- Research
- Open access
- Published:
Norm inequalities involving a special class of functions for sector matrices
Journal of Inequalities and Applications volume 2020, Article number: 122 (2020)
Abstract
In this paper, we present some unitarily invariant norm inequalities for sector matrices involving a special class of functions. In particular, if is a \(2n\times 2n\) matrix such that numerical range of Z is contained in a sector region \(S_{\alpha } \) for some \(\alpha \in [0,\frac{\pi }{2} ) \), then, for a submultiplicative function h of the class \(\mathcal{C} \) and every unitarily invariant norm, we have
where r and s are positive real numbers with \(\frac{1}{r}+\frac{1}{s}=1 \) and \(i,j=1,2\). We also extend some unitarily invariant norm inequalities for sector matrices.
1 Introduction and preliminaries
Let \({\mathcal{M}}_{n}\) be the algebra of all \(n\times n\) complex matrices. For \(Z\in {\mathcal{M}}_{n}\), the conjugate transpose of Z is denoted by \(Z^{*} \). A complex matrix \(Z\in {\mathcal{M}}_{2n} \) can be partitioned as a \(2 \times 2 \) block matrix
where \(Z_{ij}\in {\mathcal{M}}_{n}\) (\(i,j=1,2\)). For \(Z\in {\mathcal{M}}_{n} \), let \(Z ={\mathcal{R}e}(Z)+ i{\mathcal{I}m}(Z) \) be the Cartesian decomposition of Z, where the Hermitian matrices \({\mathcal{R}e}(Z)=\frac{Z+Z^{*}}{2} \) and \({\mathcal{I}m}(Z)=\frac{Z-Z^{*}}{2i} \) are called the real and imaginary parts of Z, respectively. We say that a matrix \(Z\in {\mathcal{M}}_{n}\) is positive semidefinite if \(z^{*}Zz\geq 0 \) for all complex numbers z. For \(Z \in {\mathcal{M}}_{n}\), let \(s_{1}(Z) \geq s_{2}(Z) \geq \cdots \geq s_{n}(Z) \) denote the singular values of Z, i.e. the eigenvalues of the positive semidefinite matrix \(\vert Z \vert = (Z^{*}Z)^{\frac{1}{2}} \) arranged in a decreasing order and repeated according to multiplicity. Note that \(s_{j}(Z) = s_{j}(Z^{*}) = s_{j}(\vert Z \vert ) \) for \(j = 1, 2,\ldots , n \). A norm \(\Vert \cdot \Vert \) on \({\mathcal{M}}_{n}\) is said to be unitarily invariant if \(\Vert UZV \Vert = \Vert Z \Vert \) for every \(Z \in {\mathcal{M}}_{n}\) and for every unitary \(U, V \in {\mathcal{M}}_{n}\). For \(Z\in {\mathcal{M}}_{n}\) and \(p>0 \), let \(\Vert Z \Vert _{p}= ( \sum_{j=1}^{n}s_{j}^{p}(Z) )^{\frac{1}{p}}\). This defines the Schatten p-norm (quasinorm) for \(p\geq 1\) (\(0< p<1\)). It is clear that the Schatten p-norm is an unitarily invariant norm. The w-norm of a matrix \(Z\in {\mathcal{M}}_{n}\) is defined by \(\Vert Z\Vert _{w}=\sum_{j=1}^{n} w_{j} s_{j} (Z) \), where \(w=(w_{1},w_{2},\ldots ,w_{n}) \) is a decreasing sequence of nonnegative real numbers.
In this paper, we assume that all functions are continuous. It is known that if \(Z\in {\mathcal{M}}_{n} \) is positive semidefinite and h is a nonnegative increasing function on \([0, \infty ) \), then \(h(s_{j}(Z)) = s_{j} (h(Z) ) \) for \(j = 1, 2, \ldots , n \). For positive semidefinite \(X, Y \in {\mathcal{M}}_{n}\) and a nonnegative increasing function h on \([0, \infty ) \), if \(s_{j}(X)\leq s_{j}(Y) \) for \(j = 1, 2, \ldots , n \), then \(\Vert h(X) \Vert \leq \Vert h(Y) \Vert \), where \(\Vert \cdot \Vert \) is a unitarily invariant norm. For more information, see [4, 18] and references therein.
We say that a matrix Z is accretive (respectively dissipative) if in the Cartesian decomposition \(Z=X+iY \), the matrix X (respectively Y) is positive semidefinite. If both X and Y are positive semidefinite, Z is called accretive–dissipative.
