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1 Introduction
In recent years, many scholars paid attention to developing concepts to unify various kinds
of solution notions of vector optimization problems, for instance, efficiency, weak effi-
ciency, proper efficiency and ε-efficiency. Chicoo et al. [1] putted forward a new concept of
improvement set E and defined E-optimal solution in finite dimensional Euclidean space.
E-optimal solution unifies some known concepts of exact and approximate solutions of
vector optimization problems. Gutiérrez et al. [2] extended the notion of improvement
set and E-optimal solution to a locally convex topological vector spaces. Much follow-up
work about the improvement set E one finds in [3–12]. Chen et al. [13] introduced a new
vector equilibrium problem based on improvement set E named the unified vector equi-
librium problem (UVEP), linear scalarization characterizations of the efficient solutions,
weak efficient solutions, Benson proper efficient solutions for (UVEP) were established,
and some continuity results of parametric (UVEP) were obtained by applying scalarization
method.

Vector equilibrium problems (shortly, VEP) provides a unified model of many signif-
icant problems (see [14–16]). An important topic about (VEP) is the connectedness of
the solutions set. Lee et al. [17] and Cheng [18] discussed the path-connectedness and
connectedness of weakly efficient solutions set for vector variational inequalities in finite
dimensional Euclidean space, respectively. Applying the scalarization approaches, Gong
[19] studied the connectedness of the sets of Henig efficient solutions and weakly efficient
solutions for the vector Hartman–Stampacchia variational inequality in normed vector
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spaces (in short, n.v.s.). By employing scalarization results, Gong [20] investigated the con-
nectedness and path-connectedness of sets of weak efficient solutions and various proper
efficient solutions for (VEP)in locally convex spaces (in short, l.c.s.). By the density results,
Gong and Yao [21] first showed the connectedness of efficient solutions set for (VEP) in
l.c.s. Chen et al. [22] studied the connectedness and the compactness of weak efficient so-
lutions set for set-valued vector equilibrium problems (shortly, SVEP) in n.v.s. Chen et al.
[23] discussed the connectedness of the sets of ε-weak efficient solutions and ε-efficient
solutions for (VEP) in l.c.s.

All the papers mentioned above, the hypotheses of compactness and monotonicity are
essential in discussing the connectedness of the sets of various kinds of efficient solutions
for (VEP). Han and Huang [24] studied the connectedness of the sets of (weakly) efficient
solutions and various proper efficient solutions for the (GVEP) not using the conditions
of compactness and monotonicity in n.v.s. Han and Huang [25] investigated the connect-
edness of the sets of weakly efficient solutions and ε-efficient solutions for the(SVEP) by
using the scalarization results and the density results in n.v.s, respectively. The improve-
ment set E is a tool to unify some exact and approximate solution notions, hence, it is
very meaningful in establishing the connectedness of the solutions set for VEP based on
improvement set.

Motivated by the work of [13, 24, 25], in this paper, by using the scalarization results, we
study the connectedness of the sets of weakly efficient solutions, Henig efficient solutions
and Benson proper efficient solutions for set-valued vector equilibrium problems under
improvement sets. The main results unify and extend some exact and approximate cases.

2 Preliminaries
Throughout this paper, let X, Y be real locally convex Hausdorff topological vector spaces
and let Z be a real vector topological space. Let Y ∗ be the topological dual space of Y and
let C be a pointed closed convex cone in Y with its topological interior int C �= ∅.

Let Q be a nonempty subset of Y , denote the closure of Q by cl Q and the topological
interior of Q by int Q. The cone hull of Q is defined by

cone Q := {tq | t ≥ 0, q ∈ Q}.

We say Q is solid if int Q �= ∅.
The positive polar cone C∗ and the strict positive polar cone C� of C are defined as

C∗ :=
{

y∗ ∈ Y ∗ | y∗(y) ≥ 0,∀y ∈ C
}

and

C� :=
{

y∗ ∈ Y ∗ | y∗(y) > 0,∀y ∈ C \ {0Y }},

respectively.
A nonempty convex set B ⊂ C is said to be a base of C if

C = cone B and 0Y /∈ cl B.
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It is clear that C� �= ∅ if and only if C has a base. Let B be a base of C, because of 0Y /∈ cl B,
by the separation theorem of convex sets, there exists 0 �= ϕ ∈ Y ∗ such that

δ = inf
{
ϕ(b) | b ∈ B

}
> ϕ(0Y ) = 0.

