Skip to main content

Approximation on a class of Phillips operators generated by q-analogue

Abstract

The main purpose of this article is to introduce a new generalization of q-Phillips operators generated by Dunkl exponential function. We establish some approximation results for these operators. We also determine the order of approximation, and the rate of convergence in terms of the modulus of continuity of order one and two. Moreover, we obtain some direct theorems.

1 Introduction

Bernstein polynomials play a very important role in approximation process. For a positive integer \(n\geqq 1\) and a function g defined on \([0,1]\), Bernstein defined the positive linear operators \(B_{n}:C[0,1]\rightarrow C[0,1]\) by

$$ B_{n}(g;x)=\sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k}g \biggl( \frac{k}{n} \biggr),\quad x \in [0 ,1]. $$
(1.1)

For some recent work on Bernstein operators, we refer to [21, 26, 27, 32, 46]. In 1950, Szász defined the operators [48]

$$ S_{m}(g;x)=e^{-mx}\sum_{k=0}^{\infty } \frac{(mx)^{k}}{k!}g \biggl( \frac{k}{m} \biggr) \quad \bigl(x\in [0,\infty ),m\in \mathbb{N}\bigr) $$
(1.2)

for a continuous function g on \([0,\infty )\). The construction of Szász type operators is accomplished, by a newly parameter \(\kappa \geqq 0\), and it is known as the Dunkl generalization. It was given by Sucu [47] with the help of [43]. The q-Hermite type polynomials were introduced by Cheikh et al. [13] by applying a new parameter \(\kappa >-\frac{1}{2}\). The exponential functions and recursion formula on the Dunkl generalization are given by

$$\begin{aligned}& e_{\kappa ,q}(x)=\sum_{m=0}^{\infty } \frac{x^{m}}{\gamma _{\kappa ,q}(m)}, \quad \mbox{and}\quad E_{\kappa ,q}(x)=\sum _{m=0}^{\infty } \frac{q^{\frac{m(m-1)}{2}}x^{m}}{\gamma _{\kappa ,q}(m)}, \end{aligned}$$
(1.3)
$$\begin{aligned}& \gamma _{\kappa ,q}(m+1)= \biggl( \frac{1-q^{2\kappa \theta _{m+1}+m+1}}{1-q} \biggr) \gamma _{\kappa ,q}(m),\quad m\in \mathbb{N}, \end{aligned}$$
(1.4)
$$\begin{aligned}& \theta _{m}=\textstyle\begin{cases} 0 & \text{if }m=2,4,6,\ldots , \\ 1 & \text{if }m=1,3,5,\ldots .\end{cases}\displaystyle \end{aligned}$$
(1.5)

We recall the basic information regarding the q-calculus:

$$ \begin{aligned} &[ n ] _{q}= \textstyle\begin{cases} \frac{1-q^{n}}{1-q} & \mbox{for } q\neq 1, n\in \mathbb{N}, \\ 1 & \mbox{for } q=1, \\ 0 & \mbox{for } n=0, \end{cases}\displaystyle \\ &[ n ] _{q}!= \textstyle\begin{cases} 1 & \mbox{for } n=0, \\ \prod_{k=1}^{n} [ k ] _{q} & \mbox{for } n \in \mathbb{N}.\end{cases}\displaystyle \end{aligned} $$
(1.6)

are the q-integer \([ n ] _{q}\) and q-factorial \([ n ] _{q}!\), respectively. İçöz and Çekim [17] wrote the Szász operators as follows:

$$ D_{m,q}(g;x)=\frac{1}{e_{\kappa ,q}([m]_{q}x)}\sum_{k=0}^{\infty } \frac{([m]_{q}x)^{k}}{\gamma _{\kappa ,q}(k)}g \biggl( \frac{1-q^{2\kappa \theta _{k}+k}}{1-q^{m}} \biggr) . $$
(1.7)

Recently, the Szász operators have many improvements and modifications in approximation process (see [1, 24, 25, 35, 42]). The q-analogue of some other interesting operators has been studied in [2, 37, 45, 49] and the references therein. An additional approach to improving the quantum calculus is post-quantum calculus via these types of generalizations; it was proposed in [35, 7, 8, 18, 23, 28, 33, 34, 36] (see also [39, 40]).

In this manuscript, we emphasize a new generalization of q-Phillips operators by introducing the new parameters and increasing and unbounded sequences of positive numbers. For more details of the approximation to classical Phillips operators via the Dunkl type version, see the recent article [38]. We study the convergence results in modulus of continuity of order one and two. Moreover, we investigate the rate of convergence for functions belonging to the Lipschitz class and also prove some direct theorems. For further information and the results used in this article we mention here some related articles (see [6, 19, 22, 44]).

2 Operators and their associated moments

Let \(\{\alpha _{[m]_{q}}\}_{m\geqq 1}\) and \(\{\beta _{[m]_{q}}\}_{m\geqq 1}\) be the increasing and unbounded sequences of positive numbers such that

$$ \lim_{m \to \infty }\frac{1}{\beta _{[m]_{q}}} \to 0\quad \mbox{and} \quad \frac{\alpha _{[m]_{q}}}{\beta _{[m]_{q}}}=1+O \biggl( \frac{1}{\beta _{[m]_{q}}} \biggr). $$
(2.1)

For \(m=1,2, \ldots \) , we denote the nodes \(\nabla _{m}\) by

$$ \nabla _{m}= m+2\kappa \theta _{m}, \quad \kappa \geq -\frac{1}{2}. $$
(2.2)

For all \(x\in {}[ 0,\infty )\), \(n\in \mathbb{N}\cup \{0\}\) and every \(g\in C_{\eta }[0,\infty )=\{f\in C[0,\infty ):g(t)=O(t^{\eta }), t\rightarrow \infty \}\) with \(\eta >n\), we define

$$\begin{aligned}& \mathcal{S}_{m,q}^{\ast }(g;\alpha _{[m]_{q}}, \beta _{[m]_{q}}; x) \\& \quad = \frac{\alpha _{[m]_{q}}}{e_{\kappa ,q}(\alpha _{[m]_{q}}x)}\sum _{j=0}^{ \infty }\mathcal{T}_{m,q}^{\kappa }(x) \int _{0}^{\infty /1-q} \frac{e_{\kappa ,q}(-\alpha _{[m]_{q}}t) (\alpha _{[m]_{q}}t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!}f \biggl( q^{\nabla _{j}}\frac{\alpha _{[m]_{q}}}{\beta _{[m]_{q}}}t \biggr) \,\mathrm{d}_{q}t, \end{aligned}$$
(2.3)

where

$$ \mathcal{T}_{m,q}^{\kappa }(x)= \frac{(\alpha _{[m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)}q^{ \frac{(\nabla _{j})(\nabla _{j}+1)}{2}}. $$

Definition 2.1

For all \(m>0\) and \(q\in (0,1)\), the generalized q-Gamma function is defined by

$$\begin{aligned}& \varGamma _{q}(m)= \int _{0}^{1/1-q}x^{m-1}E_{q}(-qx) \,\mathrm{d}_{q}x,\quad m>0, \end{aligned}$$
(2.4)
$$\begin{aligned}& \gamma _{q}^{K}(m)= \int _{0}^{\infty /K(1-q)}x^{m-1}e_{q}(-x) \,\mathrm{d}_{q}x,\quad m>0, \end{aligned}$$
(2.5)

where \(\varGamma _{q}(m)=L(K;m)\gamma _{q}^{K}(m)\) and \(L(K;m)=\frac{1}{1+K}K^{m} ( 1+\frac{1}{K} ) _{q}^{m} ( 1+K ) _{q}^{m-1}\). Moreover, in particular for any positive integer m we have \(L(K;m)=q^{\frac{m(m-1)}{2}}\) and \(\varGamma _{q}(m)=q^{\frac{m(m-1)}{2}}\gamma _{q}^{K}(m)\), which also satisfies the following equation:

$$ \varGamma _{q}(m+1)= \textstyle\begin{cases} {}[ m]_{q}\varGamma _{q}(m) & \mbox{for } m>0, \\ 1 & \mbox{for } m=0.\end{cases} $$
(2.6)

For more details, see [15].