Another important class of matrices, which is related to the class of accretive–dissipative matrices, is called sector matrices. To introduce this class, let \(\alpha \in [0,\frac{\pi }{2} ) \) and \(S_{\alpha } \) be a sector defined in the complex plane by
For \(Z\in {\mathcal{M}}_{n} \), the numerical range of Z is defined by
A matrix whose its numerical range is contained in a sector region \(S_{\alpha } \) for some \(\alpha \in [0,\frac{\pi }{2} ) \), is called a sector matrix. It follows from the definition of sector matrices that Z is positive semidefinite if and only if \(W(Z) \subseteq S_{0} \) and also Z is accretive–dissipative if and only if \(W(e^{\frac{-i\pi }{4}}Z) \subseteq S_{\frac{\pi }{4}} \). Moreover, if \(W(Z) \subseteq S_{\alpha } \), then Z is invertible with \({\mathcal{R}e}(Z)>0 \) and therefore Z is accretive. For more on sector matrices see [3, 6, 7, 11–15, 17, 19–22] and the references therein. For \(x=(x_{1},x_{2},\ldots ,x_{n}) \) and \(y=(y_{1},y_{2},\ldots ,y_{n})\in R^{n} \) with nonnegative components, if \(\sum_{j=1}^{k} x_{j} \leq \sum_{j=1}^{k} y_{j}\) (\(\prod_{j=1}^{k} x_{j} \leq \prod_{j=1}^{k} y_{j} \)) for \(k=1, 2,\ldots , n \), then we say that x is weakly (weakly log) majorized by y and denoted by \(x\prec _{\omega } y ( x\prec _{\omega \log } y )\). It is known that weak log majorization implies weak majorization. A nonnegative function h on the interval \([0, \infty ) \) is said to be submultiplicative if \(h(ab) \leq h(a)h(b) \) whenever \(a, b\in [0, \infty ) \).
Gumus et al. [8] introduced the special class \(\mathcal{C} \) involving all nonnegative increasing functions h on \([0, \infty ) \) satisfying the following condition: If \(x =(x_{1},x_{2},\ldots ,x_{n}) \) and \(y=(y_{1},y_{2},\ldots ,y_{n})\) are two decreasing sequences of nonnegative real numbers such that \(\prod_{j=1}^{k} x_{j} \leq \prod_{j=1}^{k} y_{j}\) (\(k=1, 2, \ldots , n\)), then \(\prod_{j=1}^{k} h(x_{j}) \leq \prod_{j=1}^{k} h(y_{j})\) (\(k=1, 2, \ldots , n\)).
Note that the power function \(h(t)=t^{p}\) (\(p>0\)) belongs to class \(\mathcal{C} \). For more information about the class \(\mathcal{C} \) see [8] and the references therein. For the positive semidefinite matrix , one proved [8] that, if \(h \in \mathcal{C} \) is a submultiplicative function, then
where r and s are positive real numbers with \(\frac{1}{r}+\frac{1}{s}=1 \). Furthermore, for accretive–dissipative matrix \(Z\in {\mathcal{M}}_{2n} \) partitioned as in (1), one showed the following unitarily invariant norm inequalities:
where \(h \in \mathcal{C} \) is a submultiplicative convex function and
where \(h \in \mathcal{C} \) is a submultiplicative concave function such that r and s are positive real numbers with \(\frac{1}{r}+\frac{1}{s}=1 \). Moreover, for a sector matrix \(Z\in {\mathcal{M}}_{2n} \) partitioned as in (1), Zhang [22] proved the following inequality:
for any unitarily invariant norm and \(\alpha \in [0,\frac{\pi }{2} )\). Alakhrass [1] extended inequality (5) to
where r, s and p are positive numbers in which \(\frac{1}{r}+\frac{1}{s}=1 \) and \(\alpha \in [0,\frac{\pi }{2} )\).
In [8], the authors presented some Schatten p-norm inequalities for accretive–dissipative matrices \(Z\in {\mathcal{M}}_{2n} \) partitioned as in (1), which compared the off-diagonal blocks of Z to its diagonal blocks as follows:
and
Let \(Z_{ij}\) (\(1\leq i,j \leq n\)) be square matrices of the same size such that the block matrix
be accretive–dissipative. For such matrices, Kittaneh and Sakkijha [10] showed that
and
Mao and Liu [17] showed the inequality
where for \(0 < p\leq \frac{4}{3} \) and \(p\geq 4 \), this inequality improved inequalities (10) and (11). Lin and Fu [16], extended the above inequalities for sector matrices as follows:
in which \(\alpha \in [0,\frac{\pi }{2} )\).
