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Abstract
In this paper, we establish Taylor theory based on Hahn’s difference operator Dq,ω

which is defined by Dq,ωf (t) =
f (qt+ω)–f (t)
t(q–1)+ω

, t �= ω
1–q , where q ∈ (0, 1) and ω is a positive

number.
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1 Introduction and preliminaries
Let q ∈ (0, 1), ω > 0 and ω0 := ω

1–q . Let f be a function defined on an interval I of R which
contains ω0. Hahn [10] introduced his difference operator which is defined by

Dq,ωf (t) :=
f (qt + ω) – f (t)

t(q – 1) + ω
, if t �= ω0, (1.1)

and Dq,ωf (ω0) := f ′(ω0), provided that f is differentiable at ω0 in the usual sense. In this
case we call Dq,ωf the q,ω-derivative and that f is q,ω-differentiable at t whenever Dq,ωf (t)
exists. Finally, we say that f is q,ω-differentiable, i.e., throughout I if Dq,ωf (ω0) exists.

Hahn difference operator unifies the two most well-known quantum difference opera-
tors: the Jackson q-difference operator [11–13], which is defined by

Dqf (t) =
f (qt) – f (t)

t(q – 1)
, if t �= 0, 0 < q < 1; (1.2)

and the forward difference �ω , which is defined by

�ωf (t) =
f (t + ω) – f (t)

ω
, t ∈R, ω > 0, (1.3)

see [4, 5, 14, 15]. Hahn operator has attracted the attention of several researchers and a va-
riety of results can be found in papers [1, 2, 6, 16–22]. In [3] Annaby and Mansour proved
analytically the q-Taylor series associated with Dq, introduced by Jackson [12], of an ana-
lytic function in some complex domain. In the present paper, we establish an overarching
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q,ω-Taylor theory associated with Hahn difference operator Dq,ω . In this theory the Hahn
difference operator Dq,ω replaces the differentiation operator in the usual Taylor series.

First, we introduce some preliminary results and some notations. Let f , g be q,ω-
differentiable at t ∈ I , then

Dq,ω(f + g)(t) = Dq,ωf (t) + Dq,ωg(t), (1.4)

Dq,ω(fg)(t) = Dq,ω
(
f (t)

)
g(t) + f (qt + ω)Dq,ωg(t), (1.5)

Dq,ω(f /g)(t) =
Dq,ω(f (t))g(t) – f (t)Dq,ωg(t)

g(t)g(qt + ω)
(1.6)

provided that in (1.6), g(t)g(qt + ω) �= 0 [1, 2]. Also, for n ∈N, the following relations hold:

Dq,ω(αt + β)n = α

n–1∑

k=0

(
α(qt + ω) + β

)k(αt + β)n–k–1, (1.7)

Dq,ω(αt + β)–n = –α

n–1∑

k=0

(
α(qt + ω) + β

)–n+k(αt + β)–k–1, (1.8)

where α,β ∈R, see [1, 2].
The q-shifted factorial (b; q)n for a complex number b and n ∈ N0 = N∪ {0} is defined to

be

(b; q)n =

{∏n
j=1(1 – bqj–1), if n ∈N,

1, if n = 0.

The limit limn→∞(b; q)n is denoted by (b; q)∞. Moreover (b; q)n has the representation [9]

(b; q)n =
n∑

k=0

(–1)k

(
n
k

)

q

q
k(k–1)

2 bk . (1.9)

The q-binomial coefficients [9]

(
n
k

)

q

=
(q; q)n

(q; q)k(q; q)n–k

satisfy the following property:

(
n + 1

k

)

q

=

(
n
k

)

q

qk +

(
n

k – 1

)

q

=

(
n
k

)

q

+

(
n

k – 1

)

q

qn+1–k . (1.10)

For n ∈ N0 and 0 < q < 1, the q-analogues of the natural numbers of the factorial function
and of the semifactorial function [7, 13] are defined by

[n]q =
1 – qn

1 – q
, n ∈ N0, 0 < q < 1, (1.11)
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and

[n]q! =
n∏

k=1

[k]q, [0]q! := 1, 0 < q < 1. (1.12)

[x – a]n is defined by

[x – a]n = (x – a)(x – aq)
(
x – aq2) · · · (x – aqn–1), n ≥ 1, [x – a]0 = 1. (1.13)

The following formula was obtained by Euler [8]:

[x – a]n =
n∑

k=0

(
n
k

)

q

q
k(k–1)

2 xn–k(–a)k . (1.14)

The q-gamma function [9] is defined by

Γq(z) =
(q; q)∞
(qz; q)∞

(1 – q)1–z, 0 < q < 1,

where z ∈ C \ {–n : n ∈ N0}. Here, we take the principal values of qz and (1 – q)1–z. In
particular

Γq(n + 1) =
(q; q)n

(1 – q)n , n ∈N.

It is known that, for x > 0, Γq(x) is the unique logarithmically convex function that satisfies
the functional equation:

Γq(x + 1) = [x]qΓq(x), Γq(1) = 1.

