Skip to main content

Taylor theory associated with Hahn difference operator

Abstract

In this paper, we establish Taylor theory based on Hahn’s difference operator \(D_{q,\omega}\) which is defined by \(D_{q,\omega}f(t)=\frac{f(qt+\omega)-f(t)}{t(q-1)+\omega}\), \(t\neq\frac {\omega}{1-q}\), where \(q\in(0,1)\) and ω is a positive number.

1 Introduction and preliminaries

Let \(q\in(0,1)\), \(\omega>0\) and \({\omega_{0}:=\frac{\omega}{1-q}}\). Let f be a function defined on an interval I of \(\mathbb {R}\) which contains \(\omega_{0}\). Hahn [10] introduced his difference operator which is defined by

$$ D_{q,\omega}f(t):=\frac{f(qt+\omega)-f(t)}{t(q-1)+\omega}, \quad\text{if $t\neq\omega_{0}$,} $$
(1.1)

and \(D_{q,\omega}f(\omega_{0}):=f'(\omega_{0})\), provided that f is differentiable at \(\omega_{0}\) in the usual sense. In this case we call \(D_{q,\omega}f\) the \(q, \omega\)-derivative and that f is \(q, \omega \)-differentiable at t whenever \(D_{q,\omega}f(t)\) exists. Finally, we say that f is \(q, \omega\)-differentiable, i.e., throughout I if \(D_{q,\omega}f(\omega_{0})\) exists.

Hahn difference operator unifies the two most well-known quantum difference operators: the Jackson q-difference operator [1113], which is defined by

$$ D_{q}f(t)=\frac{f(qt)-f(t)}{t(q-1)},\quad \text{if $t\neq0$, $0< q< 1$;} $$
(1.2)

and the forward difference \(\Delta_{\omega}\), which is defined by

$$ \Delta_{\omega}f(t)=\frac{f(t+\omega)-f(t)}{\omega}, \quad\text{$t\in \mathbb {R}$, $\omega>0$,} $$
(1.3)

see [4, 5, 14, 15]. Hahn operator has attracted the attention of several researchers and a variety of results can be found in papers [1, 2, 6, 1622]. In [3] Annaby and Mansour proved analytically the q-Taylor series associated with \(D_{q}\), introduced by Jackson [12], of an analytic function in some complex domain. In the present paper, we establish an overarching \(q, \omega\)-Taylor theory associated with Hahn difference operator \(D_{q,\omega}\). In this theory the Hahn difference operator \(D_{q,\omega}\) replaces the differentiation operator in the usual Taylor series.

First, we introduce some preliminary results and some notations. Let f, g be \(q, \omega\)-differentiable at \(t\in I\), then

$$\begin{aligned}& D_{q,\omega}(f+g) (t)=D_{q,\omega}f(t)+D_{q,\omega}g(t), \end{aligned}$$
(1.4)
$$\begin{aligned}& D_{q,\omega}(fg) (t)=D_{q,\omega}\bigl(f(t) \bigr)g(t)+f(qt+\omega)D_{q,\omega}g(t), \end{aligned}$$
(1.5)
$$\begin{aligned}& D_{q,\omega}(f/g) (t)=\frac{D_{q,\omega}(f(t))g(t)-f(t)D_{q,\omega }g(t)}{g(t)g(qt+\omega)} \end{aligned}$$
(1.6)

provided that in (1.6), \(g(t)g(qt+\omega)\neq0\) [1, 2]. Also, for \(n\in\mathbb {N}\), the following relations hold:

$$\begin{aligned}& D_{q,\omega}(\alpha t+\beta)^{n}=\alpha\sum _{k=0}^{n-1}\bigl(\alpha(qt+\omega )+ \beta\bigr)^{k}(\alpha t+\beta)^{n-k-1}, \end{aligned}$$
(1.7)
$$\begin{aligned}& D_{q,\omega}(\alpha t+\beta)^{-n}=-\alpha\sum _{k=0}^{n-1}\bigl(\alpha (qt+\omega)+ \beta\bigr)^{-n+k}(\alpha t+\beta)^{-k-1}, \end{aligned}$$
(1.8)

where \(\alpha, \beta\in\mathbb {R}\), see [1, 2].

The q-shifted factorial \((b;q)_{n}\) for a complex number b and \(n\in \mathbb {N}_{0}=\mathbb {N}\cup\{0\}\) is defined to be

$$(b;q)_{n}=\left \lbrace \textstyle\begin{array}{l@{\quad} l} \prod_{j=1}^{n}(1-bq^{j-1}), & \text{if $n\in \mathbb {N}$,}\\ 1, & \text{if $n=0$.} \end{array}\displaystyle \right . $$

The limit \(\lim_{n\to\infty}(b;q)_{n}\) is denoted by \((b;q)_{\infty}\). Moreover \((b;q)_{n}\) has the representation [9]

$$ (b;q)_{n}=\sum_{k=0}^{n}(-1)^{k} \left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}q^{\frac{k(k-1)}{2}}b^{k}. $$
(1.9)

The q-binomial coefficients [9]

$$\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}= \frac{(q;q)_{n}}{(q;q)_{k}(q;q)_{n-k}} $$

satisfy the following property:

$$ \left ( \textstyle\begin{array}{c} n+1\\ k \end{array}\displaystyle \right )_{q}=\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}q^{k}+\left ( \textstyle\begin{array}{c} n\\ k-1 \end{array}\displaystyle \right )_{q}=\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}+\left ( \textstyle\begin{array}{c} n\\ k-1 \end{array}\displaystyle \right )_{q}q^{n+1-k}. $$
(1.10)

For \(n\in\mathbb {N}_{0}\) and \(0< q<1\), the q-analogues of the natural numbers of the factorial function and of the semifactorial function [7, 13] are defined by

$$ [n]_{q}=\frac{1-q^{n}}{1-q},\quad n\in\mathbb {N}_{0}, 0< q< 1, $$
(1.11)

and

$$ [n]_{q}!=\prod_{k=1}^{n} [k]_{q},\qquad [0]_{q}!:=1,\quad 0< q< 1. $$
(1.12)

\([x-a]_{n}\) is defined by

$$ [x-a]_{n}=(x-a) (x-aq) \bigl(x-aq^{2} \bigr)\cdots\bigl(x-aq^{n-1}\bigr),\quad n\ge1,\qquad [x-a]_{0}=1. $$
(1.13)

The following formula was obtained by Euler [8]:

$$ [x-a]_{n}=\sum_{k=0}^{n} \left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}q^{\frac{k(k-1)}{2}}x^{n-k}(-a)^{k}. $$
(1.14)

The q-gamma function [9] is defined by

$$\varGamma_{q}(z)=\dfrac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z},\quad 0< q< 1, $$

where \(z\in\mathbb {C}\setminus\{-n:n\in\mathbb {N}_{0}\}\). Here, we take the principal values of \(q^{z}\) and \((1-q)^{1-z}\). In particular

$$\varGamma_{q}(n+1)=\dfrac{(q;q)_{n}}{(1-q)^{n}},\quad n\in\mathbb {N}. $$

It is known that, for \(x>0\), \(\varGamma_{q}(x)\) is the unique logarithmically convex function that satisfies the functional equation:

$$\varGamma_{q}(x+1)=[x]_{q}\varGamma_{q}(x),\qquad \varGamma_{q}(1)=1. $$

In [1], Aldowah introduced the \(q,\omega\)-integral of f from a to b as follows.

Definition 1.1

Let I be any interval of \(\mathbb {R}\) containing \(\omega_{0}\). Assume that \(f:I\to\mathbb {R}\) is a function, and let \(a, b\in I\) such that \(a< b\). The \(q, \omega\)-integral of f from a to b is defined by

$$ \int_{a}^{b}f(t)\,d_{q, \omega}t:= \int_{\omega_{0}}^{b}f(t)\,d_{q, \omega }t- \int_{\omega_{0}}^{a}f(t)\,d_{q, \omega}t, $$
(1.15)

where

$$ \int_{\omega_{0}}^{x}f(t)\,d_{q, \omega}t:= \bigl(x(1-q)-\omega\bigr)\sum_{k=0}^{\infty}q^{k}f\bigl(xq^{k}+\omega[k]_{q}\bigr),\quad x \in I, $$
(1.16)

provided that the series converges at \(x=a\) and \(x=b\). In this case f is called \(q, \omega\)-integrable over \([a,b]\) for all \(a, b\in I\).

