paper, we let \(\mathbb{R}\) is the set of real numbers and \(\mathbb{R}_{+}=\{r\mid r\geq 0\}\), \(\mathbb{R}_{++}=\{r\mid r> 0\}\).

From now on, we presume that A is a nonempty subset of X, \(F: A\times A \rightrightarrows Y\) is a set-valued map.

We have the usual set-valued vector equilibrium problem (SVEP) of finding \(\bar{x}\in A \) such that

$$ (\mathrm{SVEP})\quad F(\bar{x},x)\cap \bigl(-C\setminus \{0_{Y}\}\bigr)= \emptyset , \quad \forall x \in A. $$

For \(x\in A\), we define

$$ F(x,A):=\bigcup_{y\in A}\bigl\{ F(x,y)\bigr\} . $$

Definition 2.14

  1. (i)

    An element \(x \in A\) is called a weakly efficient solution of the (SVEP) (see [22]) if

    $$ F(x ,A)\cap (-\operatorname{int}C)=\emptyset . $$
  2. (ii)

    An element \(x \in A\) is called a Benson proper efficient solution of the (SVEP) (see [20]) if

    $$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F(x, A) +C\bigr)\bigr)\cap (-C)= \{0_{Y}\}. $$
  3. (iii)

    An element \(x \in A\) is called a C-Heing efficient solution of the (SVEP) (see [32]) if there exists some \(U\in N(0)\) with \(U\subset V_{B}\) such that

    $$ \operatorname{cone}\bigl(F(x, A)+C \bigr)\cap (U-B)=\emptyset . $$

Remark 2.15

Let B be a base of C. It is easy to check that \(x\in A\) is the C-Heing efficient solution of the (SVEP) with respect to B if and only if there exists some \(U \in N(0)\) with \(U\subset V_{B}\) such that

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F(x,A)+C\bigr)\bigr)\cap \bigl(- C_{U}(B)\bigr)=\{0_{Y}\}. $$

Remark 2.16

Let B be a base of C. It is easy to check that \(x\in A\) is the C-Heing efficient solution of the (SVEP) with respect to B if and only if there exists some \(U \in N(0)\) with \(U\subset V_{B}\) such that

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F(x,A)+C\bigr)\bigr)\cap \bigl(- C_{U}(B)\bigr)=\{0_{Y}\}. $$

We consider the unified set-valued vector equilibrium problem (USVEP) through improvement set E of finding \(\bar{x} \in A\) such that

$$ (\mathrm{USVEP})\quad F(\bar{x},x)\cap (-E)=\emptyset ,\quad \forall x \in A. $$

Definition 2.17

An element \(x \in A\) is said to be a weakly efficient solution of the (USVEP) if

$$ F(x,A)\cap (-\operatorname{int}E)=\emptyset . $$

Denote by \(\operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\) the set of weakly efficient solutions of the (USVEP).

Definition 2.18

An element \(x\in A\) is said to be a Benson proper efficient solution of the (USVEP) if

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F(x,A) + E\bigr)\bigr)\cap (-C)= \{0_{Y}\}. $$

Denoted by \(\operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\) the set of Benson proper efficient solutions of the (USVEP).

Definition 2.19

An element \(x \in A\) is said to be a Heing efficient solution of the (USVEP) if there exists some \(U\in N(0)\) with \(U\subset V_{B}\) such that

$$ \operatorname{cl} \bigl(\operatorname{cone}\bigl(F(x, A)+E \bigr)\bigr)\cap \bigl(-C_{U}(B)\bigr)=\{0_{Y}\}. $$

Denoted by \(\operatorname{He}(\mathrm{F},\mathrm{A},\mathrm{B};\mathrm{E})\) the set of Henig efficient solutions of the (USVEP).

Lemma 2.20

Let \(E \in \Im _{Y}\)and B be a base of C, then \(\operatorname{He}(\mathrm{F},\mathrm{A},\mathrm{B};\mathrm{E})\subseteq \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\subseteq \operatorname{We}(\mathrm{F}, \mathrm{A};\mathrm{E})\).

Proof

Firstly, we prove \(\operatorname{He}(\mathrm{F},\mathrm{A},\mathrm{B};\mathrm{E})\subseteq \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\).