In [1], Aldowah introduced the q,ω-integral of f from a to b as follows.

Definition 1.1 Let I be any interval of R containing ω0. Assume that f : I → R is a func-
tion, and let a, b ∈ I such that a < b. The q,ω-integral of f from a to b is defined by

∫ b

a
f (t) dq,ωt :=

∫ b

ω0

f (t) dq,ωt –
∫ a

ω0

f (t) dq,ωt, (1.15)

where

∫ x

ω0

f (t) dq,ωt :=
(
x(1 – q) – ω

) ∞∑

k=0

qkf
(
xqk + ω[k]q

)
, x ∈ I, (1.16)

provided that the series converges at x = a and x = b. In this case f is called q,ω-integrable
over [a, b] for all a, b ∈ I .

Lemma 1.2 ([1, 2]) Let f , g : I → R be q,ω-integrable on I, k ∈ R and a, b, c ∈ I , a < c < b.
Then
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(i)
∫ a

a f (t) dq,ωt = 0,
(ii)

∫ b
a kf (t) dq,ωt = k

∫ b
a f (t) dq,ωt,

(iii)
∫ b

a f (t) dq,ωt = –
∫ a

b f (t) dq,ωt,
(iv)

∫ b
a f (t) dq,ωt =

∫ c
a f (t) dq,ωt +

∫ b
c f (t) dq,ωt,

(v)
∫ b

a (f (t) + g(t)) dq,ωt =
∫ b

a f (t) dq,ωt +
∫ b

a g(t) dq,ωt.

Lemma 1.3 ([1, 2]) If f : I → R is continuous at ω0, then {f (sqk + ω[k]q)}k∈N converges
uniformly to f (ω0) on I .

Corollary 1.4 ([1, 2]) If f : I →R is continuous at ω0, then
∑∞

k=0 |f ((sqk)+ω[k]q)| converges
uniformly on I , and consequently f is q,ω-integrable over I .

Lemma 1.5 ([1, 2]) If f , g : I →R are continuous at ω0, then

∫ b

a
f (t)Dq,ω

(
g(t)

)
dq,ωt = f (t)g(t)|ba –

∫ b

a
Dq,ω

(
f (t)

)
g(qt + ω) dq,ωt, a, b ∈ I. (1.17)

Theorem 1.6 ([1, 2]) Assume that f : I →R is continuous at ω0. Define

F(x) :=
∫ x

ω0

f (t) dq,ωt.

Then F is continuous at ω0. Furthermore, Dq,ωF(x) exists for every x ∈ I and Dq,ωF(x) = f (x).
Conversely,

∫ b

a
Dq,ωf (t) dq,ωt = f (b) – f (a), a, b ∈ I.

2 Main results
We define the q,ω-derivative of higher order in the usual way. That is, the nth q,ω-
derivative, n ∈ N, of f : I → R is the function Dn

q,ωf : I → R given by Dn
q,ωf := Dq,ω(Dn–1

q,ω f ),
provided Dn–1

q,ω f is q,ω-differentiable on I and D0
q,ωf = f . We consider the following linear

spaces:

Cn = Cn(I,R)

:=
{

f : I →R | f is differentiable n-times and f (i) are continuous, i = 1, 2, . . . , n
}

,

Cn
q,ω = Cn

q,ω(I,R)

:=
{

f : I →R | f is q,ω-differentiable n-times and Dn
q,ωf is continuous at ω0

}
,

and

C∞
q,ω = C∞

q,ω(I,R)

:= {f : I →R | f is q,ω-differentiable infinitely many times at ω0}.

Our target is to obtain Taylor expansion of a function f defined on an interval I that con-
tains ω0 associated with Hahn difference operator. We need the following lemmas in prov-
ing our main results.
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Lemma 2.1 Let f be a function defined on I . Then, for x �= ω0, the nth q,ω derivative
(Dn

q,ωf )(x) can be expressed as

(
Dn

q,ωf
)
(x) =

(
x(q – 1) + ω

)–nq– n(n–1)
2

n∑

k=0

(
n
k

)

q

(–1)kq
k(k–1)

2 f
(
xqn–k + ω[n – k]q

)
. (2.1)

Proof For n = 1, the formula above yields (1.1). Assume that formula (2.1) is true for n = m.
By relations (1.5), (1.8), and (1.10), we have

(
Dm+1

q,ω f
)
(x) = Dq,ω

[
(
x(q – 1) + ω

)–mq– m(m–1)
2

m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2

× f
(
xqm–k + ω[m – k]q

)
]

= –(q – 1)
m–1∑

j=0

(
(qx + ω)(q – 1) + ω

)–m+j(x(q – 1) + ω
)–j–1

× q– m(m–1)
2

m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2 f
(
xqm–k + ω[m – k]q

)

+
(
(qx + ω)(q – 1) + ω

)–mq– m(m–1)
2

m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2

× Dq,ωf
(
xqm–k + ω[m – k]q

)

= q– m(m–1)
2 q–m

[

–(q – 1)
m–1∑

j=0

qj(x(q – 1) + ω
)–m–1

×
m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2 f
(
xqm–k + ω[m – k]q

)

+
(
x(q – 1) + ω

)–m–1
m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2

× (
f
(
xqm–k+1 + ω[m – k + 1]q

)
– f

(
xqm–k + ω[m – k]q

))
]

.