Lemma 1.2

([1, 2])

Let\(f, g:I\to\mathbb {R}\)be\(q, \omega\)-integrable on\(I, k\in\mathbb {R}\)and\(a, b, c\in I\), \(a< c< b\). Then

  1. (i)

    \(\int_{a}^{a}f(t)\,d_{q, \omega}t=0\),

  2. (ii)

    \(\int_{a}^{b}kf(t)\,d_{q, \omega}t=k\int_{a}^{b}f(t)\,d_{q, \omega}t\),

  3. (iii)

    \(\int_{a}^{b}f(t)\,d_{q, \omega}t=-\int_{b}^{a}f(t)\,d_{q, \omega}t\),

  4. (iv)

    \(\int_{a}^{b}f(t)\,d_{q, \omega}t=\int_{a}^{c}f(t)\,d_{q, \omega }t+\int_{c}^{b}f(t)\,d_{q, \omega}t\),

  5. (v)

    \(\int_{a}^{b}(f(t)+g(t))\,d_{q, \omega}t=\int_{a}^{b}f(t)\,d_{q, \omega}t+\int_{a}^{b}g(t)\,d_{q, \omega}t\).

Lemma 1.3

([1, 2])

If\(f:I\to\mathbb {R}\)is continuous at\(\omega_{0}\), then\(\{f(sq^{k}+\omega [k]_{q})\}_{k\in\mathbb {N}}\)converges uniformly to\(f(\omega_{0})\)onI.

Corollary 1.4

([1, 2])

If\(f:I\to\mathbb {R}\)is continuous at\(\omega_{0}\), then\(\sum_{k=0}^{\infty}|f((sq^{k})+\omega[k]_{q})|\)converges uniformly onI, and consequentlyfis\(q, \omega\)-integrable overI.

Lemma 1.5

([1, 2])

If\(f, g:I\to\mathbb {R}\)are continuous at\(\omega_{0}\), then

$$ \int_{a}^{b}f(t)D_{q, \omega}\bigl(g(t) \bigr)\,d_{q, \omega}t=f(t)g(t)|_{a}^{b}- \int _{a}^{b}D_{q, \omega}\bigl(f(t) \bigr)g(qt+\omega)\,d_{q, \omega}t,\quad a, b \in I. $$
(1.17)

Theorem 1.6

([1, 2])

Assume that\(f:I\to\mathbb {R}\)is continuous at\(\omega_{0}\). Define

$$F(x):= \int_{\omega_{0}}^{x}f(t)\,d_{q, \omega}t. $$

ThenFis continuous at\(\omega_{0}\). Furthermore, \(D_{q, \omega}F(x)\)exists for every\(x\in I\)and\(D_{q, \omega}F(x)=f(x)\). Conversely,

$$\int_{a}^{b}D_{q, \omega}f(t) \,d_{q, \omega}t=f(b)-f(a),\quad a, b\in I. $$

2 Main results

We define the \(q, \omega\)-derivative of higher order in the usual way. That is, the nth \(q, \omega\)-derivative, \(n\in\mathbb {N}\), of \(f:I\to \mathbb {R}\) is the function \(D^{n}_{q, \omega}f:I\to\mathbb {R}\) given by \(D^{n}_{q, \omega}f:=D_{q, \omega}(D^{n-1}_{q, \omega}f)\), provided \(D^{n-1}_{q, \omega}f\) is \(q, \omega\)-differentiable on I and \(D^{0}_{q, \omega}f=f\). We consider the following linear spaces:

$$\begin{aligned}& \begin{aligned}C^{n}&=C^{n}(I,\mathbb {R})\\&:=\bigl\{ f:I\to\mathbb {R} \mid f \text{ is differentiable $n$-times and $f^{(i)}$ are continuous} , i=1,2,\ldots,n \bigr\} ,\end{aligned} \\& \begin{aligned}C^{n}_{q,\omega}&=C^{n}_{q,\omega}(I, \mathbb {R})\\&:=\bigl\{ f:I\to\mathbb {R} \mid f \text{ is $q, \omega$-differentiable $n$-times and $D^{n}_{q,\omega}f$ is continuous at } \omega_{0} \bigr\} ,\end{aligned} \end{aligned}$$

and

$$\begin{aligned} C^{\infty}_{q,\omega}&=C^{\infty}_{q,\omega}(I, \mathbb {R})\\&:=\{f:I\to \mathbb {R} \mid f \text{ is $q, \omega$-differentiable infinitely many times at $\omega_{0}$} \}. \end{aligned}$$

Our target is to obtain Taylor expansion of a function f defined on an interval I that contains \(\omega_{0}\) associated with Hahn difference operator. We need the following lemmas in proving our main results.

Lemma 2.1

Letfbe a function defined onI. Then, for\(x\neq\omega_{0}\), thenth\(q, \omega\)derivative\((D^{n}_{q, \omega}f)(x)\)can be expressed as

$$\begin{aligned} \bigl(D^{n}_{q, \omega}f\bigr) (x)&= \bigl(x(q-1)+\omega\bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum _{k=0}^{n}\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} f\bigl(xq^{n-k}+\omega[n-k]_{q}\bigr). \end{aligned}$$
(2.1)

Proof

For \(n=1\), the formula above yields (1.1). Assume that formula (2.1) is true for \(n=m\). By relations (1.5), (1.8), and (1.10), we have

$$\begin{aligned} \bigl(D^{m+1}_{q, \omega}f\bigr) (x)&=D_{q, \omega} \Biggl[\bigl(x(q-1)+\omega \bigr)^{-m}q^{-\frac{m(m-1)}{2}} \sum_{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ &\quad \times f\bigl(xq^{m-k}+\omega[m-k]_{q}\bigr) \Biggr] \\ &=-(q-1)\sum_{j=0}^{m-1}\bigl((qx+ \omega) (q-1)+\omega\bigr)^{-m+j}\bigl(x(q-1)+\omega \bigr)^{-j-1} \\ &\quad\times q^{-\frac{m(m-1)}{2}}\sum_{k=0}^{m} \left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}f \bigl(xq^{m-k}+\omega[m-k]_{q}\bigr) \\ &\quad+ \bigl((qx+\omega) (q-1)+\omega\bigr)^{-m} q^{-\frac{m(m-1)}{2}}\sum _{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ &\quad\times D_{q, \omega}f\bigl(xq^{m-k}+\omega[m-k]_{q} \bigr) \\ &=q^{-\frac{m(m-1)}{2}}q^{-m} \Biggl[-(q-1)\sum _{j=0}^{m-1}q^{j}\bigl(x(q-1)+\omega \bigr)^{-m-1} \\ &\quad \times\sum_{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}f \bigl(xq^{m-k}+\omega[m-k]_{q}\bigr) \\ &\quad +\bigl(x(q-1)+\omega\bigr)^{-m-1}\sum_{k=0}^{m} \left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ &\quad \times \bigl(f\bigl(xq^{m-k+1}+\omega[m-k+1]_{q}\bigr)-f \bigl(xq^{m-k}+\omega[m-k]_{q}\bigr) \bigr) \Biggr]. \end{aligned} $$