In the present paper, we establish some unitarily invariant norm inequalities for sector matrices involving the functions of class \(\mathcal{C} \). For instance, we extend inequalities (2) and (6) to sector matrices and the class \(\mathcal{C}\) (Theorem 4). Moreover, we improve inequalities (3) and (4) to sector matrices. Also, we prove inequality (13) for all unitarily invariant norm and function of the class \(\mathcal{C}\).
2 Main result
In the following, we give some lemmas which are needed to prove our main statements.
Lemma 1
([9, p. 207])
Let\(X,Y,Z\in {\mathcal{M}}_{n}\), andr, sbe positive real numbers with\(\frac{1}{r}+\frac{1}{s}=1 \). Then
where\(w=(w_{1},w_{2},\ldots ,w_{n}) \)is a decreasing sequence of nonnegative real numbers if and only if
for every unitarily invariant norm\(\Vert \cdot \Vert \).
Lemma 2
([1, Theorem 3.2])
Suppose that\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) such that\(W(Z) \subseteq S_{\alpha }\)for some\(\alpha \in [0,\frac{\pi }{2}) \). Then
where\(k=1,2,\ldots ,n \).
Lemma 3
([5, p. 73])
Let\(Z\in {\mathcal{M}}_{n}\). Then
Consequently, \(\Vert {\mathcal{R}e}(Z)\Vert \leq \Vert Z\Vert \)for every unitarily invariant norm\(\Vert \cdot \Vert \)on\({\mathcal{M}}_{n}\).
In the sequel, we give some unitarily invariant norm inequalities for sector matrices regarding of special class \(\mathcal{C} \). Furthermore, in some special cases those results reduce to previous ones, which were introduced by other authors.
Theorem 4
Let\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) be a sector matrix and let\(h \in \mathcal{C} \)be submultiplicative and\(\alpha \in [0,\frac{\pi }{2} )\). Ifrandsare positive real numbers with\(\frac{1}{r}+\frac{1}{s}=1 \), then
for every unitarily invariant norm\(\Vert \cdot \Vert \)on\({\mathcal{M}}_{n}\)and\(i,j=1,2 \).
Proof
Assume that \(w=(w_{1},w_{2},\ldots ,w_{n}) \) is a decreasing sequence of nonnegative real numbers and \(k=1,2,\ldots ,n \). Then Lemma 2 implies that
where \(i,j=1,2\). Therefore
Since \(w=(w_{1},w_{2},\ldots ,w_{n}) \) is a decreasing sequence of nonnegative real numbers, it follows that
where \(i,j=1,2\). Since weak log majorization implies weak majorization, inequality (14) implies that
where \(i,j=1,2,\ldots\) . Now, by applying the previous inequality and Hölder’s inequality, we deduce that
If we replace \(w_{m}^{\frac{1}{r} } \) with \(w_{m}^{\frac{1}{s} } \) in the third equality, then by a similar process we obtain
for all decreasing sequences \(w=(w_{1},w_{2},\ldots ,w_{n}) \) of nonnegative real numbers. It follows from Lemma 1 and inequalities (16) and (17) that
 □
Remark 5
If \(Z\in {\mathcal{M}}_{2n} \) is positive semidefinite, i.e. \(W(Z) \subseteq S_{0} \), then Theorem 4 reduces to inequality (2). Applying Theorem 4 for \(h(t)=t^{\frac{p}{2}}\) (\(p>0\)), we get inequality (6). Therefore Theorem 4 is an extension of inequality (2) and inequality (6).
Corollary 6
Suppose\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) is accretive–dissipative and\(h \in \mathcal{C} \)is submultiplicative. Ifrandsare positive real numbers with\(\frac{1}{r}+\frac{1}{s}=1 \), then
where\(\Vert \cdot \Vert \)is a unitarily invariant norm.
Proof
Since Z is accretive–dissipative, i.e. \(W(e^{\frac{-i\pi }{4}}Z) \subseteq S_{\frac{\pi }{4}} \) and \(\sec (\frac{\pi }{4})=\sqrt{2} \), by applying Theorem 4, we get the statement. □
Corollary 7
([2, Theorem 4.2])
Let\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) such that\(W(Z) \subseteq S_{\alpha }\)for some\(\alpha \in [0,\frac{\pi }{2}) \). Then
for every unitarily invariant norm.