Lemma 2.2

Let\(\mathcal{S}_{m,q}^{\ast }(\, \cdot \, ; \cdot )\)be the operators defined by (2.3). Then we have:

$$\begin{aligned}& (1)\quad \mathcal{S}_{m,q}^{\ast }(1;\alpha _{{}[ m]_{q}}, \beta _{ {}[ m]_{q}};x) = 1, \\& (2)\quad \mathcal{S}_{m,q}^{\ast }(t;\alpha _{{}[ m]_{q}}, \beta _{ {}[ m]_{q}};x) = \biggl( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}} \biggr) x+ \frac{1}{q\beta _{{}[ m]_{q}}}, \\& (3)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{2};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq \frac{(1+q)}{q^{3} ( \beta _{{}[ m]_{q}} ) ^{2}}+ \frac{\alpha _{{}[ m]_{q}}}{ ( \beta _{{}[ m]_{q}} ) ^{2}} \biggl( \frac{1+2q}{q^{2}}+[1+2\kappa ]_{q} \biggr) x \\& \hphantom{(3)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{2};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{}+ \biggl( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}} \biggr) ^{2}x^{2}, \\& (4)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{3};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq \frac{(1+q)(1+q+q^{2})}{q^{6} ( \beta _{{}[ m]_{q}} ) ^{3}} \\& \hphantom{(4)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{3};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + \frac{\alpha _{{}[ m]_{q}}}{q^{5} ( \beta _{{}[ m]_{q}} ) ^{3}} {\bigl\{ }\bigl(1+3q+4q^{2}+3q^{3} \bigr) \\& \hphantom{(4)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{3};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} +q^{2}\bigl(1+2q+3q^{2}\bigr)[1+2\kappa ]_{q}+ q^{5}[1+2\kappa ]_{q}^{2} {\bigr\} }x \\& \hphantom{(4)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{3};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + \frac{\alpha _{{}[ m]_{q}}}{q^{4} ( \beta _{{}[ m]_{q}} ) ^{3}} {\bigl\{ }q\bigl(1+2q+3q^{2} \bigr)+3q^{4}[1+2\kappa ]_{q} {\bigr\} }x^{2} \\& \hphantom{(4)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{3};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{}+ \biggl( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}} \biggr) ^{3}x^{3}, \\& (5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq \frac{(1+q)(1+2q+3q^{2}+3q^{3}+2q^{4}+q^{5})}{q^{10} ( \beta _{{}[ m]_{q}} ) ^{4}} \\& \hphantom{(5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + \frac{\alpha _{{}[ m]_{q}}}{q^{9} ( \beta _{{}[ m]_{q}} ) ^{4}} {\bigl\{ }\bigl(1+4q+8q^{2}+12q^{3}+12q^{4}+9q^{5}+4q^{6} \bigr) \\& \hphantom{(5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + q^{2}\bigl(1+3q+7q^{2}+9q^{3}+9q^{4}+6q^{5} \bigr)[1+2\kappa ]_{q} \\& \hphantom{(5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + q^{5}\bigl(1+2q+3q^{2}+4q^{3} \bigr)[1+2\kappa ]_{q}^{2}+q^{9}[1+2\kappa ]_{q}^{3} {\bigr\} }x \\& \hphantom{(5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + \frac{ ( \alpha _{{}[ m]_{q}} ) ^{2}}{q^{8} ( \beta _{{}[ m]_{q}} ) ^{4}} {\bigl\{ }q\bigl(1+3q+7q^{2}+9q^{3}+9q^{4}+6q^{5} \bigr) \\& \hphantom{(5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + q^{4}\bigl(1+2q+3q^{2}+4q^{3} \bigr)[1+2\kappa ]_{q}+7q^{8}[1+2\kappa ]_{q}^{2} {\bigr\} }x^{2} \\& \hphantom{(5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + \frac{ ( \alpha _{{}[ m]_{q}} ) ^{3}}{q^{7} ( \beta _{{}[ m]_{q}} ) ^{4}} {\bigl\{ }q^{3}\bigl(1+2q+3q^{2}+4q^{3} \bigr)+6q^{7}[1+2\kappa ]_{q} {\bigr\} }x^{3} \\& \hphantom{(5)\quad \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x\bigr) \leqq{}}{} + \biggl( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}} \biggr) ^{4}x^{4}. \end{aligned}$$

Proof

From the generalized q-Gamma function defined by Definition 2.1, we see that

$$\begin{aligned}& \int _{0}^{\infty /1-q}q^{ \frac{(\nabla _{j})(\nabla _{j}+1)}{2}}\frac{e_{\kappa ,q}(-\alpha _{{}[ m]_{q}}t) ( \alpha _{{}[ m]_{q}}t ) ^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \biggl( q^{\nabla _{j}}\frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}}t \biggr) ^{u} \mathrm{d}_{q}t \\& \quad = \frac{1}{\alpha _{{}[ m]_{q}} ( \beta _{{}[ m]_{q}} ) ^{u}}\frac{1}{[\nabla _{j}]_{q}!}q^{ \frac{(\nabla _{j})(\nabla _{j}+1)}{2}+u(\nabla _{j})} \int _{0}^{\infty /1-q} ( \alpha _{ {}[ m]_{q}}t ) ^{\nabla _{j}+u}e_{\kappa ,q}(-\alpha _{ {}[ m]_{q}}t)\alpha _{{}[ m]_{q}}\,\mathrm{d}_{q}t \\& \quad = \frac{1}{\alpha _{{}[ m]_{q}} ( \beta _{{}[ m]_{q}} ) ^{u}}\frac{1}{[\nabla _{j}]_{q}!}q^{ \frac{(\nabla _{j})(\nabla _{j}+1)}{2}+u(\nabla _{j})} \int _{0}^{\infty /1-q}t^{\nabla _{j}+u}e_{ \kappa ,q}(-t) \,\mathrm{d}_{q}t \\& \quad = \frac{1}{\alpha _{{}[ m]_{q}} ( \beta _{{}[ m]_{q}} ) ^{u}}\frac{1}{[\nabla _{j}]_{q}!}q^{ \frac{(\nabla _{j})(\nabla _{j}+1)}{2}+u(\nabla _{j})}\gamma _{q}^{1}(\nabla _{j}+u+1) \\& \quad = \frac{1}{\alpha _{{}[ m]_{q}} ( \beta _{{}[ m]_{q}} ) ^{u}}\frac{1}{[\nabla _{j}]_{q}!}q^{ \frac{(\nabla _{j})(\nabla _{j}+1)}{2}+u(\nabla _{j})} \frac{[\nabla _{j}+u]_{q}!}{q^{\frac{(\nabla _{j}+u)(\nabla _{j}+u+1)}{2}}} \\& \quad = \frac{1}{\alpha _{{}[ m]_{q}} ( \beta _{{}[ m]_{q}} ) ^{u}}\frac{[\nabla _{j}+u]_{q}!}{[\nabla _{j}]_{q}!} \frac{1}{q^{\frac{u(u+1)}{2}}}. \end{aligned}$$

If \(u=0\) then \(g(t)=1\), and hence

$$\begin{aligned} \mathcal{S}_{m,q}^{\ast }(1;\alpha _{{}[ m]_{q}},\beta _{{}[ m]_{q}};x) =&\frac{\alpha _{{}[ m]_{q}}}{e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)} \sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)} \frac{[\nabla _{j}]_{q}!}{\alpha _{{}[ m]_{q}}[\nabla _{j}]_{q}!} \\ =&1. \end{aligned}$$

If \(u=1\), then \(g(t)=t\), hence,

$$\begin{aligned} \mathcal{S}_{m,q}^{\ast }(t;\alpha _{{}[ m]_{q}},\beta _{{}[ m]_{q}};x) =&\frac{ ( \alpha _{{}[ m]_{q}} ) ^{2}}{\beta _{{}[ m]_{q}}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)}\sum _{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)} \frac{[\nabla _{j}+1]_{q}!}{q ( \alpha _{{}[ m]_{q}} ) ^{2}[\nabla _{j}]_{q}!} \\ =&\frac{1}{q\beta _{{}[ m]_{q}}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)}\sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)}[ \nabla _{j}+1]_{q} \\ =&\frac{1}{q\beta _{{}[ m]_{q}}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)}\sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)} \\ &{}+\frac{1}{\beta _{{}[ m]_{q}}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)}\sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)}[ \nabla _{j}]_{q} \\ =& \biggl( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}} \biggr) x+\frac{1}{q\beta _{{}[ m]_{q}}}. \end{aligned}$$

Take \(u=2\), then, for \(g(t)=t^{2}\), we have

$$\begin{aligned} \mathcal{S}_{m,q}^{\ast }\bigl(t^{2};\alpha _{{}[ m]_{q}},\beta _{ {}[ m]_{q}};x\bigr) =&\frac{ ( \alpha _{{}[ m]_{q}} ) ^{3}}{ ( \beta _{{}[ m]_{q}} ) ^{2}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)}\sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)} \frac{[\nabla _{j}+2]_{q}!}{q^{3} ( \alpha _{{}[ m]_{q}} ) ^{3}[\nabla _{j}]_{q}!} \\ =&\frac{1}{q^{3} ( \beta _{{}[ m]_{q}} ) ^{2}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)} \sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)}[ \nabla _{j}+2]_{q}[\nabla _{j}+1]_{q} \\ =&\frac{1}{q^{3} ( \beta _{{}[ m]_{q}} ) ^{2}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)} \sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)} \\ &{}\times {\bigl\{ }(1+q)+q(1+2q)[\nabla _{j}]_{q}+q^{3}[ \nabla _{j}]_{q}^{2} {\bigr\} } \\ =&\frac{(1+q)}{q^{3} ( \beta _{{}[ m]_{q}} ) ^{2}}+ \frac{\alpha _{{}[ m]_{q}}(1+2q)}{q^{2} ( \beta _{{}[ m]_{q}} ) ^{2}}x \\ &{}+\frac{1}{ ( \beta _{{}[ m]_{q}} ) ^{2}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)} \sum_{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)}[ \nabla _{j}]_{q}^{2}. \end{aligned}$$