Let \(\bar{x}\in \operatorname{He}(\mathrm{F},\mathrm{A},\mathrm{B};\mathrm{E})\), there exists \(U \in N(0)\) with \(U\subset V_{B}\) such that

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F (x, A) + E\bigr)\bigr)\cap \bigl(- C_{U}(B)\bigr)=\{0_{Y}\}. $$

Because of \(C\subset {\operatorname{cone}}B\subset {\operatorname{cone}}(U+B)\),

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F (\bar{x}, A) + E\bigr)\bigr) \cap (- C)=\{0_{Y}\}. $$

Then

$$ \bar{x}\in \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E}). $$

In what follows, we prove

$$ \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\subseteq \operatorname{We}( \mathrm{F},\mathrm{A};\mathrm{E}). $$

Let \(\hat{x}\in \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\), then

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F (\hat{x}, A) + E\bigr)\bigr) \cap (-C)=\{0_{Y}\}. $$

This implies

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F (\hat{x}, A) + E\bigr)\bigr) \cap \bigl(-C\setminus \{0_{Y}\}\bigr)= \emptyset . $$

Thus

$$ \bigl(F (\hat{x}, A) + E\bigr)\cap \bigl(-C\setminus \{0_{Y}\} \bigr)=\emptyset . $$

By \(\operatorname{int}C\subset C\setminus \{0\}\), then

$$ \bigl(F (\hat{x}, A) + E\bigr)\cap (-\operatorname{int}C)=\emptyset . $$

Therefore,

$$ F (\hat{x}, A)\cap (-\operatorname{int}E)=\emptyset . $$

Hence, \(\hat{x}\in \operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\). □

Remark 2.21

  1. (i)

    If \(E=C\setminus \{0_{Y}\}\) or \(E=\operatorname{int}C\), then the weak efficiency of (USVEP) reduces to the weak efficiency of (SVEP).

  2. (ii)

    If \(E=C\setminus \{0_{Y}\}\), then the Benson proper efficiency and Heing efficiency of (USVEP) reduce to the Benson proper efficiency and of C-Heing efficiency of (SVEP), respectively.

For \(\forall \varphi \in Y^{\ast }\), we denote \(\sigma _{E}(\varphi ):=\inf_{e\in E}\varphi (e)\). Obviously, if \(\varphi \in E^{+}\), then \(\sigma _{E}(\varphi )\geq 0\).

For all \(\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}\), an element \(x \in A\) is said to a \(\sigma _{E}(\varphi )\)-efficient solution of (USVEP) if

$$ \varphi \bigl(F(x,y)\bigr) +\sigma _{E}(\varphi )\subseteq \mathbb{R}_{+}, \quad \forall y\in A. $$

Denote by \(V_{\varphi }(F,A;E)\) the set of \(\sigma _{E}(\varphi )\)-efficient solutions of (USVEP).

Define a set

$$ M:=\bigl\{ x\in A\mid F(x,y)\subset E, \forall y\in A\bigr\} . $$

Scalarization

Theorem 3.1

Let \(E\in \Im _{Y}\)and \(\operatorname{int}E\neq \emptyset \). Suppose that, for all \(x\in A\), \(F(x,\cdot )\)is nearly E-subconvexlike on A, \(0_{Y}\in F(x,x)\). Then

$$ \operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})=\bigcup _{\varphi \in E^{+}\setminus \{0_{Y^{\ast }} \}}V_{\varphi }(F,A;E). $$

Proof

Necessity. Let \(x_{0}\in \operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\), then \(F(x_{0},x)\cap (-\operatorname{int}E)=\emptyset \), \(\forall x \in A\). Thus, \(F(x_{0},A)\cap (-\operatorname{int}E)=\emptyset \). It follows from Lemma 2.5 that

$$ \bigl(F(x_{0},A)+E\bigr)\cap (- \operatorname{int}C)=\emptyset . $$
(1)

Because \(\operatorname{int}C\cup \{0\}\) is convex, we have

$$ \operatorname{cone}\bigl(F(x_{0},A)+E \bigr)\cap (-\operatorname{int}C)=\emptyset . $$
(2)

We assert that

$$ \operatorname{cl}\bigl(\operatorname{cone} \bigl(F(x_{0},A)+E\bigr)\bigr)\cap (-\operatorname{int}C)=\emptyset . $$
(3)