This implies that

(
Dm+1

q,ω f
)
(x) = q– m(m–1)

2 q–m(
x(q – 1) + ω

)–m–1
[

–(q – 1)
m–1∑

j=0

qj

×
m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2 f
(
xqm–k + ω[m – k]q

)

+
m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2
(
f
(
xqm–k+1 + ω[m – k + 1]q

)

– f
(
xqm–k + ω[m – k]q

))
]
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= q– m(m+1)
2

(
x(q – 1) + ω

)–m–1
[

–(q – 1)
qm – 1
q – 1

m∑

k=0

(
m
k

)

q

× (–1)kq
k(k–1)

2 f
(
xqm–k + ω[m – k]q

)
+

m∑

k=0

(
m
k

)

q

(–1)k

× q
k(k–1)

2
(
f
(
xqm–k+1 + ω[m – k + 1]q

)
– f

(
xqm–k + ω[m – k]q

))
]

= q– m(m+1)
2

(
x(q – 1) + ω

)–m–1
[

–qm
m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2

× f
(
xqm–k + ω[m – k]q

)
+

m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2

× f
(
xqm–k+1 + ω[m – k + 1]q

)
]

= q– m(m+1)
2

(
x(q – 1) + ω

)–m–1
[

–qm
m+1∑

k=1

(
m

k – 1

)

q

(–1)k–1

× q
(k–1)(k–2)

2 f
(
xqm–k+1 + ω[m – k + 1]q

)

+
m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2 f
(
xqm–k+1 + ω[m – k + 1]q

)
]

= q– m(m+1)
2

(
x(q – 1) + ω

)–m–1
[m+1∑

k=1

(
m

k – 1

)

q

qm–k+1(–1)k

× q
k(k–1)

2 f
(
xqm–k+1 + ω[m – k + 1]q

)

+
m∑

k=0

(
m
k

)

q

(–1)kq
k(k–1)

2 f
(
xqm–k+1 + ω[m – k + 1]q

)
]

= q– m(m+1)
2

(
x(q – 1) + ω

)–m–1
[

(–1)m+1q
m(m+1)

2 f (x)

+
m∑

k=1

⎛

⎝

(
m

k – 1

)

q

qm–k+1 +

(
m
k

)

q

⎞

⎠

× (–1)kq
k(k–1)

2 f
(
xqm–k+1 + ω[m – k + 1]q

)

+ f
(
xqm+1 + ω[m + 1]q

)
]

.

That is,

(
Dm+1

q,ω f
)
(x) = q– m(m+1)

2
(
x(q – 1) + ω

)–m–1
[

(–1)m+1q
m(m+1)

2 f (x)

+
m∑

k=1

(
m + 1

k

)

q

(–1)kq
k(k–1)

2 f
(
xqm–k+1 + ω[m – k + 1]q

)
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+ f
(
xqm+1 + ω[m + 1]q

)
]

= q– m(m+1)
2

(
x(q – 1) + ω

)–m–1
m+1∑

k=0

[(
m + 1

k

)

q

(–1)kq
k(k–1)

2

× f
(
xqm–k+1 + ω[m – k + 1]q

)
]

.

Therefore relation (2.1) is true at n = m + 1 and by induction it is true for every n ∈N. �

In the following result, a formula of the nth derivative of a power series of center zero is
given.

Lemma 2.2 Assume that a function f has the power series expansion f (x) =
∑∞

k=0 akxk ,
x ∈ I . Then

(
Dn

q,ωf
)
(x) = (1 – q)–n

∞∑

k=0

an+k

(1 – q)k

k∑

m=0

(–1)m

(
n + k
n + m

)

× (
x(q – 1) + ω

)m(ω)k–m(
qm+1; q

)
n, x �= ω0, n ∈ N0. (2.2)

Proof It is clear that Eq. (2.2) is true for n = 0. From Eq. (2.1) and relation (1.9), we have,
for n ∈N,

(
Dn

q,ωf
)
(x) =

(
x(q – 1) + ω

)–nq– n(n–1)
2

n∑

k=0

(
n
k

)

q

(–1)kq
k(k–1)

2

×
∞∑

j=0

aj
(
xqn–k + ω[n – k]q

)j

=
(
x(q – 1) + ω

)–nq– n(n–1)
2

∞∑

j=0

aj

(1 – q)j

j∑

r=0

(–1)r

(
j
r

)

qnr

× (
x(q – 1) + ω

)r(ω)j–r
n∑

k=0

(
n
k

)

q

(–1)kq
k(k–1)

2 q–kr

=
(
x(q – 1) + ω

)–nq– n(n–1)
2

∞∑

j=0

aj

(1 – q)j

j∑

r=0

(–1)r

(
j
r

)

qnr

× (
x(q – 1) + ω

)r(ω)j–r(q–r ; q
)

n.