Define

VB =
{

y ∈ Y
∣∣ϕ(y)

∣∣ <
δ

2

}
.

Then VB is an open convex balanced neighborhood of zero in Y . For each convex neigh-
borhood U of zero with U ⊆ VB, B + U is a convex set and 0 /∈ cl(B + U), let CU (B) :=
cone(U + B).

Remark 2.1 ([26])
(i) CU (B) is a pointed convex cone;

(ii) C \ {0Y } ⊆ int CU (B).

For convenience, we denote by N(0) the family of neighborhoods of zero in Y . Assume
that B is a base of C and write

Bst :=
{
μ ∈ C� | there exists t > 0 such that μ(b) ≥ t,∀b ∈ B

}
.

By the separation theorem of the convex sets (see [27]), we know Bst �= ∅.

Lemma 2.2 ([28]) Let B is a base of C and y∗ ∈ Y ∗ \ {0Y∗}. Then y∗ ∈ Bst if and only if there
exists a convex neighborhood N(0) such that y∗(u – b) ≤ 0, ∀u ∈ U , ∀b ∈ B.

Lemma 2.3 ([27]) Let int C �= ∅, then
(i) int C ∪ {0Y } is a convex cone:

(ii) int C = C + int C:
(iii) int(int C) = int C.

Definition 2.4 ([2]) Let E be a nonempty subset in Y . E is said to be an improvement set
with respect to C if 0Y /∈ E and E + C = E. The class of the improvement sets with respect
to C in Y is denoted by �Y .

Lemma 2.5 ([3]) Let E ∈ �Y and be solid, then int E = E + int C.

Lemma 2.6 ([3]) Let E ∈ �Y and ∅ �= N ⊂ Y , then

cl
(
cone(N + E)

)
= cl

(
cone(N + int E)

)
.

Definition 2.7 ([29]) Let ∅ �= A ⊂ X. The set-valued map F : A ⇒ Y is said to be nearly
C-convexlike (closely C-convexlike) on A if cl(F(A) + C) is a convex set in Y .

Definition 2.8 ([5]) Let ∅ �= A ⊂ X and E ∈ �Y . The set-valued map F : A ⇒ Y is said to
be E-subconvexlike on A if F(A) + int E is a convex set in Y .
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Definition 2.9 ([3]) Let ∅ �= A ⊂ X and E ∈ �Y . The set-valued map F : A ⇒ Y is said to
be nearly E-subconvexlike on A if cl(cone(F(A) + E)) is a convex set in Y .

Theorem 2.10 Let E ∈ �Y and ∅ �= A ⊂ X. If the set-valued map F : A ⇒ Y is E-
subconvexlike on A, then F is nearly E-subconvexlike on A.

Proof It follows directly from Definition 2.8, Definition 2.9 and Lemma 2.6. �

Lemma 2.11 ([30]) Let ∅ �= M ⊂ Y and int C �= ∅. Then

int
(
cl(M + C)

)
= M + int C.

Theorem 2.12 Let E ∈ �Y be a convex set and int C �= ∅. If the set-valued map F : A ⇒ Y
is nearly C-convexlike on A, then F is nearly E-subconvexlike on A.

Proof As F is nearly C-convexlike on A, then cl(F(A) + C) is convex, taking into account
Lemma 2.3(i), one finds that int(cl(F(A) + C)) is convex, by Lemma 2.11, F(A) + int C is
convex too.

Moreover, observe that E is convex, then F(A) + int C + E is convex. From Lemma 2.5,
it follows that F(A) + int E is convex. Therefore, in view of Lemma 2.6, we see that
cl(cone(F(A) + E)) is convex. �

Lemma 2.13 ([31]) Let M and N be two nonempty convex subsets of a real topological
linear space X with int M �= ∅. Then N ∩ int M = ∅ if and only if there are a linear functional
l ∈ X∗ \ {0X∗} and a real number α with l(m) ≤ α ≤ l(n) for all m ∈ M and all n ∈ N , and

l(m) < α for all m ∈ int M.