From [17] and by (1.7), we use

$$\begin{aligned}& \frac{1}{ e_{\kappa ,q}(\alpha _{[m]_{q}}x)}\sum_{j=0}^{ \infty } \frac{(\alpha _{[m]_{q}}x)^{k}}{\gamma _{\kappa ,q}(j)}[\nabla _{j}]_{q}^{2} \geq (\alpha _{[m]_{q}} x )^{2}+q^{2\kappa }[1-2\kappa ]_{q} \frac{e_{\kappa ,q}(q\alpha _{[m]_{q}}x)}{e_{\kappa ,q}(\alpha _{[m]_{q}}x)}\alpha _{[m]_{q}}x, \\& \frac{1}{ e_{\kappa ,q}(\alpha _{[m]_{q}}x)}\sum_{j=0}^{ \infty } \frac{(\alpha _{[m]_{q}}x)^{k}}{\gamma _{\kappa ,q}(j)}[\nabla _{j}]_{q}^{2} \leq (\alpha _{[m]_{q}} x )^{2}+[1+2\kappa ]_{q} \alpha _{[m]_{q}} x. \end{aligned}$$

For \(u=3\), \(g(t)=t^{3}\) and for \(u=4\), \(g(t)=t^{4}\), we get

$$ \mathcal{S}_{m,q}^{\ast }\bigl(t^{3};\alpha _{{}[ m]_{q}},\beta _{ {}[ m]_{q}};x\bigr)= \frac{1}{q^{4} ( \beta _{{}[ m]_{q}} ) ^{3}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)} \sum _{j=0}^{\infty } \frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)}[ \nabla _{j}+3]_{q}[\nabla _{j}+2]_{q}[ \nabla _{j}+1]_{q} $$

and

$$\begin{aligned} \mathcal{S}_{m,q}^{\ast }\bigl(t^{4};\alpha _{{}[ m]_{q}},\beta _{ {}[ m]_{q}};x\bigr) =&\frac{1}{q^{10} ( \beta _{{}[ m]_{q}} ) ^{4}e_{\kappa ,q}(\alpha _{{}[ m]_{q}}x)}\sum _{j=0}^{ \infty }\frac{(\alpha _{{}[ m]_{q}}x)^{j}}{\gamma _{\kappa ,q}(j)} \\ &{}\times [\nabla _{j}+4]_{q}[\nabla _{j}+3]_{q}[\nabla _{j}+2]_{q}[ \nabla _{j}+1]_{q}. \end{aligned}$$

From [37] we know that

$$\begin{aligned}& [\nabla _{j}+3]_{q}[\nabla _{j}+2]_{q}[\nabla _{j}+1]_{q} \\& \quad = (1+q) \bigl(1+q+q^{2}\bigr)+ \bigl\{ q(1+2q) \bigl(1+q+q^{2}\bigr)+q^{3}(1+q) \bigr\} [ \nabla _{j}]_{q} \\& \qquad {} + \bigl\{ q^{3}\bigl(1+q+q^{2}\bigr)+q^{4}(1+2q) \bigr\} [\nabla _{j}]_{q}^{2}+q^{6}[ \nabla _{j}]_{q}^{3}, \\& [\nabla _{j}+4]_{q}[\nabla _{j}+3]_{q}[k+2\kappa \theta _{k}+2]_{q}[ \nabla _{j}+1]_{q} \\& \quad = (1+q) \bigl(1+2q+3q^{2}+3q^{3}+2q^{4}+q^{5} \bigr)+ {\bigl\{ }q(1+2q) \bigl(1+2q+3q^{2}+3q^{3}+2q^{4}+q^{5} \bigr) \\& \qquad {} + q^{3}(1+q) \bigl(1+2q+2q^{2}+2q^{3} \bigr) {\bigr\} } {}[ \nabla _{j}]_{q} \\& \qquad {} + \bigl\{ q^{3}\bigl(1+2q+3q^{2}+3q^{3}+2q^{4}+q^{5} \bigr)+q^{4}(1+2q) \bigl(1+2q+2q^{2}+2q^{3} \bigr) \\& \qquad {}+q^{7}(1+q) \bigr\} [\nabla _{j}]_{q}^{2} \\& \qquad {} + \bigl\{ q^{6}\bigl(1+2q+2q^{2}+2q^{3} \bigr)+q^{8}(1+2q) \bigr\} [\nabla _{j}]_{q}^{3}+q^{10}[ \nabla _{j}]_{q}^{4}. \end{aligned}$$

Clearly by \(D_{m,q}(f;x)\) in [17]) and from [37] for \(g(t)=t^{3}\) and \(g(t)=t^{4}\) we get the result. □

Lemma 2.3

Take\(\mho _{j}=(t-x)^{j}\)for\(j=1,2,3,4\)and\(\delta _{m,q}=\sqrt{\mathcal{S}_{m,q}^{\ast } ( \mho _{j};\alpha _{{}[ m]_{q}},\beta _{ {}[ m]_{q}};x ) }\). Let\(\mathcal{S}_{m,q}^{\ast }( \,\cdot \, ; \cdot )\)be the operators defined by (2.3). Then, for all\(x\in {}[ 0,\infty )\)and\(0< q<1\), we have\(\mathcal{S}_{m,q}^{\ast } ( \mho _{1};\alpha _{{}[ m]_{q}}, \beta _{{}[ m]_{q}};x ) = ( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}}-1 ) x+ \frac{1}{q\beta _{{}[ m]_{q}}}\)and

$$ ( \delta _{m,q} ) ^{2} =\textstyle\begin{cases} {\frac{(1+q)}{q^{3} ( \beta _{{}[ m]_{q}} ) ^{2}}+\frac{\alpha _{{}[ m]_{q}}}{ ( q\beta _{{}[ m]_{q}} ) ^{2}} ( 1+2q+q^{2}[1+2\kappa ]_{q}-2q\beta _{{}[ m]_{q}} ) x+ ( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}}-1 ) ^{2}x^{2}} \\ \quad \textit{for }j=2, \\ {\frac{(1+q)^{2}}{q^{6} ( \beta _{{}[ m]_{q}} ) ^{4}}+ \frac{2(1+q)\alpha _{{}[ m]_{q}}}{ ( q^{5}\beta _{{}[ m]_{q}} ) ^{4}} ( 1+2q+q^{2}[1+2\kappa ]_{q}-2q\beta _{{}[ m]_{q}} ) x} \\ \quad {}+{ {[} \frac{ ( \alpha _{{}[ m]_{q}} ) ^{2}}{ ( q\beta _{{}[ m]_{q}} ) ^{4}} ( 1+2q+q^{2}[1+2 \kappa ]_{q}-2q\beta _{{}[ m]_{q}} ) ^{2}+ \frac{2(1+q)}{q^{3} ( \beta _{{}[ m]_{q}} ) ^{2}} ( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}}-1 ) ^{2} {]}x^{2}} \\ \quad {}+{\frac{2\alpha _{{}[ m]_{q}}}{ ( q\beta _{{}[ m]_{q}} ) ^{2}} ( 1+2q+q^{2}[1+2\kappa ]_{q}-2q\beta _{{}[ m]_{q}} ) ( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}}-1 ) ^{2}x^{3}+ ( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}}-1 ) ^{4}x^{4}} \\ \quad \textit{for }j=4.\end{cases} $$

3 Approximation by Korovkin’s theorem

Korovkin’s theorem has many applications and useful connections between the branches of mathematics and classical approximation theory (see [9]). In a very general context it is possible to define the Korovkin theorem presented in [9], so that it can be used in applications for the best approximation. Now we approximate the operators \(\mathcal{S}_{m,q_{m}}^{\ast }( \,\cdot\, ; \cdot )\) by using Korovkin’s theorem. Let \(q=q_{m}\) with \(q_{m}\in (0,1)\) and let c be a fixed positive constant such that

$$ \lim_{n\rightarrow \infty }q_{m}=1\quad \text{and}\quad \lim _{n \rightarrow \infty }q_{m}^{n}=c. $$
(3.1)

Theorem 3.1

Let\(\{\alpha _{m_{q_{m}}}\}_{m\geqq 1}\)and\(\{\beta _{m_{q_{m}}}\}_{m\geqq 1}\)be the sequences satisfying (3.1). Then, for every functiongsuch that\(\{g: g\in C[0,\infty )\cap x\in {}[ 0,\infty ), \textit{ and } \frac{g(x)}{1+x^{2}} \textit{ is finite when } x\rightarrow \infty \}\),

$$ \lim_{m\rightarrow \infty }\mathcal{S}_{m,q_{m}}^{\ast }(g; \alpha _{ {}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x)=g(x) $$

uniformly on each compact subset of\([0,\infty )\).