This implies that

$$\begin{aligned} \bigl(D^{m+1}_{q, \omega}f\bigr) (x)&= q^{-\frac{m(m-1)}{2}}q^{-m}\bigl(x(q-1)+\omega\bigr)^{-m-1} \Biggl[-(q-1)\sum_{j=0}^{m-1}q^{j} \\ &\quad \times\sum_{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}f \bigl(xq^{m-k}+\omega[m-k]_{q}\bigr) \\ &\quad+ \sum_{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \bigl(f\bigl(xq^{m-k+1}+\omega [m-k+1]_{q}\bigr) \\ &\quad- f\bigl(xq^{m-k}+\omega[m-k]_{q}\bigr) \bigr) \Biggr] \\ &= q^{-\frac{m(m+1)}{2}}\bigl(x(q-1)+\omega\bigr)^{-m-1} \Biggl[-(q-1) \frac {q^{m}-1}{q-1}\sum_{k=0}^{m} \left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q} \\ &\quad\times (-1)^{k}q^{\frac{k(k-1)}{2}}f\bigl(xq^{m-k}+ \omega[m-k]_{q}\bigr) + \sum_{k=0}^{m} \left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k} \\ & \quad\times q^{\frac{k(k-1)}{2}} \bigl(f\bigl(xq^{m-k+1}+\omega [m-k+1]_{q}\bigr)-f\bigl(xq^{m-k}+\omega[m-k]_{q} \bigr) \bigr) \Biggr] \\ &= q^{-\frac{m(m+1)}{2}}\bigl(x(q-1)+\omega\bigr)^{-m-1} \Biggl[-q^{m}\sum_{k=0}^{m} \left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ & \quad\times f\bigl(xq^{m-k}+\omega[m-k]_{q}\bigr) + \sum _{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ & \quad\times f\bigl(xq^{m-k+1}+\omega[m-k+1]_{q}\bigr) \Biggr] \\ &=q^{-\frac {m(m+1)}{2}}\bigl(x(q-1)+\omega\bigr)^{-m-1} \Biggl[-q^{m}\sum_{k=1}^{m+1} \left ( \textstyle\begin{array}{c} m\\ k-1 \end{array}\displaystyle \right )_{q}(-1)^{k-1} \\ & \quad\times q^{\frac{(k-1)(k-2)}{2}}f\bigl(xq^{m-k+1}+\omega[m-k+1]_{q} \bigr) \\ & \quad+\sum_{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}f \bigl(xq^{m-k+1}+\omega[m-k+1]_{q}\bigr) \Biggr] \\ &= q^{-\frac{m(m+1)}{2}}\bigl(x(q-1)+\omega\bigr)^{-m-1} \Biggl[\sum _{k=1}^{m+1}\left ( \textstyle\begin{array}{c} m\\ k-1 \end{array}\displaystyle \right )_{q}q^{m-k+1}(-1)^{k} \\ & \quad\times q^{\frac{k(k-1)}{2}}f\bigl(xq^{m-k+1}+\omega[m-k+1]_{q} \bigr) \\ & \quad+\sum_{k=0}^{m}\left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}f \bigl(xq^{m-k+1}+\omega[m-k+1]_{q}\bigr) \Biggr] \\ &=q^{-\frac{m(m+1)}{2}} \bigl(x(q-1)+\omega\bigr)^{-m-1} \Biggl[(-1)^{m+1}q^{\frac{m(m+1)}{2}}f(x) \\ & \quad+\sum_{k=1}^{m} \left(\left ( \textstyle\begin{array}{c} m\\ k-1 \end{array}\displaystyle \right )_{q}q^{m-k+1}+ \left ( \textstyle\begin{array}{c} m\\ k \end{array}\displaystyle \right )_{q} \right) \\ & \quad\times (-1)^{k}q^{\frac{k(k-1)}{2}}f\bigl(xq^{m-k+1}+ \omega[m-k+1]_{q}\bigr) \\ & \quad+f\bigl(xq^{m+1}+\omega[m+1]_{q}\bigr) \Biggr]. \end{aligned}$$

That is,

$$\begin{aligned} \bigl(D^{m+1}_{q, \omega}f\bigr) (x)&=q^{-\frac{m(m+1)}{2}}\bigl(x(q-1)+\omega \bigr)^{-m-1} \Biggl[(-1)^{m+1}q^{\frac{m(m+1)}{2}}f(x) \\ &\quad+ \sum_{k=1}^{m}\left ( \textstyle\begin{array}{c} m+1\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} f\bigl(xq^{m-k+1}+\omega[m-k+1]_{q}\bigr) \\ &\quad +f\bigl(xq^{m+1}+\omega[m+1]_{q}\bigr) \Biggr] \\ &= q^{-\frac{m(m+1)}{2}}\bigl(x(q-1)+\omega\bigr)^{-m-1}\sum _{k=0}^{m+1} \Biggl[\left ( \textstyle\begin{array}{c} m+1\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ & \quad\times f\bigl(xq^{m-k+1}+\omega[m-k+1]_{q}\bigr) \Biggr]. \end{aligned}$$

Therefore relation (2.1) is true at \(n=m+1\) and by induction it is true for every \(n\in\mathbb {N}\). □

In the following result, a formula of the nth derivative of a power series of center zero is given.

Lemma 2.2

Assume that a functionfhas the power series expansion\(f(x)=\sum_{k=0}^{\infty}a_{k}x^{k}\), \(x\in I\). Then

$$\begin{aligned} \bigl(D^{n}_{q, \omega}f\bigr) (x)&=(1-q)^{-n} {\sum_{k=0}^{\infty}\frac {a_{n+k}}{(1-q)^{k}}\sum_{m=0}^{k}}(-1)^{m} \left ( \textstyle\begin{array}{c} n+k\\ n+m \end{array}\displaystyle \right ) \\ &\quad\times \bigl(x(q-1)+\omega \bigr)^{m}(\omega)^{k-m} \bigl(q^{m+1};q\bigr)_{n}, \quad x\neq\omega _{0}, n\in\mathbb {N}_{0}. \end{aligned}$$
(2.2)

Proof

It is clear that Eq. (2.2) is true for \(n=0\). From Eq. (2.1) and relation (1.9), we have, for \(n\in\mathbb {N}\),

$$\begin{aligned} \bigl(D^{n}_{q, \omega}f\bigr) (x)&=\bigl(x(q-1)+\omega \bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum_{k=0}^{n} \left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ & \quad\times\sum_{j=0}^{\infty}a_{j} \bigl(xq^{n-k}+\omega[n-k]_{q}\bigr)^{j} \\ &=\bigl(x(q-1)+\omega\bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum _{j=0}^{\infty}\frac {a_{j}}{(1-q)^{j}}\sum _{r=0}^{j}(-1)^{r}\left ( \textstyle\begin{array}{c} j\\ r \end{array}\displaystyle \right )q^{nr} \\ &\quad\times \bigl(x(q-1)+\omega \bigr)^{r}(\omega)^{j-r}\sum _{k=0}^{n}\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}q^{-kr} \\ &= \bigl(x(q-1)+\omega\bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum _{j=0}^{\infty}\frac {a_{j}}{(1-q)^{j}}\sum _{r=0}^{j}(-1)^{r}\left ( \textstyle\begin{array}{c} j\\ r \end{array}\displaystyle \right )q^{nr} \\ & \quad\times\bigl(x(q-1)+\omega \bigr)^{r}(\omega)^{j-r} \bigl(q^{-r};q\bigr)_{n}. \end{aligned}$$

Then

$$\begin{aligned} \bigl(D^{n}_{q,\omega}f\bigr) (x)&=(-1)^{n} \bigl(x(q-1)+\omega\bigr)^{-n}q^{-\frac {n(n-1)}{2}}\sum _{j=n}^{\infty}\frac{a_{j}}{(1-q)^{j}}\sum _{r=n}^{j}(-1)^{r}q^{nr} \left ( \textstyle\begin{array}{c} j\\ r \end{array}\displaystyle \right ) \\ & \quad\times\bigl(x(q-1)+\omega \bigr)^{r}(\omega)^{j-r}q^{-rn+\frac {n(n-1)}{2}} \bigl(q^{r-n+1};q\bigr)_{n} \\ &= (-1)^{n}\bigl(x(q-1)+\omega\bigr)^{-n}\sum _{j=n}^{\infty}\frac{a_{j}}{(1-q)^{j}}\sum _{r=n}^{j}(-1)^{r}\left ( \textstyle\begin{array}{c} j\\ r \end{array}\displaystyle \right ) \\ & \quad\times\bigl(x(q-1)+\omega \bigr)^{r}(\omega )^{j-r} \bigl(q^{r-n+1};q\bigr)_{n} \\ &= (-1)^{n}\bigl(x(q-1)+\omega\bigr)^{-n}\sum _{k=0}^{\infty}\frac {a_{n+k}}{(1-q)^{n+k}}\sum _{r=n}^{n+k}(-1)^{r}\left ( \textstyle\begin{array}{c} n+k\\ r \end{array}\displaystyle \right ) \\ &\quad\times \bigl(x(q-1)+\omega \bigr)^{r}(\omega )^{n+k-r} \bigl(q^{r-n+1};q\bigr)_{n} \\ &=(-1)^{n}\bigl(x(q-1)+\omega\bigr)^{-n}\sum _{k=0}^{\infty}\frac{a_{n+k}}{(1-q)^{n+k}}\sum _{m=0}^{k}(-1)^{n+m}\left ( \textstyle\begin{array}{c} n+k\\ n+m \end{array}\displaystyle \right ) \\ &\quad\times \bigl(x(q-1)+\omega \bigr)^{n+m}(\omega )^{k-m} \bigl(q^{m+1};q\bigr)_{n} \\ &= (1-q)^{-n}\sum_{k=0}^{\infty}\frac{a_{n+k}}{(1-q)^{k}}\sum_{m=0}^{k}(-1)^{m} \left ( \textstyle\begin{array}{c} n+k\\ n+m \end{array}\displaystyle \right ) \bigl(x(q-1)+\omega \bigr)^{m} \\ &\quad\times (\omega)^{k-m}\bigl(q^{m+1};q\bigr)_{n} \\ &= (1-q)^{-n}\sum_{k=0}^{\infty} \frac{a_{n+k}}{(1-q)^{k}} \Biggl[(-1)^{k}\bigl(x(q-1)+\omega \bigr)^{k}\bigl(q^{k+1};q\bigr)_{n} \\ & \quad+\sum_{m=0}^{k-1}(-1)^{m} \left ( \textstyle\begin{array}{c} n+k\\ n+m \end{array}\displaystyle \right ) \bigl(x(q-1)+\omega \bigr)^{m}(\omega)^{k-m}\bigl(q^{m+1};q \bigr)_{n} \Biggr]. \end{aligned}$$