Then

(
Dn

q,ωf
)
(x) = (–1)n(x(q – 1) + ω

)–nq– n(n–1)
2

∞∑

j=n

aj

(1 – q)j

j∑

r=n
(–1)rqnr

(
j
r

)

× (
x(q – 1) + ω

)r(ω)j–rq–rn+ n(n–1)
2

(
qr–n+1; q

)
n

= (–1)n(x(q – 1) + ω
)–n

∞∑

j=n

aj

(1 – q)j

j∑

r=n
(–1)r

(
j
r

)
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× (
x(q – 1) + ω

)r(ω)j–r(qr–n+1; q
)

n

= (–1)n(x(q – 1) + ω
)–n

∞∑

k=0

an+k

(1 – q)n+k

n+k∑

r=n
(–1)r

(
n + k

r

)

× (
x(q – 1) + ω

)r(ω)n+k–r(qr–n+1; q
)

n

= (–1)n(x(q – 1) + ω
)–n

∞∑

k=0

an+k

(1 – q)n+k

k∑

m=0

(–1)n+m

(
n + k
n + m

)

× (
x(q – 1) + ω

)n+m(ω)k–m(
qm+1; q

)
n

= (1 – q)–n
∞∑

k=0

an+k

(1 – q)k

k∑

m=0

(–1)m

(
n + k
n + m

)
(
x(q – 1) + ω

)m

× (ω)k–m(
qm+1; q

)
n

= (1 – q)–n
∞∑

k=0

an+k

(1 – q)k

[

(–1)k(x(q – 1) + ω
)k(qk+1; q

)
n

+
k–1∑

m=0

(–1)m

(
n + k
n + m

)
(
x(q – 1) + ω

)m(ω)k–m(
qm+1; q

)
n

]

. �

The following result includes a useful formula for the nth derivative of a power series of
center ω0.

Lemma 2.3 Assume that a function f has the power series expansion f (x) =
∑∞

k=0 ak(x –
ω0)k , x ∈ I . Then

Dn
q,ωf (x) =

(
x(1 – q) – ω

)–n
∞∑

k=0

an+k(x – ω0)n+k(qk+1; q
)

n, x �= ω0. (2.3)

Proof It is clear that Eq. (2.3) is true for n = 0. From Eq. (2.1) and relation (1.9), we have,
for n ∈N,

(
Dn

q,ωf
)
(x) =

(
x(q – 1) + ω

)–nq– n(n–1)
2

n∑

k=0

⎡

⎣

(
n
k

)

q

(–1)kq
k(k–1)

2

×
∞∑

j=0

aj
(
xqn–k + ω[n – k]q – ω0

)j

⎤

⎦ .

From this it follows that

(
Dn

q,ωf
)
(x) =

(
x(q – 1) + ω

)–nq– n(n–1)
2

n∑

k=0

⎡

⎣

(
n
k

)

q

(–1)kq
k(k–1)

2

×
∞∑

j=0

ajqnj–kj(x – ω0)j

⎤

⎦
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=
(
x(q – 1) + ω

)–nq– n(n–1)
2

∞∑

j=0

[

ajqnj(x – ω0)j

×
n∑

k=0

(
n
k

)

q

(–1)kq
k(k–1)

2 q–kj

]

=
(
x(q – 1) + ω

)–nq– n(n–1)
2

∞∑

j=0

ajqnj(x – ω0)j(q–j; q
)

n

=
(
x(q – 1) + ω

)–nq– n(n–1)
2

∞∑

j=n

[
ajqnj(x – ω0)j(–1)nq–nj+ n(n–1)

2

× (
qj–n+1; q

)
n

]

=
(
x(1 – q) – ω

)–n
∞∑

k=0

an+k(x – ω0)n+k(qk+1; q
)

n. �

One of the important questions: Is there a relation between the nth q,ω derivative and
the usual nth derivative? The answer is in the following lemma.

Lemma 2.4 If f ∈ Cn+1, then
(i) Dm

q,ωf exists on I and is continuous at ω0 for all m = 1, 2, . . . , n + 1;
(ii) for 1 ≤ m ≤ n + 1,

Dm
q,ωf (ω0) =

[m]q!
m!

f (m)(ω0), (2.4)

where f (m) is the usual mth derivative of f .

Proof The proof is by induction. The q,ω derivative Dq,ωf exists and Dq,ωf (ω0) = f ′(ω0).
Also Dq,ωf is continuous at ω0. Indeed,

lim
x→ω0

Dq,ωf (x) = lim
t→ω0

f (qx + ω) – f (x)
x(q – 1) + ω

= f ′(ω0) = Dq,ωf (ω0).