Proof

The well-known Korovkin theorem implies that

$$ \lim_{m\rightarrow \infty }\mathcal{S}_{m,q_{m}}^{\ast } \bigl(t^{i}; \alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x \bigr)=x^{i}, \quad i=0,1,2. $$

Clearly, from (2.1) and (3.1), we see that

$$ \lim_{m\rightarrow \infty }\mathcal{S}_{m,q_{m}}^{\ast }(t; \alpha _{ {}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x)=x, \qquad \lim_{m \rightarrow \infty } \mathcal{S}_{m,q_{m}}^{\ast }\bigl(t^{2};\alpha _{ {}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x\bigr)=x^{2}. $$

This proves the theorem. □

We recall that

$$\begin{aligned}& \mathcal{X}_{(1+x^{2})}[0,\infty ) = \bigl\{ g: \bigl\vert g(x) \bigr\vert \leqq \mathcal{C}_{g}\bigl(1+x^{2} \bigr) \bigr\} , \\& \mathcal{Y}_{(1+x^{2})}[0,\infty ) = \bigl\{ g: g\in C[0,\infty ) \cap \mathcal{X}_{(1+x^{2})}[0,\infty ) \bigr\} , \\& \mathcal{Y}_{(1+x^{2})}^{\sigma }[0,\infty ) = \biggl\{ g: g\in \mathcal{Y}_{(1+x^{2})}[0,\infty ) \mbox{ such that } \lim _{x \rightarrow \infty }\frac{g(x)}{1+x^{2}}=\sigma \biggr\} , \end{aligned}$$

where σ is positive constant and \(\mathcal{C}_{g}\) is a constant depends upon g.

Theorem 3.2

For all\(g\in \mathcal{Y}_{(1+x^{2})}^{\sigma }[0,\infty )\), we have

$$ \lim_{m\rightarrow \infty } \bigl\Vert \mathcal{S}_{m,q_{m}}^{\ast }(g; \alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}})-g \bigr\Vert _{(1+x^{2})}=0. $$

Proof

Take the test function \(g(t)=t^{p}\) for \(p=0,1,2\) and use Lemma 2.2. From the Korovkin theorem we know, for every \(g(t)\in \mathcal{Y}_{(1+x^{2})}^{\sigma }[0,\infty )\), \(\mathcal{S}_{m,q_{m}}^{\ast }(t^{p};\alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x)\rightarrow x^{p}\) uniformly on \([0,\infty )\), as \(m\rightarrow \infty \). When \(\mathcal{S}_{m,q_{m}}^{\ast }(1;\alpha _{{}[ m]_{q_{m}}},\beta _{ {}[ m]_{q_{m}}};x)=1\), then clearly

$$ \lim_{m\rightarrow \infty }\bigl\| \mathcal{S}_{m,q_{m}}^{ \ast } ( 1;\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}} ) -1\bigr\| _{(1+x^{2})}=0. $$
(3.2)

In the case of \(g(t)=t^{2}\)

$$\begin{aligned} \bigl\| \mathcal{S}_{m,q_{m}}^{\ast } ( t; \alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}} ) -x \bigr\| _{(1+x^{2})} =& \sup_{x\geqq 0} \frac{ \vert \mathcal{S}_{m,q_{m}}^{\ast }(t;\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x)-x \vert }{1+x^{2}} \\ =& \biggl( \frac{\alpha _{{}[ m]_{q}}}{\beta _{{}[ m]_{q}}}-1 \biggr) \sup_{x\in {}[ 0,\infty )} \frac{x}{1+x^{2}}+ \frac{1}{q_{m}\beta _{q_{m}}}\sup_{x\in {}[ 0,\infty )} \frac{1}{1+x^{2}}. \end{aligned}$$

Clearly, in the view of the results by (2.1), we see that

$$ \lim_{m\rightarrow \infty }\bigl\| \mathcal{S}_{m,q_{m}}^{ \ast } ( t;\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}} ) -x\bigr\| _{(1+x^{2})}=0. $$
(3.3)

Similarly,

$$\begin{aligned} \bigl\| \mathcal{S}_{m,q_{m}}^{\ast } \bigl( t^{2}; \alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}} \bigr) -x^{2} \bigr\| _{(1+x^{2})} =&\sup_{x\geqq 0} \frac{ \vert \mathcal{S}_{m,q_{m}}^{\ast }(t^{2};\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x)-x^{2} \vert }{1+x^{2}} \\ =& \biggl( \frac{\alpha _{{}[ m]_{q_{m}}}}{\beta _{{}[ m]_{q_{m}}}}-1 \biggr) ^{2}\sup _{x\geqq 0}\frac{x^{2}}{1+x^{2}} \\ &{}+\frac{\alpha _{{}[ m]_{q_{m}}}}{ ( \beta _{{}[ m]_{q_{m}}} ) ^{2}} \biggl( \frac{1+2q_{m}}{q_{m}^{2}}+[1+2\kappa ]_{q_{m}} \biggr) \sup_{x \geqq 0}\frac{x}{1+x^{2}} \\ &{}+\frac{(1+q_{m})}{q_{m}^{3} ( \beta _{{}[ m]_{q_{m}}} ) ^{2}}\sup_{x\geqq 0} \frac{1}{1+x^{2}}. \end{aligned}$$

Thus,

$$ \lim_{m\rightarrow \infty }\bigl\| \mathcal{S}_{m,q_{m}}^{ \ast } \bigl( t^{2};\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}} \bigr) -x^{2}\bigr\| _{\sigma }=0. $$
(3.4)

This completes the proof of Theorem 3.2. □

4 Order of approximation

Let \(g\in C_{H}[0,\infty )\) denote the set of all continuous functions on \([0,\infty )\) satisfying \(| g(x)| \leqq ae^{bx}\) for all \(x\in {}[ 0,\infty )\) and where a, b are positive constants. For a given \(\delta ^{\ast }>0\), the modulus of continuity of the function g is defined as

$$ \omega ^{\ast }\bigl(g;\delta ^{\ast }\bigr)=\sup _{ \vert x_{1}-x_{2} \vert \leqq \delta ^{\ast },x_{1},x_{2}\in {}[ 0,\infty )} \bigl\vert g(x_{1})-g(x_{2}) \bigr\vert . $$
(4.1)

Note that

$$ \bigl\vert g(x_{1})-g(x_{2}) \bigr\vert \leqq \biggl( \frac{ \vert x_{1}-x_{2} \vert }{\delta ^{\ast }}+1 \biggr) \omega ^{ \ast }\bigl(g;\delta ^{\ast }\bigr). $$
(4.2)

For all \(g\in C_{B}[0,\infty )\), the modulus of continuity of order two is defined by

$$ \omega _{2}^{\ast }\bigl(g;\delta ^{\ast }\bigr)= \sup_{0< t\leqq \delta ^{\ast },y \in [0,\infty )} \bigl\Vert g(y+2t)-2g(y+t)+g(y) \bigr\Vert _{C_{B}[0, \infty )}, $$
(4.3)

where \(C_{B}[0,\infty )\) is defined as a class of all real valued functions on \([0,\infty )\) which are bounded and uniformly continuous with the sup norm defined as \(\| g\| _{C_{B}[0,\infty )}= \sup_{x\geqq 0}| g(x) | \).

Theorem 4.1

For all\(g\in C_{B}[0,\infty )\)and\(q=q_{m}\)with the property\(q_{m}\in (0,1)\), we have

$$\begin{aligned}& \bigl| \mathcal{S}_{m,q_{m}}^{\ast } ( g;\alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x ) -g(x)\bigr| \\& \quad \leqq \bigl( 1+\sqrt{\varTheta _{m,q_{m}}(x)} \bigr) \omega ^{\ast } \biggl( g;\frac{1}{\sqrt{\beta _{{}[ m]_{q_{m}}}}} \biggr) , \end{aligned}$$

where\(\varTheta _{m,q_{m}}(x)=\frac{(1+q)}{q^{3}}+ \frac{\alpha _{{}[ m]_{q}}}{q^{2}} ( 1+2q+q^{2}[1+2\kappa ]_{q}-2q \beta _{{}[ m]_{q}} ) x+ ( \alpha _{{}[ m]_{q}}- \beta _{{}[ m]_{q}} ) ^{2}x^{2}\).