Otherwise, there exists \(\bar{y}\in \operatorname{cl}(\operatorname{cone}(F(x_{0},A)+E))\cap (-\operatorname{int}C)\). Therefore, there exists \(U_{1}\in N(0)\) such that

$$ \bar{y}+U_{1}\in {\operatorname{cone}}\bigl(F(x_{0},A)+E \bigr). $$

Since \(y\in -\operatorname{int}C=\operatorname{int} (-\operatorname{int}C)\), there exists \(U_{2}\in N(0)\) such that

$$ \bar{y}+U_{2}\in -\operatorname{int}C. $$

As a result

$$ \bar{y}+U_{0}\in {\operatorname{cone}}\bigl(F(x_{0},A)+E \bigr)\cap (-\operatorname{int}C),\quad U_{0} \in U_{1}\cap U_{2} , $$

which contradicts (2). Consequently, (3) holds. By Lemma 2.13, there exists \(\bar{\varphi } \in Y^{\ast }\setminus \{0_{Y^{\ast }}\}\) such that

$$ \bar{\varphi }(z+e)\geq 0,\quad \forall e\in E, \forall x \in A, \forall z \in F(x_{0},x). $$
(4)

Taking \(x=x_{0}\) in (4), we get \(\bar{\varphi }(e)\geq 0\), \(\forall e\in E\), and so \(\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}\).

On the other hand, by (4),

$$ \bar{\varphi } (e)\geq -\bar{\varphi }(z),\quad \forall e\in E, \forall x \in A, \forall z\in F(x_{0},x). $$

Hence

$$ \sigma _{E}(\bar{\varphi })=\inf_{e\in E}\bar{ \varphi }(e)\geq - \bar{\varphi }(z),\quad \forall e\in E, \forall x \in A, \forall z \in F(x_{0},x). $$

Consequently,

$$ \bar{\varphi }(z)+\sigma _{E}(\bar{\varphi })\geq 0, \quad \forall x \in A, \forall z\in F(x_{0},x), $$

i.e.,

$$ \bar{\varphi }\bigl(F(x_{0},x)\bigr) +\sigma _{E}( \bar{\varphi })\subseteq \mathbb{R}_{+},\quad \forall x \in A. $$

Hence, \(x_{0}\in V_{\bar{\varphi }}(F,A;E)\subset \bigcup_{\varphi \in E^{+} \setminus \{0_{Y^{\ast }}\}}V_{\varphi }(F, A;E)\).

Sufficiency. Let \(x_{0}\in \bigcup_{\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}}V_{ \varphi }(F, A;E)\), then there exists \(\hat{\varphi }\in E^{+}\setminus \{0_{Y^{\ast }}\}\) such that \(x_{0}\in V_{\hat{\varphi }}(F, A;E)\). Thus,

$$ \hat{\varphi }\bigl(F(x_{0},x)\bigr) + \sigma _{E}(\hat{\varphi })\subseteq \mathbb{R}_{+},\quad \forall x \in A. $$
(5)

Suppose that \(x_{0}\notin \operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\), then there exist \(\hat{x}\in A\) and \(\hat{e}\in \operatorname{int}E\) such that \(-\hat{e}\in F(x_{0},\hat{x})\). Since \(\hat{\varphi }(\hat{e})> \sigma _{E}(\hat{\varphi })\),

$$ \hat{\varphi }(-\hat{e})+ \sigma _{E}(\hat{\varphi })< 0, $$

which contradicts (5). Hence, \(x_{0}\in \operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\). □

Remark 3.2

By Theorem 2.12, the condition nearly E-subconvexlike in Theorem 3.1 is weaker than nearly C-convexlike and the convexity of E in Theorem 3.1 of [13]. So, compared with Theorem 3.1 in [13], Theorem 3.1 extends the model from vector-valued maps to set-valued maps under the weaker condition.

Lemma 3.3

Let D and C be two closed convex cones in a locally convex vector space Y, and let C be pointed and have a compact base. If \(D \cap (-C) = \{0_{Y} \}\), then there exists \(\varphi \in C^{\sharp }\)such that \(\varphi \in D^{\ast }\).

Theorem 3.4

Let \(E\in \Im _{Y}\). Suppose that, for each \(x\in A\), \(F(x,\cdot )\)is nearly E-subconvexlike on A.

  1. (i)

    If C has a base B, then \(\operatorname{He}(\mathrm{F},\mathrm{A},\mathrm{B};\mathrm{E})=\bigcup_{\varphi \in B^{st}}V_{\varphi }(F,A;E)\).