In this paper, we let R is the set of real numbers and R+ = {r | r ≥ 0}, R++ = {r | r > 0}.
From now on, we presume that A is a nonempty subset of X, F : A×A ⇒ Y is a set-valued

map.
We have the usual set-valued vector equilibrium problem (SVEP) of finding x̄ ∈ A such

that

(SVEP) F(x̄, x) ∩ (
–C \ {0Y }) = ∅, ∀x ∈ A.

For x ∈ A, we define

F(x, A) :=
⋃

y∈A

{
F(x, y)

}
.

Definition 2.14
(i) An element x ∈ A is called a weakly efficient solution of the (SVEP) (see [22]) if

F(x, A) ∩ (– int C) = ∅.
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(ii) An element x ∈ A is called a Benson proper efficient solution of the (SVEP) (see
[20]) if

cl
(
cone

(
F(x, A) + C

)) ∩ (–C) = {0Y }.

(iii) An element x ∈ A is called a C-Heing efficient solution of the (SVEP) (see [32]) if
there exists some U ∈ N(0) with U ⊂ VB such that

cone
(
F(x, A) + C

) ∩ (U – B) = ∅.

Remark 2.15 Let B be a base of C. It is easy to check that x ∈ A is the C-Heing efficient
solution of the (SVEP) with respect to B if and only if there exists some U ∈ N(0) with
U ⊂ VB such that

cl
(
cone

(
F(x, A) + C

)) ∩ (
–CU (B)

)
= {0Y }.

Remark 2.16 Let B be a base of C. It is easy to check that x ∈ A is the C-Heing efficient
solution of the (SVEP) with respect to B if and only if there exists some U ∈ N(0) with
U ⊂ VB such that

cl
(
cone

(
F(x, A) + C

)) ∩ (
–CU (B)

)
= {0Y }.

We consider the unified set-valued vector equilibrium problem (USVEP) through im-
provement set E of finding x̄ ∈ A such that

(USVEP) F(x̄, x) ∩ (–E) = ∅, ∀x ∈ A.

Definition 2.17 An element x ∈ A is said to be a weakly efficient solution of the (USVEP)
if

F(x, A) ∩ (– int E) = ∅.

Denote by We(F, A; E) the set of weakly efficient solutions of the (USVEP).

Definition 2.18 An element x ∈ A is said to be a Benson proper efficient solution of the
(USVEP) if

cl
(
cone

(
F(x, A) + E

)) ∩ (–C) = {0Y }.

Denoted by Be(F, A; E) the set of Benson proper efficient solutions of the (USVEP).

Definition 2.19 An element x ∈ A is said to be a Heing efficient solution of the (USVEP)
if there exists some U ∈ N(0) with U ⊂ VB such that

cl
(
cone

(
F(x, A) + E

)) ∩ (
–CU (B)

)
= {0Y }.

Denoted by He(F, A, B; E) the set of Henig efficient solutions of the (USVEP).
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Lemma 2.20 Let E ∈ �Y and B be a base of C, then He(F, A, B; E) ⊆ Be(F, A; E) ⊆
We(F, A; E).

Proof Firstly, we prove He(F, A, B; E) ⊆ Be(F, A; E).
Let x̄ ∈ He(F, A, B; E), there exists U ∈ N(0) with U ⊂ VB such that

cl
(
cone

(
F(x, A) + E

)) ∩ (
–CU (B)

)
= {0Y }.

Because of C ⊂ coneB ⊂ cone(U + B),

cl
(
cone

(
F(x̄, A) + E

)) ∩ (–C) = {0Y }.

Then

x̄ ∈ Be(F, A; E).

In what follows, we prove

Be(F, A; E) ⊆ We(F, A; E).

Let x̂ ∈ Be(F, A; E), then

cl
(
cone

(
F(x̂, A) + E

)) ∩ (–C) = {0Y }.

This implies

cl
(
cone

(
F(x̂, A) + E

)) ∩ (
–C \ {0Y }) = ∅.

Thus

(
F(x̂, A) + E

) ∩ (
–C \ {0Y }) = ∅.

By int C ⊂ C \ {0}, then

(
F(x̂, A) + E

) ∩ (– int C) = ∅.

Therefore,

F(x̂, A) ∩ (– int E) = ∅.