Proof

In the light of (4.1), (4.2) and the Cauchy–Schwarz inequality, we see that

$$\begin{aligned}& \bigl| \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-g(x) \bigr| \\& \quad \leqq \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa , q_{m}} (\alpha _{[m]_{q_{m}}x} )}\sum_{j=0}^{ \infty } \mathcal{T}_{m,q_{m}}^{\kappa }(x) \int _{0}^{\infty /1-q_{m}} \frac{e_{\kappa , q_{m}}(-[m]_{q_{m}}t) ([m]_{q_{m}} t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \bigl\vert g(t)-g(x) \bigr\vert \,\mathrm{d}_{q_{m}}t \\& \quad \leqq \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa , q_{m}} (\alpha _{[m]_{q_{m}}x} )}\sum_{j=0}^{ \infty } \mathcal{T}_{m,q_{m}}^{\kappa }(x) \\& \qquad{} \times \int _{0}^{\infty /1-q_{m}} \frac{e_{\kappa , q_{m}} (-\alpha _{[m]_{q_{m}}}t ) (\alpha _{[m]_{q_{m}}} t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \biggl( 1+ \frac{1}{\delta ^{\ast } } \vert t-x \vert \biggr) \,\mathrm{d}_{q_{m}}t \omega ^{\ast } \bigl(g;{\delta ^{\ast } } \bigr) \\& \quad = {\Biggl\{ } \frac{1}{{\delta ^{\ast } }} {\Biggl(} \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa , q_{m}} (\alpha _{[m]_{q_{m}}x} )}\sum _{j=0}^{ \infty } \mathcal{T}_{m,q_{m}}^{\kappa }(x) \\& \qquad {} \times \int _{0}^{\infty /1-q_{m}} \frac{e_{\kappa , q_{m}} (\alpha _{[m]_{q_{m}}t} ) (\alpha _{[m]_{q_{m}}} t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \bigl( \vert t-x \vert \bigr) \,\mathrm{d}_{q_{m}}t {\Biggr)}+1 { \Biggr\} } \omega ^{\ast } \bigl(g;\delta ^{\ast } \bigr) \\& \quad \leq {\Biggl\{ } 1+\frac{1}{\delta ^{\ast } } {\Biggl[} \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa , q_{m}} (\alpha _{[m]_{q_{m}}}x )}\sum _{j=0}^{\infty } \mathcal{T}_{m,q_{m}}^{\kappa }(x) \\& \qquad {} \times \int _{0}^{\infty /1-q_{m}} \frac{e_{\kappa , q_{m}} (-\alpha _{[m]_{q_{m}}}t ) (\alpha _{[m]_{q_{m}}} t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \biggl( 1+ \frac{1}{\delta ^{\ast } } (t-x )^{2} \biggr) \,\mathrm{d}_{q_{m}}t {\Biggr]} ^{\frac{1}{2}} {\Biggr\} } \omega ^{\ast } \bigl(g;\delta ^{\ast } \bigr) \\& \quad = \biggl\{ 1+\frac{1}{\delta ^{\ast } } \bigl( \mathcal{S}_{m,q_{m}}^{ \ast } \bigl((t-x )^{2};\alpha _{[m]_{q}}, \beta _{[m]_{q}};x \bigr) \bigr) ^{\frac{1}{2}} \biggr\} \omega ^{\ast } \bigl(g;\delta ^{\ast } \bigr). \end{aligned}$$

If we take \(\delta ^{\ast } =\delta _{m,q_{m}}^{\ast }= \frac{1}{\sqrt{\beta _{[m]_{q_{m}}}}}\), then we easily get the results. □

Corollary 4.2

If we choose\(\delta _{m,q_{m}}^{\ast }=\mathcal{S}_{m,q_{m}}^{\ast } ( (t-x )^{2};\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x )\), then

$$ \bigl\vert \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-g(x) \bigr\vert \leqq 2\omega ^{\ast } \bigl( g;\delta _{m,q_{m}}^{\ast } \bigr) . $$

5 Rate of convergence

For all \(g\in C[0,\infty )\) and \(\lambda _{1}, \lambda _{2}\in \)\([0,\infty )\), the set \(\operatorname{Lip}_{\mathcal{C}}(\xi )\) is defined as

$$ \operatorname{Lip}_{\mathcal{C}}(\xi )= \bigl\{ g: \bigl\vert g(\lambda _{1})-g(\lambda _{2}) \bigr\vert \leqq \mathcal{C} \vert \lambda _{1}-\lambda _{2} \vert ^{\xi } \bigr\} . $$
(5.1)

Moreover, for any \(\chi \in C_{B}[0,\infty )\) one has the supremum norm

$$ \Vert \chi \Vert _{C_{B}[0,\infty )}=\sup_{x\geqq 0} \bigl\vert \chi (x) \bigr\vert . $$
(5.2)

Let

$$\begin{aligned}& C_{B}^{2}[0,\infty )=\bigl\{ \chi :\chi ,\chi ^{\prime } ,\chi ^{ \prime \prime }\in C_{B}[0,\infty )\bigr\} , \end{aligned}$$
(5.3)
$$\begin{aligned}& \Vert \chi \Vert _{C_{B}^{2}[0,\infty )}= \Vert \chi \Vert _{C_{B}[0,\infty )}+ \bigl\Vert \chi ^{\prime } \bigr\Vert _{C_{B}[0, \infty )}+ \bigl\Vert \chi ^{\prime \prime } \bigr\Vert _{C_{B}[0,\infty )}. \end{aligned}$$
(5.4)

Theorem 5.1

Let the sequences of positive numbers\(\{\alpha _{{}[ m]_{q_{m}}}\}_{n\geqq 1}\)and\(\{\beta _{{}[ m]_{q_{m}}}\}_{m\geqq 1}\)be defined by (2.1). Then, for each\(g\in \operatorname{Lip}_{\mathcal{C}}(\xi )\)the operators\(\mathcal{S}_{m,q_{m}}^{\ast }(\, \cdot\, ; \cdot )\)satisfy

$$\begin{aligned}& \bigl| \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x)-g(x)\bigr| \\& \quad \leqq \mathcal{C} \biggl\{ \frac{(1+q_{m})}{q_{m}^{3} ( \beta _{{}[ m]_{q_{m}}} ) ^{2}}+ \frac{\alpha _{{}[ m]_{q_{m}}}}{ ( q\beta _{{}[ m]_{q_{m}}} ) ^{2}} \bigl( 1+2q_{m}+q_{m}^{2}[1+2\kappa ]_{q_{m}}-2q_{m}\beta _{{}[ m]_{q_{m}}} \bigr) x \\& \qquad {}+ \biggl( \frac{\alpha _{{}[ m]_{q_{m}}}}{\beta _{{}[ m]_{q_{m}}}}-1 \biggr) ^{2}x^{2} \biggr\} ^{\frac{\xi }{2}}. \end{aligned}$$

Proof

We use the result by (5.1):

$$\begin{aligned} \bigl\vert \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x)-g(x) \bigr\vert \leq & \bigl\vert \mathcal{S}_{m,q_{m}}^{ \ast }\bigl(g(t)-g(x);\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x\bigr) \bigr\vert \\ \leq &\mathcal{S}_{m,q_{m}}^{\ast } \bigl( \bigl\vert g(t)-g(x) \bigr\vert ; \alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x \bigr) \\ \leq &\mathcal{C}\mathcal{S}_{m,q_{m}}^{\ast } \bigl( \vert t-x \vert ^{ \xi };x \bigr) . \end{aligned}$$

Therefore,

$$\begin{aligned}& \bigl| \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-g(x) \bigr| \\& \quad \leqq \mathcal{C} \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa ,q_{m}}(\alpha _{[m]_{q_{m}}})} \sum_{j=0}^{\infty } \mathcal{T}_{m,q_{m}}^{\kappa }(x) \int _{0}^{\infty /1-{q_{m}}} \frac{e_{\kappa ,q_{m}}(-\alpha _{[m]_{q_{m}}}t) (\alpha _{[m]_{q_{m}}}t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \vert t-x \vert \,\mathrm{d}_{q_{m}}t \\& \quad \leqq \mathcal{C} \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa ,{q_{m}}}(\alpha _{[m]_{q_{m}}})}\sum_{j=0}^{\infty } \bigl( \mathcal{T}_{m,q_{m}}^{\kappa }(x) \bigr) ^{\frac{2-\xi }{2}} \bigl( \mathcal{T}_{m,q_{m}}^{\kappa }(x) \bigr) ^{\frac{\xi }{2}} \\& \qquad {} \times \int _{0}^{\infty /1-{q_{m}}} \frac{e_{q_{m}}(-\alpha _{[m]_{q_{m}}}t) (\alpha _{[m]_{q_{m}}}t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \vert t-x \vert \,\mathrm{d}_{q_{m}}t \\& \quad \leqq \mathcal{C} \Biggl( \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa ,{q_{m}}}(\alpha _{[m]_{q_{m}}}x)}\sum _{j=0}^{\infty }\mathcal{T}_{m,q_{m}}^{\kappa }(x) \int _{0}^{\infty /1-{q_{m}}} \frac{e_{q_{m}}(-\alpha _{[m]_{q_{m}}}t) (\alpha _{[m]_{q_{m}}}t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \,\mathrm{d}_{q_{m}}t \Biggr) ^{\frac{2-\xi }{2}} \\& \qquad {} \times \Biggl( \frac{\alpha _{[m]_{q_{m}}}}{e_{\kappa ,{q_{m}}}(\alpha _{[m]_{q_{m}}}x)}\sum_{j=0}^{\infty } \mathcal{T}_{m,q_{m}}^{\kappa }(x) \int _{0}^{\infty /1-{q_{m}}} \frac{e_{q_{m}}(-\alpha _{[m]_{q_{m}}}t) (\alpha _{[m]_{q_{m}}}t )^{\nabla _{j}}}{[\nabla _{j}]_{q}!} \vert t-x \vert ^{2}\,\mathrm{d}_{q_{m}}t \Biggr) ^{ \frac{\xi }{2}} \\& \quad = \mathcal{C} \bigl( \mathcal{S}_{m,q_{m}}^{\ast } (t-x )^{2};\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \bigr) ^{ \frac{\xi }{2}}. \end{aligned}$$