 □

The following result includes a useful formula for the nth derivative of a power series of center \(\omega_{0}\).

Lemma 2.3

Assume that a functionfhas the power series expansion\(f(x)=\sum_{k=0}^{\infty}a_{k}(x-\omega_{0})^{k}\), \(x\in I\). Then

$$ D^{n}_{q, \omega}f(x)=\bigl(x(1-q)-\omega \bigr)^{-n} {\sum_{k=0}^{\infty}a_{n+k}(x-\omega_{0})^{n+k} \bigl(q^{k+1};q\bigr)_{n}},\quad x\neq\omega_{0}. $$
(2.3)

Proof

It is clear that Eq. (2.3) is true for \(n=0\). From Eq. (2.1) and relation (1.9), we have, for \(n\in\mathbb {N}\),

$$\begin{aligned} \bigl(D^{n}_{q, \omega}f\bigr) (x)&=\bigl(x(q-1)+\omega \bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum_{k=0}^{n} \left [\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \right . \\ &\quad\times \left .\sum_{j=0}^{\infty}a_{j}\bigl(xq^{n-k}+\omega[n-k]_{q}- \omega_{0}\bigr)^{j}\right ]. \end{aligned}$$

From this it follows that

$$\begin{aligned} \bigl(D^{n}_{q, \omega}f\bigr) (x)&=\bigl(x(q-1)+\omega \bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum_{k=0}^{n} \left [\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \right . \\ &\quad\times \left .\sum_{j=0}^{\infty}a_{j}q^{nj-kj}(x-\omega_{0})^{j} \right ] \\ &=\bigl(x(q-1)+\omega \bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum _{j=0}^{\infty}\Biggl[ a_{j}q^{nj}(x- \omega _{0})^{j} \\ & \quad\times\sum_{k=0}^{n}\left ( \textstyle\begin{array}{c} n\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}q^{-kj} \Biggr] \\ &=\bigl(x(q-1)+\omega \bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum _{j=0}^{\infty}a_{j}q^{nj}(x- \omega _{0})^{j}\bigl(q^{-j};q \bigr)_{n} \\ &=\bigl(x(q-1)+\omega\bigr)^{-n}q^{-\frac{n(n-1)}{2}}\sum _{j=n}^{\infty}\bigl[ a_{j}q^{nj}(x- \omega_{0})^{j}(-1)^{n}q^{-nj+\frac {n(n-1)}{2}} \\ & \quad\times \bigl(q^{j-n+1};q\bigr)_{n} \bigr] \\ &=\bigl(x(1-q)-\omega\bigr)^{-n}\sum_{k=0}^{\infty}a_{n+k}(x-\omega_{0})^{n+k} \bigl(q^{k+1};q\bigr)_{n}. \end{aligned}$$

 □

One of the important questions: Is there a relation between the nth \(q, \omega\) derivative and the usual nth derivative? The answer is in the following lemma.

Lemma 2.4

If\(f\in C^{n+1}\), then

  1. (i)

    \(D^{m}_{q, \omega}f\)exists onIand is continuous at\(\omega _{0}\)for all\(m=1,2,\ldots,n+1\);

  2. (ii)

    for\(1\le m\le n+1\),

    $$ D^{m}_{q, \omega}f(\omega_{0})= \frac{[m]_{q}!}{m!}f^{(m)}(\omega_{0}), $$
    (2.4)

    where\(f^{(m)}\)is the usualmth derivative off.

Proof

The proof is by induction. The \(q, \omega\) derivative \(D_{q, \omega}f\) exists and \(D_{q, \omega}f(\omega_{0})=f'(\omega_{0})\). Also \(D_{q, \omega}f\) is continuous at \(\omega_{0}\). Indeed,

$$\lim_{x\to\omega_{0}}D_{q, \omega}f(x)=\lim_{t\to\omega_{0}} \frac {f(qx+\omega)-f(x)}{x(q-1)+\omega}=f'(\omega_{0})=D_{q, \omega}f( \omega_{0}). $$

Now, we assume that (i) and (ii) hold for all \(m=1,2,\ldots,l\), where \(l\leq n\) and we want to prove that they are true at \(m=l+1\). By Lemma 2.1, we conclude that

$$\begin{aligned} \lim_{x\to\omega_{0}}D^{l+1}_{q, \omega}f(x)&=\lim _{x\to\omega_{0}}\frac {1}{(x(q-1)+\omega)^{l+1}q^{\frac{l(l+1)}{2}}} \Biggl[\sum _{k=0}^{l+1}\left ( \textstyle\begin{array}{c} l+1\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ & \quad\times f\bigl(xq^{l-k+1}+\omega [l-k+1]_{q}\bigr) \Biggr] \\ &= \lim_{x\to\omega_{0}}\sum_{k=0}^{l+1} \biggl[\frac{ \tbinom {l+1}{k} _{q}(-1)^{k}q^{\frac{k(k-1)}{2}}q^{(l+1)(l-k+1)}}{(q-1)^{l+1}(xq^{l-k+1}+ \omega[l-k+1]_{q}-\omega_{0})^{l+1} {q^{\frac{l(l+1)}{2}}}} \\ & \quad\times f\bigl(xq^{l-k+1}+\omega[l-k+1]_{q}\bigr) \biggr]. \end{aligned}$$

Applying L’Hopital rule \(l+1\) times and using relations (1.12), (1.13), and (1.14), we get

$$\begin{aligned} \lim_{x\to\omega_{0}}D^{l+1}_{q, \omega}f(x)&=\lim _{x\to\omega_{0}}\frac {1}{(q-1)^{l+1}(l+1)! {q^{\frac{l(l+1)}{2}}}}\sum_{k=0}^{l+1} \Biggl[\left ( \textstyle\begin{array}{c} l+1\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ & \quad\times q^{(l+1)(l-k+1)}f^{(l+1)}\bigl(xq^{l-k+1}+ \omega[l-k+1]_{q}\bigr) \Biggr] \\ &= \frac{\sum_{k=0}^{l+1} \tbinom {l+1}{k} _{q}(-1)^{k}q^{\frac{k(k-1)}{2}}(q^{l+1})^{l-k+1}f^{(l+1)}(\omega_{0})}{ (q-1)^{l+1}(l+1)! {q^{\frac{l(l+1)}{2}}}} \\ &= {\frac{[q^{l+1}-1]_{l+1}f^{(l+1)}(\omega_{0})}{(q-1)^{l+1}(l+1)! {q^{\frac{l(l+1)}{2}}}}} \\ &= {\frac{(q^{l+1}-1)(q^{l+1}-q)(q^{l+1}-q^{2})\cdots (q^{l+1}-q^{l})f^{(l+1)}(\omega_{0})}{(q-1)^{l+1}(l+1)! {q^{0+1+2+\cdots+(l-1)+l}}}} \\ &= {\frac{(q^{l+1}-1)(q^{l}-1)(q^{l-1}-1)\cdots(q-1)f^{(l+1)}(\omega _{0})}{(q-1)^{l+1}(l+1)!}} \\ &= {\frac{[1]_{q}[2]_{q}\cdots[l]_{q}[l+1]_{q}f^{(l+1)}(\omega_{0})}{(l+1)!}} \\ &= {\frac{[l+1]_{q}!}{(l+1)!}f^{(l+1)}(\omega_{0})}. \end{aligned}$$