Hence, x̂ ∈ We(F, A; E). �

Remark 2.21
(i) If E = C \ {0Y } or E = int C, then the weak efficiency of (USVEP) reduces to the weak

efficiency of (SVEP).
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(ii) If E = C \ {0Y }, then the Benson proper efficiency and Heing efficiency of (USVEP)
reduce to the Benson proper efficiency and of C-Heing efficiency of (SVEP),
respectively.

For ∀ϕ ∈ Y ∗, we denote σE(ϕ) := infe∈E ϕ(e). Obviously, if ϕ ∈ E+, then σE(ϕ) ≥ 0.
For all ϕ ∈ E+ \ {0Y∗}, an element x ∈ A is said to a σE(ϕ)-efficient solution of (USVEP) if

ϕ
(
F(x, y)

)
+ σE(ϕ) ⊆R+, ∀y ∈ A.

Denote by Vϕ(F , A; E) the set of σE(ϕ)-efficient solutions of (USVEP).
Define a set

M :=
{

x ∈ A | F(x, y) ⊂ E,∀y ∈ A
}

.

3 Scalarization
Theorem 3.1 Let E ∈ �Y and int E �= ∅. Suppose that, for all x ∈ A, F(x, ·) is nearly E-
subconvexlike on A, 0Y ∈ F(x, x). Then

We(F, A; E) =
⋃

ϕ∈E+\{0Y∗ }
Vϕ(F , A; E).

Proof Necessity. Let x0 ∈ We(F, A; E), then F(x0, x) ∩ (– int E) = ∅, ∀x ∈ A. Thus, F(x0, A) ∩
(– int E) = ∅. It follows from Lemma 2.5 that

(
F(x0, A) + E

) ∩ (– int C) = ∅. (1)

Because int C ∪ {0} is convex, we have

cone
(
F(x0, A) + E

) ∩ (– int C) = ∅. (2)

We assert that

cl
(
cone

(
F(x0, A) + E

)) ∩ (– int C) = ∅. (3)

Otherwise, there exists ȳ ∈ cl(cone(F(x0, A) + E)) ∩ (– int C). Therefore, there exists U1 ∈
N(0) such that

ȳ + U1 ∈ cone
(
F(x0, A) + E

)
.

Since y ∈ – int C = int(– int C), there exists U2 ∈ N(0) such that

ȳ + U2 ∈ – int C.

As a result

ȳ + U0 ∈ cone
(
F(x0, A) + E

) ∩ (– int C), U0 ∈ U1 ∩ U2,
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which contradicts (2). Consequently, (3) holds. By Lemma 2.13, there exists ϕ̄ ∈ Y ∗ \ {0Y∗}
such that

ϕ̄(z + e) ≥ 0, ∀e ∈ E,∀x ∈ A,∀z ∈ F(x0, x). (4)

Taking x = x0 in (4), we get ϕ̄(e) ≥ 0, ∀e ∈ E, and so ϕ ∈ E+ \ {0Y∗}.
On the other hand, by (4),

ϕ̄(e) ≥ –ϕ̄(z), ∀e ∈ E,∀x ∈ A,∀z ∈ F(x0, x).

Hence

σE(ϕ̄) = inf
e∈E

ϕ̄(e) ≥ –ϕ̄(z), ∀e ∈ E,∀x ∈ A,∀z ∈ F(x0, x).

Consequently,

ϕ̄(z) + σE(ϕ̄) ≥ 0, ∀x ∈ A,∀z ∈ F(x0, x),

i.e.,

ϕ̄
(
F(x0, x)

)
+ σE(ϕ̄) ⊆R+, ∀x ∈ A.

Hence, x0 ∈ Vϕ̄(F , A; E) ⊂ ⋃
ϕ∈E+\{0Y∗ } Vϕ(F , A; E).

Sufficiency. Let x0 ∈ ⋃
ϕ∈E+\{0Y∗ } Vϕ(F , A; E), then there exists ϕ̂ ∈ E+ \ {0Y∗} such that

x0 ∈ Vϕ̂(F , A; E). Thus,

ϕ̂
(
F(x0, x)

)
+ σE(ϕ̂) ⊆R+, ∀x ∈ A. (5)

Suppose that x0 /∈ We(F, A; E), then there exist x̂ ∈ A and ê ∈ int E such that –ê ∈ F(x0, x̂).
Since ϕ̂(ê) > σE(ϕ̂),

ϕ̂(–ê) + σE(ϕ̂) < 0,

which contradicts (5). Hence, x0 ∈ We(F, A; E). �

Remark 3.2 By Theorem 2.12, the condition nearly E-subconvexlike in Theorem 3.1 is
weaker than nearly C-convexlike and the convexity of E in Theorem 3.1 of [13]. So, com-
pared with Theorem 3.1 in [13], Theorem 3.1 extends the model from vector-valued maps
to set-valued maps under the weaker condition.