This completes the proof. □

Theorem 5.2

For all\(\chi \in C_{B}^{2}[0,\infty )\)defined by (5.3), we have

$$ \bigl\vert \mathcal{S}_{m,q_{m}}^{\ast }(\chi ;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-\chi (x) \bigr\vert \leqq \biggl( \frac{\varLambda _{m,q_{m}}(x)}{2}+\varTheta _{m,q_{m}}(x) \biggr) \Vert \chi \Vert _{C_{B}^{2}[0, \infty )}, $$

where\(\varLambda _{m,q_{m}}(x)= \frac{(1+q_{m})}{q_{m}^{3} (\beta _{[m]_{q_{m}}} )^{2}}+ \frac{\alpha _{[m]_{q_{m}}}}{ (q_{m}\beta _{[m]_{q_{m}}} )^{2}} (1+2q_{m}+q_{m}^{2}[1+2\kappa ]_{q_{m}} -2q_{m}\beta _{[m]_{q_{m}}} )x+ (\frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 )^{2}x^{2}\)and\(\varTheta _{m,q_{m}}(x)= ( \frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 )x+\frac{1}{q\beta _{[m]_{q_{m}}}}\).

Proof

Take \(\chi \in C_{B}^{2}[0,\infty )\) and \(\phi \in (x,t)\). On applying the linearity on generalized mean value theorem of Taylor series, we conclude that

$$\begin{aligned} \mathcal{S}_{m,q_{m}}^{\ast }(\chi ;\alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x)-\chi (x) =&\chi ^{\prime }(x) \mathcal{S}_{m,q_{m}}^{\ast } \bigl( (t-x);\alpha _{{}[ m]_{q_{m}}},\beta _{ {}[ m]_{q_{m}}};x \bigr) \\ &{}+\frac{\chi ^{\prime \prime }(\phi )}{2}\mathcal{S}_{m,q_{m}}^{ \ast } \bigl( (t-x)^{2};;\alpha _{{}[ m]_{q_{m}}},\beta _{ {}[ m]_{q_{m}}};x \bigr) . \end{aligned}$$

Therefore,

$$\begin{aligned}& \bigl| \mathcal{S}_{m,q_{m}}^{\ast }(\chi ;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-\chi (x)\bigr| \\& \quad \leqq \biggl\{ \biggl(\frac{\alpha _{[m]_{q}}}{\beta _{[m]_{q}}}-1 \biggr)x+\frac{1}{q\beta _{[m]_{q}}} \biggr\} \bigl\Vert \chi ^{\prime } \bigr\Vert _{C_{B}[0, \infty )} \\& \qquad {} + {\biggl\{ } \frac{(1+q_{m})}{q_{m}^{3} (\beta _{[m]_{q_{m}}} )^{2}}+ \frac{\alpha _{[m]_{q_{m}}}}{ (q_{m}\beta _{[m]_{q_{m}}} )^{2}} \bigl(1+2q_{m}+q_{m}^{2}[1+2\kappa ]_{q_{m}} -2q_{m}\beta _{[m]_{q_{m}}} \bigr)x \\& \qquad {} + \biggl(\frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 \biggr)^{2}x^{2} { \biggr\} }\frac{ \Vert \chi ^{\prime \prime } \Vert _{C_{B}[0,\infty )}}{2}. \end{aligned}$$

From (5.4) we easily see that

$$\begin{aligned}& \bigl| \mathcal{S}_{m,q_{m}}^{\ast }(\chi ;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-\chi (x)\bigr| \\& \quad \leqq \biggl\{ \biggl( \frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 \biggr)x+\frac{1}{q_{m}\beta _{[m]_{q_{m}}}} \biggr\} \Vert \chi \Vert _{C_{B}^{2}[0, \infty )} \\& \qquad {} + {\biggl\{ } \frac{(1+q_{m})}{q_{m}^{3} (\beta _{[m]_{q_{m}}} )^{2}}+ \frac{\alpha _{[m]_{q_{m}}}}{ (q_{m}\beta _{[m]_{q_{m}}} )^{2}} \bigl(1+2q_{m}+q_{m}^{2}[1+2\kappa ]_{q_{m}} -2q_{m}\beta _{[m]_{q_{m}}} \bigr)x \\& \qquad {} + \biggl(\frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 \biggr)^{2}x^{2} { \biggr\} }\frac{ \Vert \chi \Vert _{C_{B}^{2}[0,\infty )}}{2}. \end{aligned}$$

This completes the proof. □

6 Some direct theorem

Let g and \(\varPhi \in C_{B}^{2}[0,\infty )\). For a given \(\delta ^{\ast }>0\), the Peetre’s K-functional [41] is defined as

$$\begin{aligned}& K\bigl(g;\delta ^{\ast }\bigr)=\inf \bigl\{ \Vert g-\varPhi \Vert _{C_{B}[0, \infty )}+\delta ^{\ast } \Vert \varPhi \Vert _{C_{B}^{2}[0, \infty )} \bigr\} , \end{aligned}$$
(6.1)
$$\begin{aligned}& K\bigl(g;\delta ^{\ast }\bigr)\leqq \mathcal{W}\omega _{2}^{\ast }\bigl(g;\bigl(\delta ^{ \ast } \bigr)^{\frac{1}{2}}\bigr), \end{aligned}$$
(6.2)

where \(\omega _{2}^{\ast }\) is the modulus of continuity of order two defined in (4.3). By [14], there exists an absolute constant \(\mathcal{C}>0\) such that

$$ K\bigl(g;\delta ^{\ast }\bigr)\leqq \mathcal{C}\bigl\{ \omega _{2}^{\ast }\bigl(g;\sqrt{ \delta ^{\ast }}\bigr)+ \min \bigl(1,\delta ^{\ast }\bigr) \Vert g \Vert \bigr\} . $$
(6.3)

Moreover, in the spaces of weighted modulus of continuity for each arbitrary \(g\in \mathcal{Y}_{(1+x^{2})}^{\sigma }[0,\infty )\) we have [10]

$$\begin{aligned}& \varOmega ^{\ast }\bigl(g;\delta ^{\ast }\bigr)=\sup _{x\geqq 0, \vert u \vert \leqq \delta ^{\ast }}\frac{ \vert g(x+u)-g(x) \vert }{(1+u^{2})(1+x^{2})}, \end{aligned}$$
(6.4)
$$\begin{aligned}& \lim_{\delta \rightarrow 0}\varOmega ^{\ast } \bigl(g;\delta ^{\ast } \bigr)=0, \end{aligned}$$
(6.5)
$$\begin{aligned}& \bigl\vert g(t)-g(x) \bigr\vert \leqq 2 \biggl( 1+ \frac{ \vert t-x \vert }{\delta ^{\ast } } \biggr) \bigl(1+\bigl(\delta ^{\ast }\bigr)^{2}\bigr) \bigl(1+x^{2}\bigr) \bigl(1+(t-x)^{2}\bigr)\varOmega ^{ \ast } \bigl(g;\delta ^{\ast } \bigr), \end{aligned}$$
(6.6)

where \(t,x\in {}[ 0,\infty )\).

Theorem 6.1

For all\(g\in C_{B}[0,\infty )\)and\(q=q_{m}\)with the number\(q_{m}\in (0,1)\), we have

$$\begin{aligned}& \bigl| \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-g(x) \bigr| \\& \quad \leqq 2\mathcal{C} {\biggl\{ }\omega _{2}^{\ast } \biggl( g;\sqrt{ \frac{\varLambda _{m,q_{m}}(x)}{4}+\frac{\varTheta _{m,q_{m}}(x)}{2}} \biggr) + \min \biggl( 1,\frac{\varLambda _{m,q_{m}}(x)}{4}+\frac{\varTheta _{m,q_{m}}(x)}{2} \biggr) \Vert g \Vert _{C_{B}[0,\infty )} {\biggr\} }, \end{aligned}$$

where\(\mathcal{C}\)is an absolute positive constant.