On the other hand, we conclude that

$$\begin{aligned} D^{l+1}_{q, \omega}f(\omega_{0})&=\lim _{x\to\omega_{0}}\frac{D^{l}_{q, \omega}f(x)-D^{l}_{q, \omega}f(\omega_{0})}{x-\omega_{0}} \\ &=\lim_{x\to\omega_{0}}\frac{d}{dx} \biggl[ \frac{\sum_{k=0}^{l}\tbinom {l}{k}_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}f(xq^{l-k}+\omega [l-k]_{q})}{(x(q-1)+\omega)^{l}q^{\frac{l(l-1)}{2}}} \biggr] \\ &= \lim_{x\to\omega_{0}}\frac{1}{(x(q-1)+\omega)^{l+1} {q^{\frac {l(l-1)}{2}}}}\sum _{k=0}^{l}\left ( \textstyle\begin{array}{c} l\\ k \end{array}\displaystyle \right ) _{q}(-1)^{k}q^{\frac{k(k-1)}{2}} \\ &\quad\times \bigl[\bigl(x(q-1)+\omega \bigr)q^{l-k}f' \bigl(xq^{l-k}+\omega[l-k]_{q}\bigr)-l(q-1)f \bigl(xq^{l-k}+\omega[l-k]_{q}\bigr) \bigr]. \end{aligned}$$

Again, applying L’Hopital rule \(l+1\) times and using relations (1.12), (1.13), and (1.14), we get

$$\begin{aligned} D^{l+1}_{q, \omega}f(\omega_{0})&=\lim _{x\to\omega_{0}}\frac {1}{(q-1)^{l+1}(l+1)! {q^{\frac{l(l-1)}{2}}}}\sum_{k=0}^{l} \Biggl[\left ( \textstyle\begin{array}{c} l\\ k \end{array}\displaystyle \right )_{q}(-1)^{k}q^{\frac{k(k-1)}{2}}q^{(l+1)(l-k)} \\ & \quad\times (q-1)f^{(l+1)}\bigl(xq^{l-k}+\omega[l-k]_{q} \bigr) \Biggr] \\ &= {\frac{[q^{l+1}-1]_{l}(q-1)f^{(l+1)}(\omega_{0})}{ (q-1)^{l+1}(l+1)! {q^{\frac{l(l-1)}{2}}}}} \\ &= {\frac {[l+1]_{q}!}{(l+1)!}f^{(l+1)}(\omega_{0})}. \end{aligned}$$

Therefore,

$$\lim_{x\to\omega_{0}}D^{l+1}_{q, \omega}f(x)=D^{l+1}_{q, \omega}f( \omega_{0})= {\frac{[l+1]_{q}!}{(l+1)!}f^{(l+1)}( \omega_{0})}. $$

 □

Corollary 2.5

Assume that f has the power series expansion

$$f(x)=\sum_{n=0}^{\infty}a_{n}(x-\omega_{0})^{n},\quad x\in I. $$

Then

$$ a_{n}= \frac{D^{n}_{q, \omega}f(\omega_{0})}{[n]_{q}!},\quad n\in\mathbb {N}. $$
(2.5)

Proof

By Lemma 2.4, we have

$$ a_{n}=\frac{f^{(n)}(\omega_{0})}{n!}=\frac{D^{n}_{q, \omega}f(\omega_{0})}{[n]_{q}!}. $$

 □

Now we define the two variable polynomials \(H_{n}(x,t)\), \(x, t\in I\), to be

$$ H_{0}(x,t):=1,\qquad H_{n}(x,t):=\prod _{j=0}^{n-1}\bigl(x-h^{j}(t) \bigr), $$
(2.6)

where \(h^{j}(t)=tq^{j}+\omega[j]_{q}, t\in I\) is the jth order iteration of \(h(t)=qt+\omega\), which uniformly converges to \(\omega_{0}\) on I.

Lemma 2.6

For\(n\in\mathbb {N}\)and\(x, t\in I\), we have

$$\begin{aligned}& {}_{t}D_{q, \omega}H_{n}(x,t)=-[n]_{q}H_{n-1} \bigl(x,h(t)\bigr), \end{aligned}$$
(2.7)
$$\begin{aligned}& {}_{x}D_{q, \omega}H_{n}(x,t)=[n]_{q}H_{n-1}(x,t), \end{aligned}$$
(2.8)

where\({}_{t}D_{q, \omega}\)is the\(q, \omega\)-derivative with respect tot,

$$I^{n}_{q, \omega}(1)=\frac{H_{n}(x,a)}{\varGamma_{q}(n+1)}, $$

where\(I^{n}_{q, \omega}\)is the\(q, \omega\)-integral

$$I^{n}_{q, \omega}f(x):= \int_{a}^{x} \int_{a}^{x_{n-1}} \int_{a}^{x_{n-2}}\cdots \int _{a}^{x_{1}}f(s)\,d_{q, \omega}s \,d_{q, \omega}x_{1}\cdots d_{q, \omega }x_{n-2} \,d_{q, \omega}x_{n-1}. $$

Now, we establish Taylor’s theorem based on Hahn difference operator.

Theorem 2.7

Letfbe a function defined onI. If\(f\in C^{n}_{q,\omega}\)for some\(n\in\mathbb {N}\), then for\(x, a\in I\),

$$ f(x)=\sum_{k=0}^{n-1} \frac{D^{k}_{q, \omega}f(a)}{[k]_{q}!}H_{k}(x,a)+R_{n}(x,a), $$
(2.9)

where

$$ R_{n}(x,a)= \int_{a}^{x}\frac{D^{n}_{q, \omega}f(t)}{[n-1]_{q}!} H_{n-1}\bigl(x,h(t)\bigr)\,d_{q, \omega}t. $$
(2.10)

Proof

We prove relation (2.9) by induction. The right-hand side (R.H.S) of (2.9) at \(n=1\) is

$$\begin{aligned} R.H.S&=f(a)H_{0}(x,a)+R_{1}(x,a) \\ &=f(a)+ \int_{a}^{x}D_{q, \omega}f(t) \,d_{q, \omega}t=f(x). \end{aligned}$$

Assume that relation (2.9) is true for \(n=m\), that is,

$$f(x)=\sum_{k=0}^{m-1} \frac{D^{k}_{q, \omega}f(a)}{[k]_{q}!}H_{k}(x,a)+R_{m}(x,a), $$

where \(R_{m}(x,a)= \int_{a}^{x}\frac{D^{m}_{q, \omega}f(t)}{[m-1]_{q}!} H_{m-1}(x,h(t))\,d_{q, \omega}t\). We integrate by parts in the remainder term \(R_{m}(x,a)\). We obtain

$$\begin{aligned} R_{m}(x,a)&= \int_{a}^{x}\frac{D^{m}_{q, \omega}f(t)}{[m-1]_{q}!} H_{m-1}\bigl(x,h(t)\bigr)\,d_{q, \omega}t \\ &=- \int_{a}^{x}\frac{D^{m}_{q, \omega}f(t)}{[m-1]_{q}!} \frac{_{t}D_{q, \omega}H_{m}(x,t)}{[m]_{q}}\,d_{q, \omega}t \\ &=-\frac {D^{m}_{q, \omega}f(t)}{[m]_{q}!}H_{m}(x,t)|_{a}^{x}+ \int_{a}^{x}\frac{D^{m+1}_{q, \omega}f(t)}{[m]_{q}!} H_{m}\bigl(x,h(t)\bigr)\,d_{q, \omega}t \\ &=D^{m}_{q, \omega}f(a)\frac {H_{m}(x,a)}{[m]_{q}!}+R_{m+1}(x,a). \end{aligned}$$

Then

$$f(x)=\sum_{k=0}^{m} \frac{D^{k}_{q, \omega}f(a)}{[k]_{q}!}H_{k}(x,a)+R_{m+1}(x,a). $$

Therefore, relation (2.9) is true for \(n=m+1\), then it is true for every \(n\in\mathbb {N}\). □

As a direct consequence of the previous theorem, we deduce the following theorem.