Lemma 3.3 Let D and C be two closed convex cones in a locally convex vector space Y ,
and let C be pointed and have a compact base. If D ∩ (–C) = {0Y }, then there exists ϕ ∈ C�

such that ϕ ∈ D∗.

Theorem 3.4 Let E ∈ �Y . Suppose that, for each x ∈ A, F(x, ·) is nearly E-subconvexlike
on A.
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(i) If C has a base B, then He(F, A, B; E) =
⋃

ϕ∈Bst Vϕ(F , A; E).
(ii) If C has a compact base B, then Be(F, A; E) =

⋃
ϕ∈C� Vϕ(F , A; E).

Proof (i) Necessity. Let x̄ ∈ SpH (F , A, B; E), by Definition 2.19, there exists U ∈ N(0) such
that

cl
(
cone

(
F(x̄, A)

)
+ E

) ∩ (
–CU (B)

)
= {0Y }.

By Remark 2.1,

cl
(
cone

(
F(x̄, A) + E

)) ∩ (– int
(
CU (B)

)
= ∅

and

int
(
CU (B)

)
= ∅.

On the other hand, from the near E-subconvexlikeness of F(x, ·), we have cl(cone(F(x̄, A) +
E)) is convex. By Lemma 2.13, there exists ϕ̂ ∈ Y ∗ \ {0Y∗} such that

ϕ̂(y1) ≥ ϕ̂(y2), ∀y1 ∈ cl
(
cone

(
F(x̄, A) + E

))
,∀y2 ∈ –CU (B). (6)

Taking y1 = 0Y in (6) that

ϕ̂(y2) ≥ 0, ∀y2 ∈ CU (B).

Then

ϕ̂(u + b) ≥ 0, ∀b ∈ B,∀u ∈ U ,

that is,

ϕ̂(b – u) ≥ 0, ∀b ∈ B,∀u ∈ U .

By Lemma 2.2, we have ϕ̂ ∈ Bst .
On the other hand, by (6),

ϕ̂(z + e) ≥ –ϕ̂(y2), ∀y2 ∈ –CU (B),∀e ∈ E,∀x ∈ A,∀z ∈ F(x̄, x). (7)

Taking y2 = 0Y in (7), as a result ϕ̂(e) ≥ –ϕ̂(z), ∀e ∈ E, ∀x ∈ A, ∀z ∈ F(x̄, x). Then

σE(ϕ̂) ≥ –ϕ̂(z), ∀x ∈ A,∀z ∈ F(x̄, x).

In consequence, ϕ̂(z) + σE(ϕ̂) ≥ 0, ∀x ∈ A, ∀z ∈ F(x̄, x). Thus,

ϕ̂
(
F(x0, x)

)
+ σE(ϕ̂) ⊆R+, ∀x ∈ A.

So, x̄ ∈ Vϕ̂(F , A; E) ⊂ ⋃
ϕ∈Bst Vϕ(F , A; E).
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Sufficiency. Let x̄ ∈ ⋃
ϕ∈Bst Vϕ(F , A; E), then there exists ϕ′ ∈ Bst such that x̄ ∈ Vϕ′ (F , A; E).

Hence, we have

ϕ′(F(x0, x)
)

+ σE
(
ϕ′) ⊆R+, ∀x ∈ A. (8)

Suppose that x̄ /∈ SpH (F , A, B; E), then there exists U ∈ N(0) such that

cl
(
cone

(
F(x̄, A) + E

)) ∩ (
–CU (B)

) �= {0Y }.

Hence,

cone
(
F(x̄, A) + E

) ∩ (
–CU (B)

) �= {0Y }.