Proof

Let \(\varPhi \in C_{B}[0,\infty )\). Applying Theorem 5.2, we get the result asserted by Theorem 6.1. Therefore,

$$\begin{aligned}& \bigl\vert \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x)-g(x) \bigr\vert \\& \quad \leqq \bigl\vert \mathcal{S}_{m,q_{m}}^{ \ast } \bigl( (g-\varPhi );\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x \bigr) \bigr\vert \\& \qquad {} + \bigl\vert \mathcal{S}_{m,q_{m}}^{\ast }(\varPhi ;\alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x)-\varPhi (x) \bigr\vert + \bigl\vert g(x)-\varPhi (x) \bigr\vert \\& \quad \leqq 2 \Vert g-\varPhi \Vert _{C_{B}[0,\infty )}+ \biggl( \frac{\varLambda _{m,q_{m}}(x)}{2}+\varTheta _{m,q_{m}}(x) \biggr) \Vert \varPhi \Vert _{C_{B}^{2}[0,\infty )} \\& \quad = 2 \biggl( \Vert g-\varPhi \Vert _{C_{B}[0,\infty )}+ \frac{\varLambda _{m,q_{m}}(x)}{4}+ \frac{\varTheta _{m,q_{m}}(x)}{2} \Vert \varPhi \Vert _{C_{B}^{2}[0,\infty )} \biggr) . \end{aligned}$$

On taking the infimum over all \(\varPhi \in C_{B}^{2}[0,\infty )\) and applying the result (6.2), we get

$$ \bigl\vert \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-g(x) \bigr\vert \leqq 2K \biggl( g;\frac{\varLambda _{m,q_{m}}(x)}{4}+\frac{\varTheta _{m,q_{m}}(x)}{2} \biggr). $$

Therefore, from (6.3), we get an absolute constant \(\mathcal{C}>0\) such that the result holds. □

Theorem 6.2

For each\(g\in \mathcal{Y}_{(1+x^{2})}^{\sigma }[0,\infty )\),

$$ \sup_{x\in [0,\varPsi _{\kappa ,q_{m}}(m) )} \frac{ \vert \mathcal{S}_{m,q_{m}}^{\ast }(g;\alpha _{{}[ m]_{q_{m}}},\beta _{{}[ m]_{q_{m}}};x)-g(x) \vert }{1+x^{2}} \leqq \mathcal{N} \bigl(1+ \varPsi _{\kappa ,q_{m}}(m) \bigr)\varOmega ^{\ast } ( g;\sqrt{\varPsi _{\kappa ,q_{m}}} ) , $$

where\(\mathcal{N}=2(1+\mathcal{N}_{1}+2\sqrt{2}\mathcal{N}_{2})\)and\(\varPsi _{\kappa ,q_{m}}(m)=\max {\{}\gamma _{1,n_{q_{m}}}, \gamma _{2,n_{q_{m}}}, \gamma _{3,n_{q_{m}}} {\}}\)with\(\gamma _{1,n_{q_{m}}}=\frac{(1+q_{m})}{q_{m}^{3} ( \beta _{{}[ m]_{q_{m}}} ) ^{2}}\), \(\gamma _{2,n_{q_{m}}}= \frac{\alpha _{{}[ m]_{q_{m}}}}{ ( q_{m}\beta _{{}[ m]_{q_{m}}} ) ^{2}} ( 1+2q_{m}+q_{m}^{2}[1+2 \kappa ]_{q_{m}}-2q_{m}\beta _{{}[ m]_{q_{m}}} ) \)and\(\gamma _{3,n_{q_{m}}}= ( \frac{\alpha _{{}[ m]_{q_{m}}}}{\beta _{{}[ m]_{q_{m}}}}-1 ) ^{2}\).

Proof

From (6.6), we have

$$\begin{aligned} & \bigl\vert \mathcal{S}_{m,q_{m}}^{\ast }(g; \alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x)-g(x) \bigr\vert \\ &\quad \leqq 2\bigl(1+\bigl(\delta ^{\ast }\bigr)^{2}\bigr) \bigl(1+x^{2}\bigr)\varOmega ^{\ast }\bigl(g; \delta ^{\ast }\bigr) \biggl(1+ \mathcal{S}_{m,q_{m}}^{\ast } \bigl((t-x)^{2};\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \bigr) \\ &\qquad {} + \mathcal{S}_{m,q_{m}}^{\ast } \biggl( \bigl(1+(t-x)^{2} \bigr) \frac{ \vert t-x \vert }{\delta ^{\ast }};\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \biggr) \biggr). \end{aligned}$$
(6.7)

From the Cauchy–Schwartz inequality obviously

$$\begin{aligned} & \mathcal{S}_{m,q_{m}}^{\ast } \biggl( \bigl(1+(t-x)^{2} \bigr) \frac{ \vert t-x \vert }{\delta ^{\ast } };\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \biggr) \\ &\quad \leqq 2 \bigl(\mathcal{S}_{m,q_{m}}^{\ast } \bigl(1+(t-x)^{4};\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \bigr) \bigr)^{\frac{1}{2}} \\ &\qquad {}\times \biggl(\mathcal{S}_{m,q_{m}}^{\ast } \biggl( \frac{(t-x)^{2}}{(\delta ^{\ast }) ^{2}}; \alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \biggr) \biggr)^{ \frac{1}{2}}. \end{aligned}$$
(6.8)

From Lemma 2.3, we easily conclude that

$$ \mathcal{S}_{m,q_{m}}^{\ast } \bigl((t-x)^{2}; \alpha _{{}[ m]_{q_{m}}}, \beta _{{}[ m]_{q_{m}}};x \bigr)\leqq \varPsi _{\kappa ,q_{m}}(m) \bigl(1+x+x^{2}\bigr), $$

where

$$\begin{aligned} \varPsi _{\kappa ,q_{m}}(m) =&\max {\biggl\{ } \frac{(1+q_{m})}{q_{m}^{3} ( \beta _{{}[ m]_{q_{m}}} ) ^{2}}, \frac{\alpha _{{}[ m]_{q_{m}}}}{ ( q_{m}\beta _{{}[ m]_{q_{m}}} ) ^{2}} \bigl( 1+2q_{m}+q_{m}^{2}[1+2 \kappa ]_{q_{m}}-2q_{m}\beta _{{}[ m]_{q_{m}}} \bigr) , \\ & \biggl( \frac{\alpha _{{}[ m]_{q_{m}}}}{\beta _{{}[ m]_{q_{m}}}}-1 \biggr) ^{2} {\biggr\} }. \end{aligned}$$

There exists a positive constant \(\mathcal{C}_{1}\) satisfying

$$ \mathcal{S}_{m,q_{m}}^{\ast } \bigl((t-x)^{2};\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \bigr)\leqq \mathcal{N}_{1}\bigl(1+x+x^{2}\bigr). $$
(6.9)

Similarly,

$$ \mathcal{S}_{m,q_{m}}^{\ast } \bigl((t-x)^{4};\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \bigr)\leqq \varphi _{\kappa ,q_{m}}(m) \bigl(1+x+x^{2}+x^{3}+x^{4} \bigr), $$
(6.10)

where

$$\begin{aligned} &\xi _{\kappa ,q_{m}}(m) \\ &\quad = \max {\biggl\{ } \frac{(1+q_{m})^{2}}{q_{m}^{6} (\beta _{[m]_{q}} )^{4}}, {\biggl[} \frac{2(1+q_{m})\alpha _{[m]_{q_{m}}}}{ (q_{m}^{5}\beta _{[m]_{q_{m}}} )^{4}} \bigl(1+2q_{m}+q_{m}^{2}[1+2 \kappa ]_{q_{m}} -2q_{m}\beta _{[m]_{q_{m}}} \bigr) { \biggr]}, \\ &\qquad {\biggl[} \frac{ (\alpha _{[m]_{q_{m}}} )^{2}}{ (q_{m}\beta _{[m]_{q_{m}}} )^{4}} \bigl(1+2q_{m}+q_{m}^{2}[1+2 \kappa ]_{q_{m}} -2q_{m}\beta _{[m]_{q_{m}}} \bigr)^{2} \\ &\qquad {}+ \frac{2(1+q_{m})}{q_{m}^{3} (\beta _{[m]_{q_{m}}} )^{2}} \biggl( \frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 \biggr)^{2} {\biggr]}, \\ &\qquad \frac{2\alpha _{[m]_{q_{m}}}}{ (q_{m}\beta _{[m]_{q_{m}}} )^{2}} \bigl(1+2q_{m}+q_{m}^{2}[1+2 \kappa ]_{q_{m}} -2q_{m}\beta _{[m]_{q_{m}}} \bigr) \biggl(\frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 \biggr)^{2}, \\ &\qquad \biggl( \frac{\alpha _{[m]_{q_{m}}}}{\beta _{[m]_{q_{m}}}}-1 \biggr)^{4} {\biggr\} }. \end{aligned}$$