Theorem 2.8

Let\(f\in C^{\infty}_{q,\omega}\). If for\(x, a\in I\), \(\lim_{n\to\infty } R_{n}(x,a)=0\), then\(f(x)\)has the following expansion:

$$ f(x)=\sum_{k=0}^{\infty} \frac{D^{k}_{q, \omega}f(a)}{[k]_{q}!}H_{k}(x,a). $$
(2.11)

Furthermore, if\(\lim_{n\to\infty} R_{n}(x,a)=0\)uniformly with respect toxin some subinterval ofI, then the series given by (2.11) is uniformly convergent in this subinterval.

Corollary 2.9

Let\(f\in C^{\infty}_{q, \omega}\). If for\(x\in I\), \(\lim_{n\to\infty} R_{n}(x,\omega_{0})=0\), then\(f(x)\)has the following expansion:

$$ f(x)=\sum_{k=0}^{\infty} \frac{D^{k}_{q, \omega}f(\omega _{0})}{[k]_{q}!}(x-\omega_{0})^{k}. $$

Theorem 2.10

Let\(f\in C^{\infty}_{q, \omega}\). Assume that there is a nonnegative sequence\(\{M_{n}\}\)such that

  1. (i)

    \(|D^{n}_{q, \omega}f(h^{m}(y))|\le C M_{n}\), \(n, m\in\mathbb {N}_{0}\), \(y\in I\), for some\(C>0\);

  2. (ii)

    \({\lim_{n\to\infty} \frac{M_{n+1}}{M_{n}}=M}\)exists.

Thenfhas the\(q, \omega\)-Taylor expansion

$$ f(x)=\sum_{k=0}^{\infty} \frac{D^{k}_{q, \omega}f(a)}{[k]_{q}!}H_{k}(x,a) $$
(2.12)

for every\({x\in(\omega_{0}-\frac{1}{M(1-q)},\omega_{0}+\frac{1}{M(1-q)})}\)when\(M>0\) (respectively\({x\in I}\)when\(M=0\)).

Proof

We can write \(R_{n}(x,a)\) as follows:

$$R_{n}(x,a)= R_{1,n}(x,\omega_{0})-R_{2,n}(x;a, \omega_{0}), $$

where

$$R_{1,n}(x,\omega_{0}):=\frac{1}{\varGamma_{q}(n)} \int_{\omega_{0}}^{x} H_{n-1}\bigl(x,h(t) \bigr)D^{n}_{q, \omega}f(t)\,d_{q, \omega}t $$

and

$$R_{2,n}(x;a,\omega_{0}):=\frac{1}{\varGamma_{q}(n)} \int_{\omega_{0}}^{a} H_{n-1}\bigl(x,h(t) \bigr)D^{n}_{q, \omega}f(t)\,d_{q, \omega}t. $$

From (1.16), we have

$$\begin{aligned} R_{1,n}(x,\omega_{0})&=\bigl(x(1-q)-\omega\bigr) {\sum _{m=0}^{\infty}q^{m} \frac{1}{\varGamma_{q}(n)}H_{n-1}\bigl(x,h^{m+1}(x) \bigr)D^{n}_{q, \omega}f\bigl(h^{m}(x)\bigr)} \\ &= \frac{1}{\varGamma_{q}(n)}\bigl(x(1-q)-\omega\bigr) {\sum _{m=0}^{\infty}} \Biggl[ q^{m}\prod _{r=0}^{n-2}\bigl(x-\bigl[xq^{m+1+r}+[m+1+r]_{q} \omega\bigr]\bigr) \\ &\quad\times D^{n}_{q, \omega }f\bigl(h^{m}(x)\bigr) \Biggr] \\ &= \frac{(1-q)(x-\omega_{0})}{[n-1]_{q}!} {\sum_{m=0}^{\infty}q^{m}(x-\omega _{0})^{n-1}\prod _{r=0}^{n-2}\bigl(1-q^{m+r+1} \bigr)D^{n}_{q, \omega}f\bigl(h^{m}(x)\bigr)} \\ &= \frac{(1-q)(x-\omega_{0})^{n}}{[n-1]_{q}!} {\sum_{m=0}^{\infty}q^{m}\bigl(q^{m+1};q\bigr)_{n-1}D^{n}_{q, \omega}f \bigl(h^{m}(x)\bigr)} \\ &= \frac{(1-q)^{n}(x-\omega_{0})^{n} }{(q;q)_{n-1}} {\sum_{m=0}^{\infty}q^{m}\bigl(q^{m+1};q\bigr)_{n-1}D^{n}_{q, \omega}f \bigl(h^{m}(x)\bigr).} \end{aligned}$$

Consequently,

$$\begin{aligned} \bigl\vert R_{1,n}(x,\omega_{0}) \bigr\vert &\le \frac{C}{(q;q)_{\infty}} M_{n} \bigl[(1-q) \vert x-\omega _{0} \vert \bigr]^{n} {\sum _{m=0}^{\infty}q^{m}} \\ &\le \frac{CM_{n}[(1-q) \vert x-\omega_{0} \vert ]^{n}}{(q;q)_{\infty}(1-q)}. \end{aligned}$$

Then \(\lim_{n\to\infty}R_{1,n}(x,\omega_{0})=0\), \(x\in(\omega_{0}-\frac {1}{M(1-q)},\omega_{0}+\frac{1}{M(1-q)})\), when \(M>0\) (respectively \(x\in I\), when \(M=0\)). On the other hand, for \(a\in I\), we have

$$\begin{aligned} R_{2,n}(x;a,\omega_{0})&= \frac{(a(1-q)-\omega)}{\varGamma_{q}(n)} {\sum _{m=0}^{\infty}q^{m}H_{n-1} \bigl(x,h^{m+1}(a)\bigr)D^{n}_{q, \omega}f \bigl(h^{m}(a)\bigr)}. \end{aligned}$$

Simple calculations show that

$$\begin{aligned} \bigl\vert H_{n-1}\bigl(x,h^{m+1}(a)\bigr) \bigr\vert &= \Biggl\vert \prod_{r=0}^{n-2} \bigl(x-h^{m+r+1}(a)\bigr) \Biggr\vert \\ &\le\prod_{r=0}^{n-2}\bigl[ \vert x- \omega_{0} \vert +q^{m+r+1} \vert a- \omega_{0} \vert \bigr] \\ &\le \vert x-\omega_{0} \vert ^{n-1} {e^{\sum_{r=0}^{\infty}q^{m+r+1}\frac{ \vert a-\omega _{0} \vert }{ \vert x-\omega_{0} \vert }}} \\ &\le \vert x-\omega_{0} \vert ^{n-1} {e^{\frac{ \vert a-\omega_{0} \vert }{(1-q) \vert x-\omega_{0} \vert }}}. \end{aligned}$$

Consequently,

$$\begin{aligned} \bigl\vert R_{2,n}(x,a,\omega_{0}) \bigr\vert &\le \frac{ \vert x-\omega_{0} \vert ^{n-1}(1-q) \vert a-\omega _{0} \vert }{[n-1]_{q}!}CM_{n} {e^{\frac{ \vert a-\omega_{0} \vert }{(1-q) \vert x-\omega_{0} \vert }}} {\sum _{m=0}^{\infty}q^{m}} \\ &\le \frac{C \vert a-\omega_{0} \vert M_{n}[(1-q) \vert x-\omega_{0} \vert ]^{n-1}}{(q,q)_{\infty}} {e^{\frac{ \vert a-\omega_{0} \vert }{(1-q) \vert x-\omega_{0} \vert }}}. \end{aligned}$$

This implies that \(\lim_{n\to\infty}R_{2,n}(x;a,\omega_{0})=0\), \(x\in (\omega_{0}-\frac{1}{M(1-q)},\omega_{0}+\frac{1}{M(1-q)})\), when \(M>0\) (respectively \(x\in I\), when \(M=0\)). Therefore

$${\lim_{n\to\infty}R_{n}(x,a)=\lim _{n\to\infty}\bigl[R_{1,n}(x,\omega _{0})-R_{2,n}(x;a, \omega_{0})\bigr]=0,} $$

\({x\in(\omega_{0}-\frac{1}{M(1-q)},\omega_{0}+\frac{1}{M(1-q)})}\), when \(M>0\) (respectively \(x\in I\), when \(M=0\)). □

Theorem 2.11

Assume thatfhas the power series expansion\(f(x)=\sum_{n=0}^{\infty}a_{n}(x-\omega_{0})^{n}\)with interval of convergence\(I_{r}=(\omega_{0}-r,\omega_{0}+r)\), \(r>0\). Then, for any\(a\in I_{r}\), fhas the\(q, \omega\)-Taylor expansion

$$ f(x)=\sum_{k=0}^{\infty} \frac{D^{k}_{q, \omega}f(a)}{[k]_{q}!}H_{k}(x,a), $$
(2.13)

in any closed subinterval\({\overline{I_{\alpha}}, \alpha< r}\), where the series is absolutely and uniformly convergent on\({\overline{I_{\alpha}}, \alpha< r}\).