Now, we assume that (i) and (ii) hold for all m = 1, 2, . . . , l, where l ≤ n and we want to
prove that they are true at m = l + 1. By Lemma 2.1, we conclude that

lim
x→ω0

Dl+1
q,ωf (x) = lim

x→ω0

1

(x(q – 1) + ω)l+1q
l(l+1)

2

[ l+1∑

k=0

(
l + 1

k

)

q

(–1)kq
k(k–1)

2

× f
(
xql–k+1 + ω[l – k + 1]q

)
]

= lim
x→ω0

l+1∑

k=0

[ (l+1
k

)
q(–1)kq

k(k–1)
2 q(l+1)(l–k+1)

(q – 1)l+1(xql–k+1 + ω[l – k + 1]q – ω0)l+1q
l(l+1)

2

× f
(
xql–k+1 + ω[l – k + 1]q

)
]

.
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Applying L’Hopital rule l + 1 times and using relations (1.12), (1.13), and (1.14), we get

lim
x→ω0

Dl+1
q,ωf (x) = lim

x→ω0

1

(q – 1)l+1(l + 1)!q
l(l+1)

2

l+1∑

k=0

[(
l + 1

k

)

q

(–1)kq
k(k–1)

2

× q(l+1)(l–k+1)f (l+1)(xql–k+1 + ω[l – k + 1]q
)
]

=

∑l+1
k=0

(l+1
k

)
q(–1)kq

k(k–1)
2 (ql+1)l–k+1f (l+1)(ω0)

(q – 1)l+1(l + 1)!q
l(l+1)

2

=
[ql+1 – 1]l+1f (l+1)(ω0)

(q – 1)l+1(l + 1)!q
l(l+1)

2

=
(ql+1 – 1)(ql+1 – q)(ql+1 – q2) · · · (ql+1 – ql)f (l+1)(ω0)

(q – 1)l+1(l + 1)!q0+1+2+···+(l–1)+l

=
(ql+1 – 1)(ql – 1)(ql–1 – 1) · · · (q – 1)f (l+1)(ω0)

(q – 1)l+1(l + 1)!

=
[1]q[2]q · · · [l]q[l + 1]qf (l+1)(ω0)

(l + 1)!

=
[l + 1]q!
(l + 1)!

f (l+1)(ω0).

On the other hand, we conclude that

Dl+1
q,ωf (ω0) = lim

x→ω0

Dl
q,ωf (x) – Dl

q,ωf (ω0)
x – ω0

= lim
x→ω0

d
dx

[∑l
k=0

( l
k
)

q(–1)kq
k(k–1)

2 f (xql–k + ω[l – k]q)

(x(q – 1) + ω)lq
l(l–1)

2

]

= lim
x→ω0

1

(x(q – 1) + ω)l+1q
l(l–1)

2

l∑

k=0

(
l
k

)

q

(–1)kq
k(k–1)

2

× [(
x(q – 1) + ω

)
ql–kf ′(xql–k + ω[l – k]q

)
– l(q – 1)f

(
xql–k + ω[l – k]q

)]
.

Again, applying L’Hopital rule l + 1 times and using relations (1.12), (1.13), and (1.14), we
get

Dl+1
q,ωf (ω0) = lim

x→ω0

1

(q – 1)l+1(l + 1)!q
l(l–1)

2

l∑

k=0

[(
l
k

)

q

(–1)kq
k(k–1)

2 q(l+1)(l–k)

× (q – 1)f (l+1)(xql–k + ω[l – k]q
)
]

=
[ql+1 – 1]l(q – 1)f (l+1)(ω0)

(q – 1)l+1(l + 1)!q
l(l–1)

2

=
[l + 1]q!
(l + 1)!

f (l+1)(ω0).
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Therefore,

lim
x→ω0

Dl+1
q,ωf (x) = Dl+1

q,ωf (ω0) =
[l + 1]q!
(l + 1)!

f (l+1)(ω0). �

Corollary 2.5 Assume that f has the power series expansion

f (x) =
∞∑

n=0

an(x – ω0)n, x ∈ I.

Then

an =
Dn

q,ωf (ω0)
[n]q!

, n ∈N. (2.5)

Proof By Lemma 2.4, we have

an =
f (n)(ω0)

n!
=

Dn
q,ωf (ω0)
[n]q!

. �

Now we define the two variable polynomials Hn(x, t), x, t ∈ I , to be

H0(x, t) := 1, Hn(x, t) :=
n–1∏

j=0

(
x – hj(t)

)
, (2.6)

where hj(t) = tqj + ω[j]q, t ∈ I is the jth order iteration of h(t) = qt + ω, which uniformly
converges to ω0 on I .

Lemma 2.6 For n ∈N and x, t ∈ I , we have

tDq,ωHn(x, t) = –[n]qHn–1
(
x, h(t)

)
, (2.7)

xDq,ωHn(x, t) = [n]qHn–1(x, t), (2.8)

where tDq,ω is the q,ω-derivative with respect to t,

In
q,ω(1) =

Hn(x, a)
Γq(n + 1)

,

where In
q,ω is the q,ω-integral

In
q,ωf (x) :=

∫ x

a

∫ xn–1

a

∫ xn–2

a
· · ·

∫ x1

a
f (s) dq,ωs dq,ωx1 · · ·dq,ωxn–2 dq,ωxn–1.

Now, we establish Taylor’s theorem based on Hahn difference operator.