  2. (ii)

    If C has a compact base B, then \(\operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})=\bigcup_{\varphi \in C^{\sharp }}V_{\varphi }(F,A;E)\).

Proof

(i) Necessity. Let \(\bar{x}\in S_{pH}(F,A,B;E)\), by Definition 2.19, there exists \(U \in N(0)\) such that

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F (\bar{x}, A)\bigr) + E\bigr) \cap \bigl(- C_{U}(B)\bigr)=\{0_{Y}\}. $$

By Remark 2.1,

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F (\bar{x}, A) + E\bigr)\bigr) \cap (-\operatorname{int} \bigl(C_{U}(B)\bigr)= \emptyset $$

and

$$ \operatorname{int} \bigl(C_{U}(B)\bigr)=\emptyset . $$

On the other hand, from the near E-subconvexlikeness of \(F(x,\cdot )\), we have \(\operatorname{cl}(\operatorname{cone}(F(\bar{x},A)+E))\) is convex. By Lemma 2.13, there exists \(\hat{\varphi }\in Y^{\ast }\setminus \{0_{Y^{\ast }}\}\) such that

$$ \hat{\varphi }(y_{1}) \geq \hat{\varphi }(y_{2}),\quad \forall y_{1}\in \operatorname{cl}\bigl( \operatorname{cone}\bigl(F(\bar{x},A)+E\bigr)\bigr), \forall y_{2}\in - C_{U}(B). $$
(6)

Taking \(y_{1}=0_{Y}\) in (6) that

$$ \hat{\varphi }(y_{2}) \geq 0,\quad \forall y_{2}\in C_{U}(B). $$

Then

$$ \hat{\varphi } (u+b) \geq 0, \quad \forall b\in B, \forall u\in U, $$

that is,

$$ \hat{\varphi } (b-u)\geq 0, \quad \forall b\in B, \forall u\in U. $$

By Lemma 2.2, we have \(\hat{\varphi }\in B^{st}\).

On the other hand, by (6),

$$ \hat{\varphi }(z+e)\geq -\hat{\varphi } (y_{2}),\quad \forall y_{2}\in - C_{U}(B), \forall e\in E, \forall x \in A, \forall z\in F(\bar{x},x). $$
(7)

Taking \(y_{2}=0_{Y}\) in (7), as a result \(\hat{\varphi } (e)\geq -\hat{\varphi }(z)\), \(\forall e\in E\), \(\forall x \in A\), \(\forall z\in F(\bar{x},x)\). Then

$$ \sigma _{E}(\hat{\varphi })\geq -\hat{\varphi }(z),\quad \forall x \in A, \forall z\in F(\bar{x},x). $$

In consequence, \(\hat{\varphi }(z)+\sigma _{E}(\hat{\varphi })\geq 0\), \(\forall x \in A\), \(\forall z\in F(\bar{x},x)\). Thus,

$$ \hat{\varphi }\bigl(F(x_{0},x)\bigr) +\sigma _{E}( \hat{\varphi })\subseteq \mathbb{R}_{+},\quad \forall x \in A. $$

So, \(\bar{x}\in V_{\hat{\varphi }}(F,A;E)\subset \bigcup_{\varphi \in B^{st}}V_{ \varphi }(F, A;E)\).

Sufficiency. Let \(\bar{x}\in \bigcup_{\varphi \in B^{st}}V_{\varphi }(F, A;E)\), then there exists \(\varphi ' \in B^{st}\) such that \(\bar{x}\in V_{\varphi '}(F, A;E)\). Hence, we have

$$ \varphi '\bigl(F(x_{0},x) \bigr) +\sigma _{E}\bigl(\varphi '\bigr)\subseteq \mathbb{R}_{+},\quad \forall x \in A. $$
(8)

Suppose that \(\bar{x}\notin S_{pH}(F,A,B;E)\), then there exists \(U \in N(0)\) such that

$$ \operatorname{cl}\bigl(\operatorname{cone}\bigl(F (\bar{x}, A) + E\bigr)\bigr) \cap \bigl(- C_{U}(B)\bigr)\neq \{0_{Y}\}. $$

Hence,

$$ \operatorname{cone}\bigl(F (\bar{x}, A) + E\bigr)\cap \bigl(- C_{U}(B)\bigr)\neq \{0_{Y}\}. $$

Let \(0_{Y} \neq z\in {\operatorname{cone}}(F(\bar{x},A)+E)\cap (-C_{U} (B))\).