Proof

For \(n,m\in\mathbb {N}\) and by Lemma 2.3, we get

$$\begin{aligned} D^{n}_{q, \omega}f\bigl(h^{m}(y)\bigr)&= \bigl(h^{m}(y) (1-q)-\omega\bigr)^{-n} {\sum _{k=0}^{\infty}a_{n+k} \bigl(h^{m}(y)-\omega_{0}\bigr)^{n+k} \bigl(q^{k+1};q\bigr)_{n}} \\ &= q^{-mn}\bigl(y(1-q)-\omega\bigr)^{-n} {\sum _{k=0}^{\infty}a_{n+k}q^{mn+mk}(y- \omega_{0})^{n+k}\bigl(q^{k+1};q \bigr)_{n}} \\ &= \frac{1}{(1-q)^{n}} {\sum_{k=0}^{\infty}a_{k}q^{mk}(y-\omega _{0})^{k} \bigl(q^{k+1};q\bigr)_{n}.} \end{aligned}$$

Consequently, for \(\alpha< r\),

$$\begin{aligned} \bigl\vert D^{n}_{q, \omega}f\bigl(h^{m}(y) \bigr) \bigr\vert &\le \frac{1}{(1-q)^{n}} {\sum_{k=0}^{\infty}\bigl\vert a_{k}(y-\omega_{0})^{k} \bigr\vert q^{mk}} \\ &\le \frac{1}{(1-q)^{n}} {\sum_{k=0}^{\infty}\bigl\vert a_{k}\alpha^{k} \bigr\vert q^{mk}} \\ &\leq\frac{1}{(1-q)^{n}} C, y\in\overline{I_{\alpha}}, \end{aligned}$$

where \({ C=\sum_{k=0}^{\infty}|a_{k}\alpha^{k}| }\). Then, by Theorem 2.10, f has the \(q, \omega\)-Taylor expansion (2.13). □

Now, we establish some properties of the \(q, \omega\)-exponential functions \(e_{q, \omega}(t)\) and \(E_{q, \omega}(t)\) for \(t\in\mathbb {R}\), \(|t-\omega_{0}|<\frac{1}{1-q}\), where

$$\begin{aligned} e_{q, \omega}(t)&=\frac{1}{\prod_{k=0}^{\infty}(1-q^{k}(t(1-q)-\omega ))} \\ &=\frac{1}{((t(1-q)-\omega);q)_{\infty}} \end{aligned}$$
(2.14)

and

$$\begin{aligned} E_{q, \omega}(t)&=\prod_{k=0}^{\infty}\bigl(1+q^{k}\bigl(t(1-q)-\omega\bigr)\bigr) \\ &=\bigl(-\bigl(t(1-q)-\omega\bigr);q\bigr)_{\infty}. \end{aligned}$$
(2.15)

Simple calculations show that the following inequalities are true:

$$ \frac{e^{-\frac{q}{1-q}}}{(1-(t(1-q)-\omega))}< e_{q, \omega}(t)< \frac{e^{A}}{1-(t(1-q)-\omega)},\quad \vert t-\omega_{0} \vert < \frac{1}{1-q} $$
(2.16)

and

$$ \bigl(1+\bigl(t(1-q)-\omega\bigr)\bigr)e^{-A}< E_{q, \omega}(t)< \bigl(1+\bigl(t(1-q)-\omega\bigr)\bigr)e^{\frac {q}{1-q}},\quad \vert t- \omega_{0} \vert < \frac{1}{1-q}, $$
(2.17)

where \({ A=\sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}}}\).

Finally, we can prove the following power series expansions for \(e_{q,\omega}\) and \(E_{q,\omega}\).

Example 2.12

The exponential functions \(e_{q,\omega}\) and \(E_{q,\omega}\) defined in (2.14) and (2.15) have the following power series expansions of center \(a\in I\):

$$ e_{q,\omega}(x)=\sum_{k=0}^{\infty} \frac{e_{q, \omega }(a)}{[k]_{q}!}H_{k}(x,a), \quad \vert x-\omega_{0} \vert < \frac{1}{1-q} $$
(2.18)

and

$$ E_{q,\omega}(x)=\sum_{k=0}^{\infty} \frac{q^{\frac{k(k-1)}{2}}E_{q, \omega}(h^{k}(a))}{[k]_{q}!}H_{k}(x,a),\quad x\in I, $$
(2.19)

and have the following power series expansions of center \(\omega_{0}\):

$$ e_{q, \omega}(t)=\sum_{k=0}^{\infty} \frac{1}{[k]_{q}!}(t-\omega_{0})^{k} $$
(2.20)

and

$$ E_{q, \omega}(t)= \sum_{k=0}^{\infty} \frac{q^{\frac{k(k-1)}{2}}}{[k]_{q}!}(t-\omega_{0})^{k} . $$
(2.21)

Furthermore, both \(e_{q,\omega}\) and \(E_{q,\omega}\) are continuous.

Proof

For \(n\in\mathbb {N}_{0}\), we have

$$D^{n}_{q,\omega}e_{q, \omega}(t)=e_{q, \omega}(t). $$

Inequality (2.16) shows that \(e_{q, \omega}(t)\) is positive and bounded on every compact subinterval of \({(\omega_{0}-\frac{1}{1-q}, \omega_{0}+\frac{1}{1-q})}\). For fixed \(t\in{(\omega_{0}-\frac{1}{1-q}, \omega_{0}+\frac{1}{1-q})}\), there exists \(0<\alpha\le1\) such that \({|t(1-q)-\omega|<\alpha}\), which implies that

$$\begin{aligned} \bigl\vert D^{n}_{q,\omega}e_{q, \omega}(t) \bigr\vert &\le\frac{e^{A}}{1-\alpha},\quad n\in\mathbb {N}_{0}. \end{aligned}$$

By Theorem 2.10, the \(q,\omega\)-Taylor expansion of \(e_{q, \omega}(t)\) at a is given by

$$ e_{q, \omega}(t)=\sum_{k=0}^{\infty} \frac{e_{q, \omega}(a)}{[k]_{q}!}H_{k}(t,a). $$
(2.22)

Since \(D^{n}_{q,\omega}e_{q, \omega}(\omega_{0})= 1\), the \(q,\omega\)-Taylor expansion of \(e_{q, \omega}(t)\) at \(\omega_{0}\) is given by

$$ e_{q, \omega}(t)=\sum_{k=0}^{\infty} \frac{1}{[k]_{q}!}(t-\omega_{0})^{k}. $$
(2.23)

The series in (2.23) is uniformly convergent on every compact subinterval of \((\omega_{0}-\frac{1}{1-q}, \omega_{0}+\frac{1}{1-q})\) by Weierstrass M-test, and consequently \(e_{q, \omega}(t)\) is continuous.