Let 0Y �= z ∈ cone(F(x̄, A) + E) ∩ (–CU (B)).
Since z ∈ –CU (B), there exist α > 0, u ∈ U , b ∈ B such that

z = –α(–u + b),

i.e.,

z = α(u – b).

By ϕ′ ∈ Bst , then

ϕ′(z) < 0. (9)

Since 0Y �= z ∈ cone(F(x̄, A) + E), there exists t > 0, ȳ ∈ A, z̄ ∈ F(x̄, ȳ), e ∈ E such that z =
t(z̄ + e). From (9), it follows that

t
(
ϕ′(z̄ + e)

)
< 0,

then

ϕ′(e) < –ϕ′(z̄).

Whence

σE
(
ϕ′) < –ϕ′(z̄),

i.e.,

ϕ′(z̄) + σE
(
ϕ′) < 0. (10)

This contradicts (8). Therefore, x̄ ∈ SpH (F , A, B; E).
(ii) Necessity. Let x̄ ∈ Be(F, A; E), then cl(cone(F(x, A) + E)) ∩ (–C) = {0Y }. From the

near E-subconvexlike of F(x, ·), one has cl(cone(F(x̄, A) + E)) is a closed convex cone. By
Lemma 3.3, there exists ϕ̃ ∈ C� such that ϕ̃ ∈ D∗, where D := cl(cone(F(x̄, A) + E)).
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Thus, we have

ϕ̃(z) ≥ 0, ∀z ∈ cl
(
cone

(
F(x, A) + E

))
, (11)

Furthermore,

ϕ̃(z + e) ≥ 0, ∀e ∈ E,∀x ∈ A,∀z ∈ F(x̄, x). (12)

We conclude ϕ̃(e) ≥ –ϕ̃(z), ∀e ∈ E, ∀x ∈ A, ∀z ∈ F(x̄, x). Then

σE(ϕ̃) ≥ –ϕ̃(z), ∀x ∈ A,∀z ∈ F(x̄, x).

In consequence, ϕ̃(z) + σE(ϕ̃) ≥ 0, ∀x ∈ A, ∀z ∈ F(x̄, x). Thus,

ϕ̃
(
F(x̄, x)

)
+ σE(ϕ̃) ⊆R+, ∀x ∈ A.

So, x̄ ∈ Vϕ̃(F , A; E) ⊂ ⋃
ϕ∈C� Vϕ(F , A; E).

Sufficiency. Let x̄ ∈ ⋃
ϕ∈C� Vϕ(F , A; E), then there exists ϕ′ ∈ C� such that x̄ ∈ Vϕ′ (F , A; E).

Hence, we have

ϕ′(F(x̄, x)
)

+ σE
(
ϕ′) ⊆R+, ∀x ∈ A. (13)

In the following, we show that x̄ ∈ Be(F, A; E).
Let d ∈ cl(cone(F(x̄, A) + E)) ∩ (–C), from E ∈ �Y , one has

d ∈ cl
(
cone

(
F(x̄, A) + E + C

)) ∩ (–C).

Hence, there exist sequences {μn} ⊂ R+, {cn} ⊂ C, {en} ⊂ E and {yn} ⊂ A such that

μn(zn + en + cn) → d, ∀zn ∈ F(x̄, yn).

Since ϕ′ ∈ C�,

μn
(
ϕ′(zn + en + cn)

) → ϕ′(d), ∀zn ∈ F(x̄, yn). (14)

By (13), ϕ′(zn +en) ≥ 0, ∀zn ∈ F(x̄, yn). Furthermore, from ϕ′(cn) ≥ 0 and (14), it follows that
ϕ′(d) ≥ 0. Moreover, since ϕ′ ∈ C� and d ∈ –C, ϕ′(d) ≤ 0. As a result ϕ′(d) = 0. As ϕ′ ∈ C�,
we have d = {0Y }. Hence, cl(cone(F(x̄, A) + E)) ∩ (–C) = {0Y }, and so x̄ ∈ Be(F, A; E). �

Remark 3.5 By Theorem 2.10, the condition nearly E-subconvexlike in Theorem 3.4 is
weaker than E-subconvexlike in Theorem 3.4 of [13]. So, to be compared with Theorem 3.4
in [13], Theorem 3.4 extends the model from vector-valued map to set-valued map under
weaker condition.
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4 Connectedness of the solutions set
In this section, we discuss the connectedness of We(F, A; E), He(F, A, B; E) and Be(F, A; E).