Since \(z\in -C_{U} (B)\), there exist \(\alpha >0 \), \(u \in U\), \(b\in B\) such that

$$ z=-\alpha (-u+b), $$

i.e.,

$$ z=\alpha (u-b). $$

By \(\varphi ' \in B^{st}\), then

$$ \varphi ' (z)< 0. $$
(9)

Since \(0_{Y} \neq z\in {\operatorname{cone}}(F(\bar{x},A)+E)\), there exists \(t>0\), \(\bar{y}\in A\), \(\bar{z} \in F(\bar{x},\bar{y})\), \(e\in E\) such that \(z=t(\bar{z}+e)\). From (9), it follows that

$$ t\bigl(\varphi ' (\bar{z}+e)\bigr)< 0, $$

then

$$ \varphi ' (e)< - \varphi '(\bar{z}). $$

Whence

$$ \sigma _{E}\bigl(\varphi ' \bigr)< - \varphi '(\bar{z}), $$

i.e.,

$$ \varphi ' (\bar{z})+\sigma _{E}\bigl(\varphi ' \bigr)< 0. $$
(10)

This contradicts (8). Therefore, \(\bar{x}\in S_{pH}(F,A,B;E)\).

(ii) Necessity. Let \(\bar{x}\in \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\), then \(\operatorname{cl}(\operatorname{cone}(F(x,A)+E))\cap (-C)=\{0_{Y}\}\). From the near E-subconvexlike of \(F(x,\cdot )\), one has \(\operatorname{cl}(\operatorname{cone}(F(\bar{x},A)+E))\) is a closed convex cone. By Lemma 3.3, there exists \(\tilde{\varphi }\in C^{\sharp }\) such that \(\tilde{\varphi }\in D^{\ast }\), where \(D:=\operatorname{cl}(\operatorname{cone}(F(\bar{x},A)+E))\).

Thus, we have

$$ \tilde{\varphi } (z)\geq 0,\quad \forall z\in \operatorname{cl}\bigl(\operatorname{cone}\bigl(F(x,A)+E\bigr)\bigr), $$
(11)

Furthermore,

$$ \tilde{\varphi }(z+e)\geq 0,\quad \forall e\in E, \forall x \in A, \forall z\in F(\bar{x},x). $$
(12)

We conclude \(\tilde{\varphi } (e)\geq -\tilde{\varphi }(z)\), \(\forall e\in E\), \(\forall x \in A\), \(\forall z\in F(\bar{x},x)\). Then

$$ \sigma _{E}(\tilde{\varphi })\geq -\tilde{\varphi }(z),\quad \forall x \in A, \forall z\in F(\bar{x},x). $$

In consequence, \(\tilde{\varphi }(z)+\sigma _{E}(\tilde{\varphi })\geq 0\), \(\forall x \in A\), \(\forall z\in F(\bar{x},x)\). Thus,

$$ \tilde{\varphi }\bigl(F(\bar{x},x)\bigr) +\sigma _{E}(\tilde{ \varphi }) \subseteq \mathbb{R}_{+},\quad \forall x \in A. $$

So, \(\bar{x}\in V_{\tilde{\varphi }}(F,A;E)\subset \bigcup_{\varphi \in C^{ \sharp }}V_{\varphi }(F, A;E)\).

Sufficiency. Let \(\bar{x}\in \bigcup_{\varphi \in C^{\sharp } }V_{\varphi }(F, A;E)\), then there exists \(\varphi ' \in C^{\sharp }\) such that \(\bar{x}\in V_{\varphi '}(F, A;E)\). Hence, we have

$$ \varphi '\bigl(F(\bar{x},x)\bigr) + \sigma _{E}\bigl(\varphi '\bigr)\subseteq \mathbb{R}_{+}, \quad \forall x \in A. $$
(13)

In the following, we show that \(\bar{x}\in \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\).

