Skip to main content

Global structure of one-sign solutions for a simply supported beam equation


In this paper, we consider the nonlinear eigenvalue problem

$$\begin{gathered} u''''= \lambda h(t)f(u),\quad 0< t< 1, \\ u(0)=u(1)=u''(0)=u''(1)=0, \\ \end{gathered} $$

where \(h\in C([0,1], (0,\infty))\); \(f\in C(\mathbb{R},\mathbb{R})\) and \(sf(s)>0\) for \(s\neq0\), and \(f_{0}=f_{\infty}=0\), \(f_{0}=\lim_{|s|\rightarrow0}f(s)/s\), \(f_{\infty}=\lim_{|s|\rightarrow\infty}f(s)/s\). We investigate the global structure of one-sign solutions by using bifurcation techniques.


The deformations of an elastic beam whose both end-points are simply supported are described by the fourth order problem

$$ \begin{gathered} u''''= \lambda h(t)f(u),\quad 0< t< 1, \\ u(0)=u(1)=u''(0)=u''(1)=0, \end{gathered} $$

where \(h\in C([0,1], (0,\infty))\); \(f\in C(\mathbb{R},\mathbb{R})\) and \(sf(s)>0\) for \(s\neq0\).

Existence and multiplicity of positive solutions of (1.1) have been extensively studied by several authors, see [1, 2, 510, 13]. Cabada and Enguiça [2] developed the method of lower and upper solutions to show the existence and multiplicity of solutions, Jiang [6] and Li [7] proved the existence and multiplicity of solutions via the fixed point theorem in cone.

Bonanno and Di Bella [1] used variational method to obtain the following.

Theorem A

([1, Theorem 1.1])

Let\(f : \mathbb {R} \to\mathbb{R}\)be a continuous function. Assume that\(xf (x) > 0\)for all\(x \neq0\)and

$$f_{0}=\lim_{|s|\rightarrow0}f(s)/s=0, \qquad f_{\infty}= \lim_{|s|\rightarrow \infty}f(s)/s=0. $$

Then, for every

$$\lambda>\bar{\lambda}=: \biggl( \frac{8192}{27} + 8\pi^{2} \biggr) \max \biggl\{ \inf_{d>0}\frac{d^{2}}{\int^{d}_{0} f(x)\,dx}, \inf _{d< 0}\frac{d^{2}}{\int^{d}_{0} f(x)\,dx} \biggr\} , $$

the problem

$$\begin{gathered} u''''= \lambda f(u), \quad0< t< 1, \\ u(0)=u(1)=u''(0)=u''(1)=0 \end{gathered} $$

has at least four nontrivial classical solutions.

In the present work, we attempt to give a direct and complete description of the global structure of one-sign solutions of (1.1) under the assumptions:

  1. (A1)

    \(h: [0,1]\rightarrow (0,\infty)\) is continuous;

  2. (A2)

    \(f\in C(\mathbb{R}, \mathbb{R})\) and \(sf(s)>0\) for \(|s|>0\);

  3. (A3)


  4. (A4)


Let \(Y= C[0,1]\) with the norm

$$\Vert u \Vert _{\infty}=\max_{t\in[0,1]} \bigl\vert u(t) \bigr\vert . $$

We shall use Dancer’s bifurcation theorem and some properties of superior limit of certain infinity collection of connected sets to establish the following.

Theorem 1.1

Let (A1), (A2), (A3), and (A4) hold. Then there exist a connected component\(\mathcal{C}^{+}\subset\mathbb{R}^{+}\times C[0,1]\)of positive solutions of (1.1) and a connected component\(\mathcal{C}^{-}\subset \mathbb{R}^{+}\times C[0,1]\)of negative solutions of (1.1) such that

  1. (1)

    \(\mathcal{C}^{+}\)is of -shaped and joins\((+\infty, \boldsymbol{0})\)to\((+\infty, \boldsymbol{\infty})\);

  2. (2)

    for every\(\rho>0\), there exists\(\varLambda_{\rho}>0\)such that

    $$(\lambda,u)\in\mathcal{C}^{+} \quad\textit{with } \Vert u \Vert _{\infty}=\rho\quad\Rightarrow \quad\lambda>\varLambda_{\rho}; $$
  3. (3)

    \(\mathcal{C}^{-}\)is of -shaped and joins\((+\infty, \boldsymbol{0})\)to\((+\infty, \boldsymbol{\infty})\);