Lemma 4.1 ([33]) Suppose that {Aγ : γ ∈ Γ } is a family of connected sets in topological
space Φ . If

⋂
γ∈Γ Aγ �= ∅, then

⋃
γ∈Γ Aγ is a connected set in topological space Φ .

Definition 4.2 ([27]) Let A be a nonempty convex subset of X. A set-valued map F : A ⇒
Y is called C-concave if and only if, for all x1, x2 ∈ A and t ∈ [0, 1], we have

F
(
tx1 + (1 – t)x2

) ⊆ tF(x1) + (1 – t)F(x2) + C.

Theorem 4.3 Let E ∈ �Y , E ⊂ C and A be a nonempty convex set. Suppose that F(·, y) is
C-concave for all y ∈ A and M �= ∅, for all x ∈ A, F(x, ·) is nearly E-subconvexlike on A.
Then:

(i) If 0Y ∈ F(x, x) for all x ∈ A, then We(F, A; E) is a connected set.
(ii) If C has a base B, then He(F, A, B; E) is a connected set.

(iii) If C has a compact base B, then Be(F, A; E) is a connected set.

Proof (i) Firstly, we show that Vϕ(F , A; E) is a connected set for all ϕ ∈ E+ \ {0Y∗}. Actually,
for any ϕ ∈ E+ \ {0Y∗} and for any fixed y ∈ A, let x1, x2 ∈ Vϕ(F , A; E) and t ∈ [0, 1], we have
tx1 + (1 – t)x2 ∈ A, ϕ(F(x1, y)) + σE(ϕ) ⊆R+ and ϕ(F(x2, y)) + σE(ϕ) ⊆R+. Therefore,

tϕ
(
F(x1, y)

)
+ tσE(ϕ) ⊆R+, (1 – t)ϕ

(
F(x2, y)

)
+ (1 – t)σE(ϕ) ⊆R+.

Because F(·, y) is C-concave for all y ∈ A, then, for the above x1, x2 ∈ A and t ∈ [0, 1] and
fixed y ∈ A,

F
(
tx1 + (1 – t)x2, y

) ⊆ tF(x1, y) + (1 – t)F(x2, y) + C.

From ϕ ∈ E+ \ {0Y∗}, E ⊂ C, it follows that σE(ϕ) ≥ 0 and ϕ(C) ≥ 0.
Hence

ϕF
(
tx1 + (1 – t)x2, y

)
+ σE(ϕ) ⊆R+,

and so tx1 + (1 – t)x2 ∈ Vϕ(F , A; E). This shows that Vϕ(F , A; E) is a convex set. Hence,
Vϕ(F , A; E) is a connected set for any ϕ ∈ E+ \ {0Y∗}.

Next, we show that We(F, A; E) is a connected set. In fact, for any ϕ ∈ E+ \ {0Y∗}, it is easy
to see that M ⊆ Vϕ(F , A; E) and so

∅ �= M ⊆
⋂

ϕ∈E+\{0Y∗ }
Vϕ(F , A; E).

From the connectedness of Vϕ(F , A; E), Lemma 4.1 and Theorem 3.1, it follows that
We(F, A; E) is a connected set.

The proofs of (ii) and (iii) are similar to (i). �
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Remark 4.4
(i) If Y is a n.v.s. and E = C \ {0Y }, Theorem 4.3(i) reduces to Theorem 4.1(iii) in [24].

Theorem 4.3(ii) reduces to Theorem 4.1(ii) in [24].
(ii) If Y is a n.v.s. ε ≥ 0, e ∈ int C and E = εe + C, Theorem 4.3(i) reduces to Theorem 3.4

in [25].

5 Conclusions
In this paper, under the assumption of nearly E-subconvexlikeness of the binary function
in real locally convex Hausdorff topological vector spaces, we obtain the linear scalariza-
tion of weak efficient solutions, Benson proper efficient solutions, Heing efficient solutions
for (USVEP). By means of the scalarization results, we investigate the connectedness of the
sets of weak efficient solutions, Benson proper efficient solutions, Heing efficient solutions
for (USVEP). However, the connectedness of efficient solutions sets of for (USVEP) have
been not established, it may be of great interest for us to discuss.
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