Since \(\{\alpha _{{}[ m]_{q}}\}\) and \(\{\beta _{{}[ m]_{q}}\}\) are the sequences satisfying (2.1) and \(\lim_{n\rightarrow \infty }q_{m}=1\), there exists a constant \(\mathcal{N}_{2}>0\), such that

$$ \bigl(\mathcal{S}_{m,q_{m}}^{\ast } \bigl(1+(t-x)^{4} ;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \bigr) \bigr)^{\frac{1}{2}} \leqq \mathcal{N}_{2} \bigl(2+x+x^{2}+x^{3}+x^{4} \bigr)^{\frac{1}{2}}. $$
(6.11)

Clearly in the light of (6.7)–(6.11), we conclude that

$$ \biggl(\mathcal{S}_{m,q_{m}}^{\ast } \biggl( \frac{(t-x)^{2}}{(\delta ^{\ast })^{2}} ;\alpha _{[m]_{q_{m}}}, \beta _{[m]_{q_{m}}};x \biggr) \biggr)^{\frac{1}{2}} \leqq \frac{1}{\delta ^{\ast }} \bigl( \varPsi _{\kappa ,q_{m}}(m) \bigr)^{ \frac{1}{2}} \bigl(1+x+x^{2} \bigr)^{\frac{1}{2}}. $$
(6.12)

Thus by combining (6.8)–(6.12) in (6.7) and if we put \(\delta ^{\ast }=\sqrt{\varPsi _{\kappa ,q_{m}}(m)}\) and taking the supremum over all \(x\in {}[ 0,\varPsi _{\kappa ,q_{m}}(m))\), we get the result. □

Remark 6.3

For future work, some convergence properties of operators through summability techniques (see [11, 12, 16, 20, 2931]) can be examined.

References

  1. Acar, T.: Quantitative q-Voronovskaya and q-Grüss–Voronovskaya-type results for q-Szász operators. Georgian Math. J. 23, 459–468 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acar, T., Aral, A.: On pointwise convergence of q-Bernstein operators and their q-derivatives. Numer. Funct. Anal. Optim. 36, 287–304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, Article ID 98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 655–662 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Acar, T., Aral, A., Rasa, I.: Positive linear operators preserving τ and \(\tau ^{2}\). Constr. Math. Anal. 2(3), 98–102 (2019)

    Google Scholar 

  7. Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, Article ID 287 (2018)

    Article  Google Scholar 

  9. Altomare, F.: Korovkin type theorems and approximation by positive linear operators. Surv. Approx. Theory 5, 92–164 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Atakut, Ç., Ispir, N.: Approximation by modified Szász–Mirakjan operators on weighted spaces. Proc. Indian Acad. Sci. Math. Sci. 112, 571–578 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Belen, C., Mohiuddine, S.A.: Generalized weighted statistical convergence and application. Appl. Math. Comput. 219, 9821–9826 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Braha, N.L., Srivastava, H.M., Mohiuddine, S.A.: A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean. Appl. Math. Comput. 228, 162–169 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Cheikh, B., Gaied, Y., Zaghouani, M.: A q-Dunkl-classical q-Hermite type polynomials. Georgian Math. J. 21, 125–137 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Ciupa, A.: A class of integral Favard–Szász type operators. Stud. Univ. Babeş–Bolyai, Math. 40, 39–47 (1995)

    MathSciNet  MATH  Google Scholar 

  15. De Sole, A., Kac, V.G.: On integral representation of q-gamma and q-beta functions. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. Rend. Lincei (9), Mat. Appl. 16, 11–29 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Edely, O.H.H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23(11), 1382–1387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. İçöz, G., Çekim, B.: Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015, Article ID 284 (2015)

    Article  MATH  Google Scholar 

  18. İnce İlarslan, H.G., Acar, T.: Approximation by bivariate \((p,q)\)-Baskakov–Kantorovich operators. Georgian Math. J. 25(3), 397–407 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 15, 193–203 (1910)

    MATH  Google Scholar 

  20. Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p,q)\)-gamma function and related approximation theorems. Results Math. 73(1), Article ID 9 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kajla, A., Acar, T.: Modified α-Bernstein operators with better approximation properties. Ann. Funct. Anal. 10(4), 570–582 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lupaş, A.: A q-analogue of the Bernstein operator. Univ. Cluj-Napoca Semin. Numer. Stat. Calc. 9, 85–92 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Maurya, R., Sharma, H., Gupta, C.: Approximation properties of Kantorovich type modifications of \((p,q)\)-Meyer–König–Zeller operators. Constr. Math. Anal. 1(1), 58–72 (2018)

    Google Scholar 

  24. May, C.P.: On Phillips operators. J. Approx. Theory 20, 315–322 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Milovanović, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(1), 135–151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mohiuddine, S.A., Acar, T., Alghamdi, M.A.: Genuine modified Bernstein–Durrmeyer operators. J. Inequal. Appl. 2018, Article ID 104 (2018)

    Article  MathSciNet  Google Scholar 

  27. Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12(4), 961–973 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mohiuddine, S.A., Alamri, B.A.S.: Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 1955–1973 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mohiuddine, S.A., Asiri, A., Hazarika, B.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst. 48(5), 492–506 (2019)

    Article  MathSciNet  Google Scholar 

  31. Mohiuddine, S.A., Hazarika, B., Alghamdi, M.A.: Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems. Filomat 33(14), 4549–4560 (2019)

    Article  MathSciNet  Google Scholar 

  32. Mohiuddine, S.A., Özger, F.: Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(2), Article 70 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) [Erratum: Appl. Math. Comput. 278, 70–71 (2016)]

    MathSciNet  MATH  Google Scholar 

  34. Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p,q)\)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015) [Corrigendum: Appl. Math. Comput. 269, 744–746 (2015)]

    MathSciNet  MATH  Google Scholar 

  35. Mursaleen, M., Nasiruzzaman, M., Alotaibi, A.: On modified Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2017, Article ID 38 (2017)

    Article  MATH  Google Scholar 

  36. Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: A Dunkl type generalization of Szasz–Kantorovich operators via post-quantum calculus. Symmetry 11, Article ID 232 (2019)

    Article  MATH  Google Scholar 

  37. Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: Approximation results on Dunkl generalization of Phillips operators via q-calculus. Adv. Differ. Equ. 2019, Article ID 244 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nasiruzzaman, M., Rao, N.: A generalized Dunkl type modifications of Phillips-operators. J. Inequal. Appl. 2018, Article ID 323 (2018)

    Article  MathSciNet  Google Scholar 

  39. Nasiruzzaman, M., Rao, N.: A generalized Dunkl type modification of Phillips-operators. J. Inequal. Appl. 2018, Article ID 323 (2018)

    Article  MathSciNet  Google Scholar 

  40. Nasiruzzaman, M., Rao, N., Wazir, S., Kumar, R.: Approximation on parametric extension of Baskakov Durrmeyer operators on weighted spaces. J. Inequal. Appl. 2019, Article ID 103 (2019)

    Article  MathSciNet  Google Scholar 

  41. Peetre, J.: A theory of interpolation of normed spaces, Notas de Matemática, Rio de Janeiro, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas (1968)

  42. Rao, N., Wafi, A., Acu, A.M.: q-Szász–Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 13, 915–934 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillator calculus. Oper. Theory, Adv. Appl. 73, 369–396 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Srivastava, H.M., Mursaleen, M., Alotaibi, A., Nasiruzzaman, M., Al-Abied, A.: Some approximation results involving the q-Szasz–Mirakjan–Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 40, 5437–5452 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Srivastava, H.M., Mursaleen, M., Nasiruzzaman, M.: Approximation by a class of q-beta operators of the second kind via the Dunkl-type generalization on weighted spaces. Complex Anal. Oper. Theory 13(3), 1537–1556 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Srivastava, H.M., Özger, F., Mohiuddine, S.A.: Construction of Stancu type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11(3), Article ID 316 (2019)

    Article  MATH  Google Scholar 

  47. Sucu, S.: Dunkl analogue of Szász operators. Appl. Math. Comput. 244, 42–48 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45, 239–245 (1950)

    Article  MathSciNet  Google Scholar 

  49. Ulusoy, G., Acar, T.: q-Voronovskaya type theorems for q-Baskakov operators. Math. Methods Appl. Sci. 39(12), 3391–3401 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-84-130-38). The author, therefore, acknowledges with thank DSR for technical and financial support.

Availability of data and materials

Not applicable.

Funding

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-84-130-38).

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Abdullah Alotaibi.

Ethics declarations

Competing interests

The author declares he has no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, A. Approximation on a class of Phillips operators generated by q-analogue. J Inequal Appl 2020, 121 (2020). https://doi.org/10.1186/s13660-020-02382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-020-02382-0

MSC

Keywords