Let \(t\in\mathbb {R}\), \(|t-\omega_{0}|<\frac{1}{1-q}\). First, we show that

$$ D^{n}_{q,\omega}E_{q,\omega}(t)=q^{\frac {n(n-1)}{2}}E_{q,\omega} \bigl(h^{n}(t)\bigr),\quad n\in\mathbb {N}_{0} $$
(2.24)

by induction. For \(n=1\), we have

$$\begin{aligned} D_{q,\omega}E_{q,\omega}(t)&=\frac{1}{t(q-1)+\omega}\Biggl[\prod _{k=0}^{\infty}\bigl(1+q^{k}(qt+ \omega) (1-q)-\omega\bigr)) \\ &\quad -\prod_{k=0}^{\infty}\bigl(1+q^{k}\bigl(t(1-q)-\omega\bigr)\bigr)\Biggr] \\ &=\frac{\prod_{k=0}^{\infty}(1+q^{k+1}(t(1-q)-\omega))}{ t(q-1)+\omega} \bigl[1- \bigl(1+t(1-q)-\omega\bigr) \bigr] \\ &=E_{q,\omega}\bigl(h(t)\bigr). \end{aligned}$$

Assume that formula (2.24) is true for \(n=m\). We have

$$\begin{aligned} D^{m+1}_{q,\omega}E_{q,\omega}(t)&=D_{q,\omega} \bigl( D^{m}_{q,\omega }E_{q,\omega}(t)\bigr) \\ &= q^{\frac{m(m-1)}{2}}D_{q,\omega}E_{q,\omega }\bigl(h^{m}(t) \bigr) \\ &= q^{\frac{m(m-1)}{2}}\frac{1}{t(q-1)+\omega}\Biggl[\prod _{k=0}^{\infty}\bigl(1+q^{k+m+1} \bigl(t(1-q)-\omega\bigr)\bigr) \\ & \quad-\prod_{k=0}^{\infty}\bigl(1+q^{k+m}\bigl(t(1-q)-\omega\bigr)\bigr)\Biggr] \\ &= q^{\frac{m(m-1)}{2}}\frac{\prod_{k=0}^{\infty}(1+q^{k+m+1} (t(1-q)-\omega))}{t(q-1)+\omega} \\ &\quad \times\bigl[1- \bigl(1+q^{m}\bigl(t(1-q)-\omega\bigr)\bigr) \bigr] \\ &=q^{\frac{m(m+1)}{2}}\prod_{k=0}^{\infty}\bigl(1+q^{k+m+1}\bigl(t(1-q)-\omega\bigr)\bigr) \\ &= q^{\frac{m(m+1)}{2}}E_{q,\omega}\bigl(h^{m+1}(t)\bigr). \end{aligned}$$

Inequality (2.17) shows that \(E_{q, \omega}(t)\) is positive and is bounded on every compact subinterval of \({(\omega_{0}-\frac{1}{1-q}, \omega_{0}+\frac{1}{1-q})}\). Also we can see that

$$\begin{aligned} \bigl\vert E_{q,\omega}\bigl(h^{n}(t)\bigr) \bigr\vert & \le\prod_{k=0}^{\infty}\bigl\vert 1+q^{k+n}\bigl(t(1-q)-\omega \bigr) \bigr\vert \\ &\le\prod_{k=0}^{\infty}\bigl[1+q^{k+n}(1-q) \vert t-\omega_{0} \vert \bigr] \\ &\le\prod_{k=0}^{\infty}\bigl[1+q^{k+n}\bigr] \\ &\leq e^{\frac{1}{1-q}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \bigl\vert D^{n}_{q,\omega}E_{q,\omega}(t) \bigr\vert &\le q^{\frac{n(n-1)}{2}} \bigl\vert E_{q,\omega} \bigl(h^{n}(t)\bigr) \bigr\vert \\ &\le q^{\frac{n(n-1)}{2}} e^{\frac{1}{1-q}}. \end{aligned}$$

By Theorem 2.10, the \(q,\omega\)-Taylor expansion of \(E_{q, \omega}(t)\) at a is given by

$$ E_{q, \omega}(t)=\sum_{k=0}^{\infty} \frac{q^{\frac {k(k-1)}{2}}E_{q, \omega}(h^{k}(a))}{[k]_{q}!}H_{k}(t,a). $$

Since \(D^{n}_{q,\omega}f(\omega_{0})= q^{\frac{n(n-1)}{2}}\), the \(q,\omega \)-Taylor expansion of \(E_{q,\omega}(t)\) at \(\omega_{0}\) is given by

$$ E_{q,\omega}(t)= \sum_{k=0}^{\infty} \frac{q^{\frac{k(k-1)}{2}}}{[k]_{q}!}(t-\omega_{0})^{k}. $$
(2.25)

The series in (2.25) is uniformly convergent on every compact subinterval of \((\omega_{0}-\frac{1}{1-q}, \omega_{0}+\frac{1}{1-q})\) and consequently \(E_{q, \omega}(t)\) is continuous. □

References

  1. Aldwoah, K.A.: Generalized time scales and associated difference equations. Ph.D. thesis, Cairo University (2009)

  2. Annaby, M.H., Hamza, A.E., Aldwoah, K.A.: Hahn difference operator and associated Jackson–Norlund integrals. J. Optim. Theory Appl. 154, 133–153 (2012)

    Article  MathSciNet  Google Scholar 

  3. Annaby, M.H., Mansour, Z.S.: q-Taylor and interpolation series for Jackson q-difference operators. J. Math. Anal. Appl. 344, 472–483 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bird, M.T.: On generalizations of sum formulas of the Euler–Maclaurin type. Am. J. Math. 58, 487–503 (1936)

    Article  MathSciNet  Google Scholar 

  5. Birkhoff, G.D.: General theory of linear difference equations. Trans. Am. Math. Soc. 12, 243–284 (1911)

    Article  MathSciNet  Google Scholar 

  6. Brikshavana, T., Sitthiwirattham, T.: On fractional Hahn calculus. Adv. Differ. Equ. 2017, Article ID 354 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cigler, J.: Elementare q-Identitäten. Publication de l’institute de recherche Mathématique avancée, 23–57 (1982)

  8. Euler, L.: Introductio in Analysin Infinitorum (1748). Chapter VII

    MATH  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  10. Hahn, W.: Über orthogonalpolynome, die q-differenzenlgleichungen genügen. Math. Nachr. 2, 4–34 (1949)

    Article  MathSciNet  Google Scholar 

  11. Jackson, F.H.: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253–281 (1908)

    Article  Google Scholar 

  12. Jackson, F.H.: q-Form of Taylor’s theorem. Messenger Math. 39, 62–64 (1909)

    Google Scholar 

  13. Jackson, F.H.: On q-difference equations. Am. J. Math. 32, 305–314 (1910)

    Article  Google Scholar 

  14. Jagerman, D.L.: Difference Equations with Applications to Queues. Marcel Dekker, New York (2000)

    Book  Google Scholar 

  15. Jordan, C.: Calculus of Finite Differences. Chelsea, New York (1965)

    MATH  Google Scholar 

  16. Malinowska, A.B., Martins, N.: Generalized transversality conditions for the Hahn quantum variational calculus. Optimization 62, 323–344 (2013)

    Article  MathSciNet  Google Scholar 

  17. Malinowska, A.B., Torres, D.F.: The Hahn quantum variational calculus. J. Optim. Theory Appl. 147, 419–442 (2010)

    Article  MathSciNet  Google Scholar 

  18. Patanarapeelert, N., Brikshavana, T., Sitthiwirattham, T.: On nonlocal Dirichlet boundary value problems for sequential Caputo fractional Hahn integrodifference equations. Bound. Value Probl. 2018, Article ID 6 (2018)

    Article  MathSciNet  Google Scholar 

  19. Patanarapeelert, N., Sitthiwirattham, T.: Existence results for fractional Hahn difference and fractional Hahn integral boundary value problems. Discrete Dyn. Nat. Soc. 2017, Article ID 7895186 (2017)

    Article  MathSciNet  Google Scholar 

  20. Patanarapeelert, N., Sitthiwirattham, T.: On nonlocal Robin boundary value problems for Riemann–Liouville fractional Hahn integrodifference equation. Bound. Value Probl. 2018, Article ID 46 (2018)

    Article  MathSciNet  Google Scholar 

  21. Sitthiwirattham, T.: Nonlocal three-point boundary value problems for nonlinear second-order Hahn difference equations with two different \(q,\omega\) derivatives. Adv. Differ. Equ. 2016, Article ID 116 (2016)

    Article  Google Scholar 

  22. Wang, Y., Liu, Y., Hou, C.: New concepts of fractional Hahn’s \(q,\omega\)-derivative of Riemann–Liouville type and Caputo type and applications. Adv. Differ. Equ. 2018, Article ID 292 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the learned referees for their valuable comments which improved the presentation of the paper.

Availability of data and materials

The data and material in this paper are original.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Karima Oraby.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oraby, K., Hamza, A. Taylor theory associated with Hahn difference operator. J Inequal Appl 2020, 124 (2020). https://doi.org/10.1186/s13660-020-02392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-020-02392-y

MSC

Keywords