Let \(d\in \operatorname{cl}(\operatorname{cone}(F(\bar{x},A)+E))\cap (-C)\), from \(E\in \Im _{Y}\), one has

$$ d\in \operatorname{cl}\bigl(\operatorname{cone}\bigl(F(\bar{x},A)+E+C\bigr) \bigr)\cap (-C). $$

Hence, there exist sequences \(\{\mu _{n}\}\subset \mathbb{R}_{+}\), \(\{c_{n}\}\subset C\), \(\{e_{n}\}\subset E\) and \(\{y_{n}\}\subset A\) such that

$$ \mu _{n}(z_{n}+e_{n}+c_{n}) \rightarrow d, \quad \forall z_{n}\in F(\bar{x},y_{n}). $$

Since \(\varphi ' \in C^{\sharp }\),

$$ \mu _{n}\bigl(\varphi '(z_{n}+e_{n}+c_{n})\bigr) \rightarrow \varphi '(d),\quad \forall z_{n}\in F( \bar{x},y_{n}). $$
(14)

By (13), \(\varphi '(z_{n}+e_{n})\geq 0\), \(\forall z_{n}\in F(\bar{x},y_{n})\). Furthermore, from \(\varphi '(c_{n})\geq 0\) and (14), it follows that \(\varphi '(d)\geq 0\). Moreover, since \(\varphi ' \in C^{\sharp }\) and \(d\in -C\), \(\varphi '(d)\leq 0\). As a result \(\varphi '(d)= 0\). As \(\varphi ' \in C^{\sharp }\), we have \(d= \{0_{Y}\}\). Hence, \(\operatorname{cl}(\operatorname{cone}(F(\bar{x},A)+E))\cap (-C)=\{0_{Y}\}\), and so \(\bar{x}\in \operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\). □

Remark 3.5

By Theorem 2.10, the condition nearly E-subconvexlike in Theorem 3.4 is weaker than E-subconvexlike in Theorem 3.4 of [13]. So, to be compared with Theorem 3.4 in [13], Theorem 3.4 extends the model from vector-valued map to set-valued map under weaker condition.

Connectedness of the solutions set

In this section, we discuss the connectedness of \(\operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\), \(\operatorname{He}(\mathrm{F},\mathrm{A},\mathrm{B};\mathrm{E})\) and \(\operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\).

Lemma 4.1

([33])

Suppose that \(\{A_{\gamma }:\gamma \in \varGamma \} \)is a family of connected sets in topological space Φ. If \(\bigcap_{\gamma \in \varGamma }A_{\gamma }\neq \emptyset \), then \(\bigcup_{\gamma \in \varGamma }A_{\gamma }\)is a connected set in topological space Φ.

Definition 4.2

([27])

Let A be a nonempty convex subset of X. A set-valued map \(F:A\rightrightarrows Y\) is called C-concave if and only if, for all \(x_{1}, x_{2}\in A\) and \(t\in [0,1]\), we have

$$ F\bigl(t x_{1}+(1-t)x_{2}\bigr)\subseteq t F(x_{1})+(1-t)F(x_{2}) +C. $$

Theorem 4.3

Let \(E\in \Im _{Y}\), \(E\subset C\)and A be a nonempty convex set. Suppose that \(F(\cdot ,y)\)is C-concave for all \(y\in A\)and \(M\neq \emptyset \), for all \(x\in A\), \(F(x,\cdot )\)is nearly E-subconvexlike on A. Then:

  1. (i)

    If \(0_{Y}\in F(x,x)\)for all \(x\in A\), then \(\operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\)is a connected set.

  2. (ii)

    If C has a base B, then \(\operatorname{He}(\mathrm{F},\mathrm{A},\mathrm{B};\mathrm{E})\)is a connected set.

  3. (iii)

    If C has a compact base B, then \(\operatorname{Be}(\mathrm{F},\mathrm{A};\mathrm{E})\)is a connected set.

Proof

(i) Firstly, we show that \(V_{\varphi }(F,A;E)\) is a connected set for all \(\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}\). Actually, for any \(\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}\) and for any fixed \(y\in A\), let \(x_{1}, x_{2}\in V_{\varphi }(F,A;E)\) and \(t\in [0,1]\), we have \(t x_{1}+(1-t)x_{2}\in A\), \(\varphi (F(x_{1},y)) +\sigma _{E}(\varphi )\subseteq \mathbb{R}_{+}\) and \(\varphi (F(x_{2},y)) +\sigma _{E}(\varphi )\subseteq \mathbb{R}_{+}\). Therefore,

$$ t\varphi \bigl(F(x_{1},y)\bigr) +t\sigma _{E}(\varphi )\subseteq \mathbb{R}_{+},\qquad (1-t)\varphi \bigl(F(x_{2},y) \bigr) +(1-t)\sigma _{E}(\varphi )\subseteq \mathbb{R}_{+}. $$

Because \(F(\cdot ,y)\) is C-concave for all \(y\in A\), then, for the above \(x_{1}, x_{2}\in A\) and \(t\in [0,1]\) and fixed \(y\in A\),

$$ F\bigl(t x_{1}+(1-t)x_{2},y\bigr)\subseteq t F(x_{1},y)+(1-t)F(x_{2},y) +C. $$

From \(\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}\), \(E\subset C\), it follows that \(\sigma _{E}(\varphi )\geq 0\) and \(\varphi (C)\geq 0 \).