  4. (4)

    for every\(\rho>0\), there exists\(\varLambda_{\rho}>0\)such that

    $$(\lambda,u)\in\mathcal{C}^{-} \quad\textit{with } \Vert u \Vert _{\infty}=\rho\quad\Rightarrow\quad \lambda>\varLambda_{\rho}. $$

The linear problem

$$\textstyle\begin{cases} u''''(x)=y(x),\quad x\in(0,1), \\ u(0)=u(1)=u''(0)=u''(1)=0, \end{cases} $$

is equivalent to

$$u(t)= \int^{1}_{0} G(t,s)y(s)\,ds=:Ty(t), $$


$$G(t,s) =\frac{1}{6}\textstyle\begin{cases} t(1-s) [2s-s^{2}-t^{2}], &0\leq t\leq s\leq1, \\ s(1-t)[2t-t^{2}-s^{2}],& 0\leq s\leq t\leq1. \end{cases} $$


$$\begin{gathered} q(t)=\frac{1}{2}t(1-t),\quad t\in[0,1], \\ j(s) =\textstyle\begin{cases} 1-\sqrt{\frac{1-s^{2}}{3}}, &s \in[0, 1/2], \\ \sqrt{\frac{s(2-s)}{3}}, &s\in[1/2, 1]. \end{cases}\displaystyle \end{gathered}$$


$$\begin{gathered} G\bigl(j(s),s\bigr)=\max_{0\leq t\leq1} G(t,s), \\ G\bigl(j(s),s\bigr) =\frac{1}{9}\textstyle\begin{cases} s(1-s) (1+s)\sqrt{\frac{1-s^{2}}{3}},& s\in[0, 1/2], \\ s(1-s) (2-s)\sqrt{\frac{s(2-s)}{3}},& s\in[1/2, 1], \end{cases}\displaystyle \\ G(t,s)\geq q(t) G\bigl(j(s),s\bigr),\quad t\in[0, 1]. \\ G(t,s)\geq\frac{3}{32} G\bigl(j(s),s\bigr),\quad t\in\biggl[ \frac{1}{4}, \frac{3}{4}\biggr].\end{gathered} $$


$$ K:= \biggl\{ w\in C[0,1]: \min_{0\leq t\leq1} w(t)\geq0, \min _{1/4\leq t\leq3/4} w(t)\geq\frac{3}{32} \Vert w \Vert _{\infty}\biggr\} . $$

Corollary 1.1

Let (A1), (A2), (A3), and (A4) hold. Then (1.1) with\(h\equiv1\)has at least two positive solutions and at least two negative solutions (see Fig1) provided

$$\lambda>\hat{\lambda}=: \biggl(\hat{m}_{\rho}\int^{3/4}_{1/4} G\bigl(j(s),s\bigr)h(s)\, ds \biggr)^{-1}, $$


$$\hat{m}_{\rho}=\min_{3\rho/32 \leq x\leq\rho} \bigl\{ f(x)\bigr\} . $$
Figure 1
figure 1

Components of one-sign solutions in Theorem 1.1

For other related results on the existence and multiplicity of positive solutions and nodal solutions of fourth order problems, see Rynne [13] and Ma [8, 9].

The rest of the paper is arranged as follows: In Sect. 2, we prove some properties of superior limit of certain infinity collection of connected sets. In Sect. 3, we state and prove some properties for the one-sign solutions \((\lambda, u)\) of (1.1). Finally, in Sect. 4, we state and prove our main results.

Superior limit and component

Definition 2.1


Let X be a Banach space and \(\{C_{n} \mid n=1, 2, \ldots\}\) be a family of subsets of X. Then the superior limit\(\mathcal{D}\) of \(\{C_{n}\}\) is defined by

$$\mathcal{D}:=\limsup_{n\rightarrow\infty} C_{n}=\bigl\{ x\in X \mid\exists \{n_{i}\}\subset\mathbb{N} \mbox{ and } x_{n_{i}} \in C_{n_{i}} \mbox{ such that } x_{n_{i}}\rightarrow x\bigr\} . $$

Definition 2.2


A component of a set M means a maximal connected subset of M.

Lemma 2.1


Suppose thatYis a compact metric space, AandBare non-intersecting closed subsets ofY, and no component ofYintersects bothAandB. Then there exist two disjoint compact subsets\(Y_{A}\)and\(Y_{B}\)such that\(Y=Y_{A}\cup Y_{B}\), \(A\subset Y_{A}\), \(B\subset Y_{B}\).