Proof
Applying Theorem 4 for \(r=2\), \(s=2 \) and \(h(t)=t^{\frac{p}{2}} \) (\(p>0\)), we get
 □
Corollary 8
([22, Theorem 3.2])
Let\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) such that\(W(Z) \subseteq S_{\alpha }\)for some\(\alpha \in [0,\frac{\pi }{2}) \). Then
for every unitarily invariant norm.
Proof
Applying Theorem 4 for \(r=2\), \(s=2 \) and \(h(t)=\sqrt{t} \), we get
Therefore
Similarly, we have
The above inequalities imply the expected result. □
Corollary 9
([22])
Let\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) such that\(W(Z) \subseteq S_{\alpha }\)for some\(\alpha \in [0,\frac{\pi }{2}) \). Then, for any unitarily invariant norm, we have
Proof
By using the arithmetic–geometric mean inequality and inequality (18), we have
 □
Remark 10
Assume that h is a nonnegative increasing function on \([0, \infty ) \). Since \(s_{m} ( \vert Z_{ij} \vert ^{2} )=s_{m} ( \vert Z_{ij}^{*} \vert ^{2} ) \) for \(m=1,2,\ldots ,n \) and \(i,j=1,2\), we have
for \(m=1,2,\ldots ,n \) and \(i,j=1,2 \). Therefore \(\Vert h ( \vert Z_{ij} \vert ^{2} ) \Vert =\Vert h ( \vert Z_{ij}^{*} \vert ^{2} ) \Vert \).
Theorem 11
Suppose that\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) is a sector matrix and\(h \in \mathcal{C} \)is submultiplicative convex. Ifrandsare positive real numbers with\(\frac{1}{r}+\frac{1}{s}=1 \), then
where\(\alpha \in [0,\frac{\pi }{2} )\).
Proof
Applying the triangle inequality, Remark 10 and Theorem 4, we have
It is well known that, if h is a convex function, then \(h(\lambda Z)\geq \lambda h(Z) \) for \(Z\in {\mathcal{M}}_{n} \) and \(\lambda \geq 1 \). Since \(\sec (\alpha )\geq 1 \) (\(\alpha \in [0,\frac{\pi }{2} )\)), we have
 □
Remark 12
Note that, if \(Z\in {\mathcal{M}}_{2n} \) is accretive–dissipative, i.e. \(W(e^{\frac{-i\pi }{4}}Z) \subseteq S_{\frac{\pi }{4}} \), then Theorem 11 reduces to inequality (3).
Theorem 13
Assume that\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) is a sector matrix and\(h \in \mathcal{C} \)is submultiplicative concave. Ifrandsare positive real numbers with\(\frac{1}{r}+\frac{1}{s}=1 \), then
for every unitarily invariant norm\(\Vert \cdot \Vert \)and\(\alpha \in [0,\frac{\pi }{2} )\).
Proof
Applying the triangle inequality, Remark 10 and Theorem 4, we have
Since h is concave, it follows that \(h(\lambda Z)\leq \lambda h(Z) \) for \(Z\in {\mathcal{M}}_{n} \) and \(\lambda \geq 1 \). Since \(\sec (\alpha )\geq 1 \) for \(\alpha \in [0,\frac{\pi }{2} )\),
 □
Remark 14
If \(Z\in {\mathcal{M}}_{2n} \) is accretive–dissipative, i.e. \(W(e^{\frac{-i\pi }{4}}Z) \subseteq S_{\frac{\pi }{4}} \), then Theorem 13 reduces to inequality (4).
Theorem 15
Assume that\(Z\in {\mathcal{M}}_{2n}\)partitioned as in (1) is a sector matrix, \(h \in \mathcal{C} \)is submultiplicative and\(\alpha \in [0,\frac{\pi }{2} )\). Ifpis positive real number, then
for every unitarily invariant norm\(\Vert \cdot \Vert \). In particular, we have
Proof
Theorem 4 for \(r=s=2 \), implies that
By taking the power p of both sides of inequality (19), we have
Therefore, we have
 □
Corollary 16
([16, Theorem 2.8])
Let\(Z\in {\mathcal{M}}_{2n}\)be partitioned as in (1) such that\(W(Z) \subseteq S_{\alpha }\)for some\(\alpha \in [0,\frac{\pi }{2}) \). Then, for any unitarily invariant norm, we have
In particular, we have
Proof
Applying Theorem 15, for \(h(t)=\sqrt{t} \), we have
By showing the particular case, by using the Schatten p-norm, we have the statement. □
In the sequel, we extend our results to \(n\times n \) block matrices as introduced in (9).