Theorem 2.7 Let f be a function defined on I . If f ∈ Cn
q,ω for some n ∈N, then for x, a ∈ I ,

f (x) =
n–1∑

k=0

Dk
q,ωf (a)
[k]q!

Hk(x, a) + Rn(x, a), (2.9)
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where

Rn(x, a) =
∫ x

a

Dn
q,ωf (t)

[n – 1]q!
Hn–1

(
x, h(t)

)
dq,ωt. (2.10)

Proof We prove relation (2.9) by induction. The right-hand side (R.H.S) of (2.9) at n = 1 is

R.H .S = f (a)H0(x, a) + R1(x, a)

= f (a) +
∫ x

a
Dq,ωf (t) dq,ωt = f (x).

Assume that relation (2.9) is true for n = m, that is,

f (x) =
m–1∑

k=0

Dk
q,ωf (a)
[k]q!

Hk(x, a) + Rm(x, a),

where Rm(x, a) =
∫ x

a
Dm

q,ω f (t)
[m–1]q ! Hm–1(x, h(t)) dq,ωt. We integrate by parts in the remainder term

Rm(x, a). We obtain

Rm(x, a) =
∫ x

a

Dm
q,ωf (t)

[m – 1]q!
Hm–1

(
x, h(t)

)
dq,ωt

= –
∫ x

a

Dm
q,ωf (t)

[m – 1]q!
tDq,ωHm(x, t)

[m]q
dq,ωt

= –
Dm

q,ωf (t)
[m]q!

Hm(x, t)|xa +
∫ x

a

Dm+1
q,ω f (t)
[m]q!

Hm
(
x, h(t)

)
dq,ωt

= Dm
q,ωf (a)

Hm(x, a)
[m]q!

+ Rm+1(x, a).

Then

f (x) =
m∑

k=0

Dk
q,ωf (a)
[k]q!

Hk(x, a) + Rm+1(x, a).

Therefore, relation (2.9) is true for n = m + 1, then it is true for every n ∈ N. �

As a direct consequence of the previous theorem, we deduce the following theorem.

Theorem 2.8 Let f ∈ C∞
q,ω . If for x, a ∈ I , limn→∞ Rn(x, a) = 0, then f (x) has the following

expansion:

f (x) =
∞∑

k=0

Dk
q,ωf (a)
[k]q!

Hk(x, a). (2.11)

Furthermore, if limn→∞ Rn(x, a) = 0 uniformly with respect to x in some subinterval of I ,
then the series given by (2.11) is uniformly convergent in this subinterval.
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Corollary 2.9 Let f ∈ C∞
q,ω . If for x ∈ I , limn→∞ Rn(x,ω0) = 0, then f (x) has the following

expansion:

f (x) =
∞∑

k=0

Dk
q,ωf (ω0)
[k]q!

(x – ω0)k .

Theorem 2.10 Let f ∈ C∞
q,ω . Assume that there is a nonnegative sequence {Mn} such that

(i) |Dn
q,ωf (hm(y))| ≤ CMn, n, m ∈N0, y ∈ I , for some C > 0;

(ii) limn→∞ Mn+1
Mn

= M exists.
Then f has the q,ω-Taylor expansion

f (x) =
∞∑

k=0

Dk
q,ωf (a)
[k]q!

Hk(x, a) (2.12)

for every x ∈ (ω0 – 1
M(1–q) ,ω0 + 1

M(1–q) ) when M > 0 (respectively x ∈ I when M = 0).

Proof We can write Rn(x, a) as follows:

Rn(x, a) = R1,n(x,ω0) – R2,n(x; a,ω0),

where

R1,n(x,ω0) :=
1

Γq(n)

∫ x

ω0

Hn–1
(
x, h(t)

)
Dn

q,ωf (t) dq,ωt

and

R2,n(x; a,ω0) :=
1

Γq(n)

∫ a

ω0

Hn–1
(
x, h(t)

)
Dn

q,ωf (t) dq,ωt.

From (1.16), we have

R1,n(x,ω0) =
(
x(1 – q) – ω

) ∞∑

m=0

qm 1
Γq(n)

Hn–1
(
x, hm+1(x)

)
Dn

q,ωf
(
hm(x)

)

=
1

Γq(n)
(
x(1 – q) – ω

) ∞∑

m=0

[

qm
n–2∏

r=0

(
x –

[
xqm+1+r + [m + 1 + r]qω

])

× Dn
q,ωf

(
hm(x)

)
]

=
(1 – q)(x – ω0)

[n – 1]q!

∞∑

m=0

qm(x – ω0)n–1
n–2∏

r=0

(
1 – qm+r+1)Dn

q,ωf
(
hm(x)

)

=
(1 – q)(x – ω0)n

[n – 1]q!

∞∑

m=0

qm(
qm+1; q

)
n–1Dn

q,ωf
(
hm(x)

)

=
(1 – q)n(x – ω0)n

(q; q)n–1

∞∑

m=0

qm(
qm+1; q

)
n–1Dn

q,ωf
(
hm(x)

)
.
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Consequently,

∣
∣R1,n(x,ω0)

∣
∣ ≤ C

(q; q)∞
Mn

[
(1 – q)|x – ω0|

]n
∞∑

m=0

qm

≤ CMn[(1 – q)|x – ω0|]n

(q; q)∞(1 – q)
.