Lemma 2.2


LetXbe a Banach space and let\(\{C_{n}\}\)be a family of closed connected subsets ofX. Assume that

  1. (i)

    there exist\(z_{n}\in C_{n}\), \(n=1, 2, \dots\), and\(z^{*}\in X\)such that\(z_{n}\rightarrow z^{*}\);

  2. (ii)

    \(r_{n}=\sup\{\|x\| \mid x\in C_{n}\}= \infty\);

  3. (iii)

    for every\(R>0\), \((\bigcup^{\infty}_{n=1} C_{n} )\cap B_{R}\)is a relatively compact set ofX, where

    $$B_{R}=\bigl\{ x\in X \mid \Vert x \Vert \leq R\bigr\} . $$

Then there exists an unbounded component\(\mathcal{C}\)in\(\mathcal{D}\)and\(z^{*}\in\mathcal{C}\).

Let \(E=\{u\in C^{3}[0,1]: u(0)=u(1)=u''(0)=u''(1)=0\}\) with the norm

$$\Vert u \Vert =\max\bigl\{ \Vert u \Vert _{\infty}, \bigl\Vert u' \bigr\Vert _{\infty}, \bigl\Vert u'' \bigr\Vert _{\infty}, \bigl\Vert u''' \bigr\Vert _{\infty}\bigr\} . $$

It is well known that the linear eigenvalue problem

$$\textstyle\begin{cases} u''''= \mu h(x) u(x),\quad x\in(0,1), \\ u(0)=u(1)=u''(0)=u''(1)=0 \end{cases} $$

has an infinite sequence of simple eigenvalues

$$0 < \mu_{1} < \mu_{2} < \cdots< \mu_{k} < \cdots,\quad k\to\infty, $$

and the eigenfunction \(\phi_{k}\) corresponding to \(\mu_{k}\) has exactly \(k-1\) simple zeros in \((0, 1)\), see [13].

Some preliminary results

Let us define an operator \(T_{\lambda}:Y\to Y\) by

$$T_{\lambda}u:=\lambda \int^{1}_{0} G(t,s)h(s)f\bigl(u(s)\bigr)\,ds. $$

Lemma 3.1

Assume that (A1)–(A4) hold. Then\(T_{\lambda}: K\rightarrow K\)is completely continuous.

Lemma 3.2

Let\(\varOmega_{r}:=\{u\in K:\|u\|_{\infty}< r\}\). Let (A1)–(A4) hold. If\(u\in\partial \varOmega_{r}, r>0\), then

$$ \Vert T_{\lambda}u \Vert _{\infty}\leq\lambda \hat{M}_{r} \int^{1}_{0} G\bigl(j(s),s\bigr)h(s)\,ds, $$

where\(\hat{M}_{r}=\max_{0\leq s\leq r}\{f(s)\}\).


Since \(f(u(t))\leq\hat{M}_{r}\) for \(t\in[0, 1]\), it follows that

$$\begin{aligned} \Vert T_{\lambda}u \Vert _{\infty}&\leq\lambda \int^{1}_{0} G\bigl(j(s),s\bigr) h(s)f\bigl(u(s) \bigr)\, ds \\ & \leq\lambda\hat{M}_{r} \int^{1}_{0} G\bigl(j(s),s\bigr) h(s)\,ds. \end{aligned} $$


Lemma 3.3

Let (A1)–(A4) hold. Assume that\(\{(\mu_{k}, y_{k})\}\subset(0,+\infty)\times K \)is a sequence of positive solutions of (1.1). Assume that\(\mu_{k}\leq C_{0}\)for some constant\(C_{0}>0\), and

$$ \lim_{k\rightarrow\infty} \bigl\Vert y_{k}''' \bigr\Vert _{\infty}=\infty. $$


$$ \lim_{k\rightarrow\infty} \Vert y_{k} \Vert _{\infty}=\infty. $$


Assume on the contrary that \(\{\|y_{k}\|_{\infty}\}\) is bounded. Then

$$\bigl\Vert \mu_{k} h(x) f\bigl(y_{k}(x)\bigr) \bigr\Vert _{\infty}\leq M $$

for some constant M that is independent of k. Thus, it follows from the relation

$$y''''_{k}(x)= \mu_{k} h(x) f\bigl(y_{k}(x)\bigr) $$

that \(\{y''''_{k}\} \) is uniformly bounded in \(C[0,1]\), and subsequently \(\{y'''_{k}\} \) is uniformly bounded in \(C[0,1]\). However, this contradicts (3.2). □