Theorem 17
Suppose thatZis a sector matrix represented as in (9), \(h \in \mathcal{C} \)is submultiplicative and\(\alpha \in [0,\frac{\pi }{2} )\). Ifpis positive real number, then
for every unitarily invariant norm\(\Vert \cdot \Vert \). In particular, we have
Proof
Since Z is a sector matrix, so every principal submatrix of Z is also a sector matrix, it follows that is a sector matrix. Now, applying Theorem 15 for , we get
for \(i\neq j \). By using the arithmetic–geometric mean inequality, we have
for \(i\neq j \). Adding the previous inequalities for \(i, j = 1, 2,\ldots , n \), we get
 □
Corollary 18
([16, Theorem 2.9])
LetZbe a sector matrix as represented in (9) and\(\alpha \in [0,\frac{\pi }{2} )\). Then
for any unitarily invariant norm. In particular, we have
Proof
Applying Theorem 17, for \(h(t)=\sqrt{t} \), we have
For the particular case, we take the Schatten p-norm. □
References
Alakhrass, M.: A note on sectorial matrices. Linear Multilinear Algebra (to appear). https://doi.org/10.1080/03081087.2019.1575332
Alakhrass, M., Sababheh, M.: Lieb functions and sectorial matrices. Linear Algebra Appl. 586, 308–324 (2020)
Arlinski, Y.M., Popov, A.B.: On sectorial matrices. Linear Algebra Appl. 370, 133–146 (2003)
Bakherad, M., Lashkaripour, R., Hajmohamadi, M.: Extensions of interpolation between the arithmetic–geometric mean inequality for matrices. J. Inequal. Appl. 2017, 209 (2017)
Bhatia, R.: Matrix Analysis. Springer, New York (1997)
Drury, S., Lin, M.: Singular value inequalities for matrices with numerical ranges in a sector. Oper. Matrices 8(4), 1143–1148 (2014)
Fu, X., He, C.: On some Fischer-type determinantal inequalities for accretive–dissipative matrices. J. Inequal. Appl. 2013, 316 (2013)
Gumus, I.H., Hirzallah, O., Kittaneh, F.: Norm inequalities involving accretive–dissipative \(2 \times 2 \) block matrices. Linear Algebra Appl. 528, 76–93 (2017)
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)
Kittaneh, F., Sakkijha, M.: Inequalities for accretive–dissipative matrices. Linear Multilinear Algebra 67(5), 1037–1042 (2019)
Li, C.K., Sze, N.: Determinantal and eigenvalue inequalities for matrices with numerical ranges in a sector. J. Math. Anal. Appl. 410(1), 487–491 (2014)
Lin, M.: Fischer type determinantal inequalities for accretive–dissipative matrices. Linear Algebra Appl. 438, 2808–2812 (2013)
Lin, M.: A note on the growth factor in Gaussian elimination for accretive–dissipative matrices. Calcolo 51, 363–366 (2014)
Lin, M.: Some inequalities for sector matrices. Oper. Matrices 10(4), 915–921 (2016)
Lin, M., Zhou, D.: Norm inequalities for accretive–dissipative operator matrices. J. Math. Anal. Appl. 407, 436–442 (2013)
Lin, S., Fu, X.: On some inequalities for sector matrices. Linear Multilinear Algebra (to appear). https://doi.org/10.1080/03081087.2019.1600466
Mao, Y., Liu, X.: On some inequalities for accretive–dissipative matrices. Linear Multilinear Algebra (to appear). https://doi.org/10.1080/03081087.2019.1635566
Shebrawi, K., Bakherad, M.: Generalizations of the Aluthge transform of operators. Filomat 32(18), 6465–6474 (2018)
Yang, C., Lu, F.: Some generalizations of inequalities for sector matrices. J. Inequal. Appl. 2018, 183 (2018)
Yang, J.: Some determinantal inequalities for accretive–dissipative matrices. J. Inequal. Appl. 2013, 512 (2013)
Zhang, D., Hou, L., Ma, L.: Properties of matrices with numerical ranges in a sector. Bull. Iran. Math. Soc. 43, 1699–1707 (2017)
Zhang, F.: A matrix decomposition and its applications. Linear Multilinear Algebra 63(10), 2033–2042 (2015)
Acknowledgements
We thank the anonymous referees for reading the paper carefully and providing thoughtful comments.
Availability of data and materials
Not applicable.
Funding
The authors received no financial support for this article.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to the manuscript and read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Afraz, D., Lashkaripour, R. & Bakherad, M. Norm inequalities involving a special class of functions for sector matrices. J Inequal Appl 2020, 122 (2020). https://doi.org/10.1186/s13660-020-02383-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02383-z