Then limn→∞ R1,n(x,ω0) = 0, x ∈ (ω0 – 1
M(1–q) ,ω0 + 1

M(1–q) ), when M > 0 (respectively x ∈ I ,
when M = 0). On the other hand, for a ∈ I , we have

R2,n(x; a,ω0) =
(a(1 – q) – ω)

Γq(n)

∞∑

m=0

qmHn–1
(
x, hm+1(a)

)
Dn

q,ωf
(
hm(a)

)
.

Simple calculations show that

∣∣Hn–1
(
x, hm+1(a)

)∣∣ =

∣∣
∣∣∣

n–2∏

r=0

(
x – hm+r+1(a)

)
∣∣
∣∣∣

≤
n–2∏

r=0

[|x – ω0| + qm+r+1|a – ω0|
]

≤ |x – ω0|n–1e
∑∞

r=0 qm+r+1 |a–ω0|
|x–ω0|

≤ |x – ω0|n–1e
|a–ω0|

(1–q)|x–ω0| .

Consequently,

∣
∣R2,n(x, a,ω0)

∣
∣ ≤ |x – ω0|n–1(1 – q)|a – ω0|

[n – 1]q!
CMne

|a–ω0 |
(1–q)|x–ω0|

∞∑

m=0

qm

≤ C|a – ω0|Mn[(1 – q)|x – ω0|]n–1

(q, q)∞
e

|a–ω0|
(1–q)|x–ω0| .

This implies that limn→∞ R2,n(x; a,ω0) = 0, x ∈ (ω0 – 1
M(1–q) ,ω0 + 1

M(1–q) ), when M > 0 (re-
spectively x ∈ I , when M = 0). Therefore

lim
n→∞ Rn(x, a) = lim

n→∞
[
R1,n(x,ω0) – R2,n(x; a,ω0)

]
= 0,

x ∈ (ω0 – 1
M(1–q) ,ω0 + 1

M(1–q) ), when M > 0 (respectively x ∈ I , when M = 0). �

Theorem 2.11 Assume that f has the power series expansion f (x) =
∑∞

n=0 an(x – ω0)n with
interval of convergence Ir = (ω0 – r,ω0 + r), r > 0. Then, for any a ∈ Ir , f has the q,ω-Taylor
expansion

f (x) =
∞∑

k=0

Dk
q,ωf (a)
[k]q!

Hk(x, a), (2.13)

in any closed subinterval Iα ,α < r, where the series is absolutely and uniformly convergent
on Iα ,α < r.
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Proof For n, m ∈N and by Lemma 2.3, we get

Dn
q,ωf

(
hm(y)

)
=

(
hm(y)(1 – q) – ω

)–n
∞∑

k=0

an+k
(
hm(y) – ω0

)n+k(qk+1; q
)

n

= q–mn(y(1 – q) – ω
)–n

∞∑

k=0

an+kqmn+mk(y – ω0)n+k(qk+1; q
)

n

=
1

(1 – q)n

∞∑

k=0

akqmk(y – ω0)k(qk+1; q
)

n.

Consequently, for α < r,

∣∣Dn
q,ωf

(
hm(y)

)∣∣ ≤ 1
(1 – q)n

∞∑

k=0

∣∣ak(y – ω0)k∣∣qmk

≤ 1
(1 – q)n

∞∑

k=0

∣∣akα
k∣∣qmk

≤ 1
(1 – q)n C, y ∈ Iα ,

where C =
∑∞

k=0 |akα
k|. Then, by Theorem 2.10, f has the q,ω-Taylor expansion (2.13). �

Now, we establish some properties of the q,ω-exponential functions eq,ω(t) and Eq,ω(t)
for t ∈R, |t – ω0| < 1

1–q , where

eq,ω(t) =
1

∏∞
k=0(1 – qk(t(1 – q) – ω))

=
1

((t(1 – q) – ω); q)∞
(2.14)

and

Eq,ω(t) =
∞∏

k=0

(
1 + qk(t(1 – q) – ω

))

=
(
–
(
t(1 – q) – ω

)
; q

)
∞. (2.15)

Simple calculations show that the following inequalities are true:

e– q
1–q

(1 – (t(1 – q) – ω))
< eq,ω(t) <

eA

1 – (t(1 – q) – ω)
, |t – ω0| <

1
1 – q

(2.16)

and

(
1 +

(
t(1 – q) – ω

))
e–A < Eq,ω(t) <

(
1 +

(
t(1 – q) – ω

))
e

q
1–q , |t – ω0| <

1
1 – q

, (2.17)

where A =
∑∞

k=1
qk

1–qk .
Finally, we can prove the following power series expansions for eq,ω and Eq,ω .
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Example 2.12 The exponential functions eq,ω and Eq,ω defined in (2.14) and (2.15) have
the following power series expansions of center a ∈ I :

eq,ω(x) =
∞∑

k=0

eq,ω(a)
[k]q!