Hence

$$ \varphi F\bigl(t x_{1}+(1-t)x_{2},y\bigr)+ \sigma _{E}(\varphi )\subseteq \mathbb{R}_{+}, $$

and so \(t x_{1}+(1-t)x_{2}\in V_{\varphi }(F,A;E)\). This shows that \(V_{\varphi }(F,A;E)\) is a convex set. Hence, \(V_{\varphi }(F,A;E)\) is a connected set for any \(\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}\).

Next, we show that \(\operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\) is a connected set. In fact, for any \(\varphi \in E^{+}\setminus \{0_{Y^{\ast }}\}\), it is easy to see that \(M\subseteq V_{\varphi }(F,A;E)\) and so

$$ \emptyset \neq M \subseteq \bigcap_{\varphi \in E^{+} \setminus \{0_{Y^{\ast }}\}}V_{\varphi }(F,A;E). $$

From the connectedness of \(V_{\varphi }(F,A;E)\), Lemma 4.1 and Theorem 3.1, it follows that \(\operatorname{We}(\mathrm{F},\mathrm{A};\mathrm{E})\) is a connected set.

The proofs of (ii) and (iii) are similar to (i). □

Remark 4.4

  1. (i)

    If Y is a n.v.s. and \(E=C\setminus \{0_{Y}\}\), Theorem 4.3(i) reduces to Theorem 4.1(iii) in [24]. Theorem 4.3(ii) reduces to Theorem 4.1(ii) in [24].

  2. (ii)

    If Y is a n.v.s. \(\varepsilon \geq 0\), \(e\in \operatorname{int} C\) and \(E=\varepsilon e+C\), Theorem 4.3(i) reduces to Theorem 3.4 in [25].

Conclusions

In this paper, under the assumption of nearly E-subconvexlikeness of the binary function in real locally convex Hausdorff topological vector spaces, we obtain the linear scalarization of weak efficient solutions, Benson proper efficient solutions, Heing efficient solutions for (USVEP). By means of the scalarization results, we investigate the connectedness of the sets of weak efficient solutions, Benson proper efficient solutions, Heing efficient solutions for (USVEP). However, the connectedness of efficient solutions sets of for (USVEP) have been not established, it may be of great interest for us to discuss.

References

  1. 1.

    Chicco, M., Mignanego, F., Pusillo, L., Tijs, S.: Vector optimization problems via improvement sets. J. Optim. Theory Appl. 150(3), 516–529 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Gutierrez, C., Jimenez, B., Novo, V.: Improvement sets and vector optimization. Eur. J. Oper. Res. 223(2), 304–311 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Zhao, K.Q., Yang, X.M., Peng, J.W.: Weak E-optimal solution in vector optimization. Taiwan. J. Math. 17(4), 1287–1302 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Zhao, K.Q., Xia, Y.M., Guo, H.: A characterization of E-Benson proper efficiency via nonlinear scalarization in vector optimization. J. Appl. Math. 2014, Article ID 649756 (2014)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Zhao, K.Q., Yang, X.M.: E-Benson proper efficiency in vector optimization. Optimization 64(4), 739–752 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Zhao, K.Q., Xia, Y.M., Yang, X.M.: Nonlinear scalarization characterizations of E-efficiency in vector optimization. Taiwan. J. Math. 19(2), 455–466 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Zhao, K.Q., Yang, X.M.: Characterizations of the E-Benson proper efficiency in vector optimization problems. Numer. Algebra Control Optim. 3(4), 643–653 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Zhou, Z.A., Yang, X.M., Zhao, K.Q.: E-super efficiency of set-valued optimization problems involving improvement sets. J. Ind. Manag. Optim. 12(3), 1031–1039 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Lalitha, C.S., Chatterjee, P.: Stability and scalarization in vector optimization using improvement sets. J. Optim. Theory Appl. 166(3), 825–843 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Chicco, M., Rossi, A.: Existence of optimal points via improvement sets. J. Optim. Theory Appl. 167(2), 487–501 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Zhou, Z.A., Yang, X.M.: Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relativeinterior. J. Optim. Theory Appl. 150, 327–340 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Zhou, Z.A., Chen, W., Yang, X.M.: Scalarizations and optimality of constrained set-valued optimization using improvement sets and image space analysis. J. Optim. Theory Appl. 183, 944–962 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Chen, C.R., Zuo, X., Lu, F., Li, S.J.: Vector equilibrium problems under improvement sets and linear scalarization with stability applications. Optim. Methods Softw. 31(6), 1240–1257 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Giannessi, F.: Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  15. 15.

    Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector Optimization: Set-Valued and Variational Analysis. Springer, Berlin (2005)

    Google Scholar 

  16. 16.

    Ansari, Q.H., Yao, J.C.: Recent Developments in Vector Optimization. Springer, Berlin (2012)

    Google Scholar 

  17. 17.

    Lee, G.M., Kim, D.S., Lee, B.S., Yun, N.D.: Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal. 34(5), 745–765 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Cheng, Y.H.: On the connectedness of the solution set for the weak vector variational inequality. J. Math. Anal. Appl. 260(1), 1–5 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Gong, X.H.: Efficiency and Henig efficiency for vector equilibrium problems. J. Optim. Theory Appl. 108(1), 139–154 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Gong, X.H.: Connectedness of the solution sets and scalarization for vector equilibrium problems. J. Optim. Theory Appl. 133(2), 151–161 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Gong, X.H., Yao, J.C.: Connectedness of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138(2), 189–196 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Chen, B., Gong, X.H., Yuan, S.M.: Connectedness and compactness of weak efficient solutions set for set-valued vector equilibrium problems. J. Inequal. Appl. 2008, Article ID 581849 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Chen, B., Liu, Q.Y., Liu, Z.B., Huang, N.J.: Connectedness of approximate solutions set for vector equilibrium problems in Hausdorff topological vector spaces. Fixed Point Theory Appl. 2011, 36 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Han, Y., Huang, N.J.: The connectedness of the solutions set for generalized vector equilibrium problems. Optimization 65(2), 357–367 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Han, Y., Huang, N.J.: Some characterizations of the approximate solutions to generalized vector equilibrium problems. J. Ind. Manag. Optim. 12(3), 1135–1151 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Qiu, Q.S.: Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued functions. Acta Math. Appl. Sin. 23(2), 319–328 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Jahn, J.: Mathematical Vector Optimization in Partially-Ordered Linear Spaces. Peter Lang, Frankfurt am Main (1986)

    Google Scholar 

  28. 28.

    Cheng, Y.H., Fu, W.T.: Strong efficiency in a locally convex space. Math. Methods Oper. Res. 50(3), 373–384 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Song, W.: Lagrangian duality for minimization of nonconvex multifunctions. J. Optim. Theory Appl. 93(1), 167–182 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Breckner, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2011)

    Google Scholar 

  32. 32.

    Gong, X.H., Fu, W.T., Liu, W.: Super efficiency for a vector equilibrium in locally convex topological vector spaces. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 233–252. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  33. 33.

    Brown, R.: Topology. Ellis Horwood, New York (1988)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Doctoral supervisor Wan Zhongping and colleague Litao Zhang provide financial support.

Availability of data and materials

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China No. 71471140 and No. 11871383, and Basic Research Projects of Key Scientific Research Projects Plan in Henan Higher Education Institutions (20zx003).

Author information

Affiliations

Authors

Contributions

ZW conceived and designed the research. HL wrote the manuscript, LZ reviewed it and has given substantive suggestions about English language of the revised manuscript. All authors read and approved the final copy of the manuscript.

Corresponding author

Correspondence to Hongwei Liang.

Ethics declarations

Competing interests

The author declares that there is no conflict of interests. The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Wan, Z. & Zhang, L. The connectedness of the solutions set for set-valued vector equilibrium problems under improvement sets. J Inequal Appl 2020, 228 (2020). https://doi.org/10.1186/s13660-020-02397-7

Download citation

MSC

  • 90C29
  • 91B50
  • 49J40

Keywords

  • Set-valued vector equilibrium problems
  • Improvement sets
  • Scalarization
  • Connectedness