Hk(x, a), |x – ω0| <
1

1 – q
(2.18)

and

Eq,ω(x) =
∞∑

k=0

q
k(k–1)

2 Eq,ω(hk(a))
[k]q!

Hk(x, a), x ∈ I, (2.19)

and have the following power series expansions of center ω0:

eq,ω(t) =
∞∑

k=0

1
[k]q!

(t – ω0)k (2.20)

and

Eq,ω(t) =
∞∑

k=0

q
k(k–1)

2

[k]q!
(t – ω0)k . (2.21)

Furthermore, both eq,ω and Eq,ω are continuous.

Proof For n ∈N0, we have

Dn
q,ωeq,ω(t) = eq,ω(t).

Inequality (2.16) shows that eq,ω(t) is positive and bounded on every compact subinterval
of (ω0 – 1

1–q ,ω0 + 1
1–q ). For fixed t ∈ (ω0 – 1

1–q ,ω0 + 1
1–q ), there exists 0 < α ≤ 1 such that

|t(1 – q) – ω| < α, which implies that

∣∣Dn
q,ωeq,ω(t)

∣∣ ≤ eA

1 – α
, n ∈N0.

By Theorem 2.10, the q,ω-Taylor expansion of eq,ω(t) at a is given by

eq,ω(t) =
∞∑

k=0

eq,ω(a)
[k]q!

Hk(t, a). (2.22)

Since Dn
q,ωeq,ω(ω0) = 1, the q,ω-Taylor expansion of eq,ω(t) at ω0 is given by

eq,ω(t) =
∞∑

k=0

1
[k]q!

(t – ω0)k . (2.23)

The series in (2.23) is uniformly convergent on every compact subinterval of (ω0 – 1
1–q ,

ω0 + 1
1–q ) by Weierstrass M-test, and consequently eq,ω(t) is continuous.
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Let t ∈R, |t – ω0| < 1
1–q . First, we show that

Dn
q,ωEq,ω(t) = q

n(n–1)
2 Eq,ω

(
hn(t)

)
, n ∈N0 (2.24)

by induction. For n = 1, we have

Dq,ωEq,ω(t) =
1

t(q – 1) + ω

[ ∞∏

k=0

(
1 + qk(qt + ω)(1 – q) – ω

)
)

–
∞∏

k=0

(
1 + qk(t(1 – q) – ω

))
]

=
∏∞

k=0(1 + qk+1(t(1 – q) – ω))
t(q – 1) + ω

[
1 –

(
1 + t(1 – q) – ω

)]

= Eq,ω
(
h(t)

)
.

Assume that formula (2.24) is true for n = m. We have

Dm+1
q,ω Eq,ω(t) = Dq,ω

(
Dm

q,ωEq,ω(t)
)

= q
m(m–1)

2 Dq,ωEq,ω
(
hm(t)

)

= q
m(m–1)

2
1

t(q – 1) + ω

[ ∞∏

k=0

(
1 + qk+m+1(t(1 – q) – ω

))

–
∞∏

k=0

(
1 + qk+m(

t(1 – q) – ω
))

]

= q
m(m–1)

2

∏∞
k=0(1 + qk+m+1(t(1 – q) – ω))

t(q – 1) + ω

× [
1 –

(
1 + qm(

t(1 – q) – ω
))]

= q
m(m+1)

2

∞∏

k=0

(
1 + qk+m+1(t(1 – q) – ω

))

= q
m(m+1)

2 Eq,ω
(
hm+1(t)

)
.

Inequality (2.17) shows that Eq,ω(t) is positive and is bounded on every compact subinter-
val of (ω0 – 1

1–q ,ω0 + 1
1–q ). Also we can see that

∣∣Eq,ω
(
hn(t)

)∣∣ ≤
∞∏

k=0

∣∣1 + qk+n(t(1 – q) – ω
)∣∣

≤
∞∏

k=0

[
1 + qk+n(1 – q)|t – ω0|

]

≤
∞∏

k=0

[
1 + qk+n]

≤ e
1

1–q .
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Therefore,

∣
∣Dn

q,ωEq,ω(t)
∣
∣ ≤ q

n(n–1)
2

∣
∣Eq,ω

(
hn(t)

)∣∣

≤ q
n(n–1)

2 e
1

1–q .

By Theorem 2.10, the q,ω-Taylor expansion of Eq,ω(t) at a is given by

Eq,ω(t) =
∞∑

k=0

q
k(k–1)

2 Eq,ω(hk(a))
[k]q!

Hk(t, a).

Since Dn
q,ωf (ω0) = q

n(n–1)
2 , the q,ω-Taylor expansion of Eq,ω(t) at ω0 is given by

Eq,ω(t) =
∞∑

k=0

q
k(k–1)

2

[k]q!
(t – ω0)k . (2.25)

The series in (2.25) is uniformly convergent on every compact subinterval of (ω0 – 1
1–q ,

ω0 + 1
1–q ) and consequently Eq,ω(t) is continuous. �
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