Lemma 3.4

Assume that (A1)–(A4) hold. If\(u\in \partial\varOmega_{r}\), \(r>0\), then

$$ \Vert T_{\lambda}u \Vert _{\infty}\geq\lambda\hat{m}_{r} \int ^{3/4}_{1/4} G\bigl(j(s),s\bigr)h(s)\,ds, $$


$$ \hat{m}_{r}=\min_{3r/32 \leq x\leq r} \bigl\{ f(x)\bigr\} . $$


Since \(f(u(t))\geq\hat{m}_{r}\) for \(t\in [\frac{1}{4},\frac{3}{4}]\), it follows that

$$\begin{aligned} \Vert T_{\lambda}u \Vert _{\infty}&\geq\lambda \int^{1}_{0} G\bigl(j(s),s\bigr)h(s)f\bigl(u(s) \bigr)\,ds \\ &\geq\lambda\hat{m}_{r} \int^{3/4}_{1/4} G\bigl(j(s),s\bigr)h(s)\,ds. \end{aligned} $$


Proof of the main results

We only deal with the global behavior of positive solutions of (1.1). The global behavior of negative solutions of (1.1) can be treated by a similar method.

Let \(\varSigma^{+}\) be the closure of the set of positive solutions of (1.1) in E. To prove Theorem 1.1, we will develop a bifurcation approach to treat the case \(f_{0}=0\). Crucial to this approach is to construct a sequence of functions \(\{f^{[n]}\}\) that is asymptotic linear at 0 and satisfies

$$f^{[n]}\rightarrow f, \qquad\bigl(f^{[n]}\bigr)_{0} \rightarrow0. $$

By means of the corresponding auxiliary equations, we obtain a sequence of unbounded components \(\{C^{[n]}_{+}\}\) via nonlinear Krein–Rutman bifurcation theorem, see Dancer [3] and Zeidler [15], and this enables us to find unbounded components ζ̂ satisfying

$$\hat{\zeta}\subset\limsup_{n\rightarrow\infty} C^{[n]}_{+} $$

and joining \((+\infty,\boldsymbol{0})\) with \((+\infty,\boldsymbol{\infty})\).

Define \(g^{[n]}:\mathbb{R}\rightarrow\mathbb{R}\) by

$$ g^{[n]} (s)= \textstyle\begin{cases} f(s), &s\in (\frac{1}{n},\infty )\cup (-\infty, - \frac{1}{n} ), \\ nf (\frac{1}{n} ) s, &s\in [- \frac{1}{n},\frac{1}{n} ]. \end{cases} $$

Then \(g^{[n]}\in C(\mathbb{R}, \mathbb{R})\) with

$$ sg^{[n]}(s)>0,\quad \forall \vert s \vert \in(0,\infty), \quad\mbox{and}\quad \bigl(g^{[n]}\bigr)_{0}=nf \biggl(\frac{1}{n} \biggr). $$

By (A3), it follows that

$$\lim_{n\rightarrow\infty}\bigl(g^{[n]}\bigr)_{0}=0. $$

To apply the nonlinear Krein–Rutman theorem [4], let us consider the auxiliary family of the equations

$$\begin{aligned}& u''''=\lambda h(t)g^{[n]}(u), \quad t\in(0,1), \end{aligned}$$
$$\begin{aligned}& u(0)= u(1)=u''(0)= u''(1)=0. \end{aligned}$$

Let \(\xi^{[n]}\in C(\mathbb{R})\) be such that

$$ g^{[n]}(u)=\bigl(g^{[n]}\bigr)_{0} u+ \xi^{[n]}(u)= nf \biggl(\frac{1}{n} \biggr) u+ \xi^{[n]}(u). $$


$$ \lim_{|u|\rightarrow0} \frac{\xi^{[n]} (u)}{u}=0. $$

Let \(D:=\{u\in C^{4}[0,1]: u(0)=u(1)=u''(0)=u''(1)=0\}\). Let \(L:D\to Y\) be the linear operator defined by

$$Lu:=u'''',\quad u\in D. $$

Let us consider

$$ Lu-\lambda h(t) \bigl(g^{[n]}\bigr)_{0} u=\lambda h(t) \xi^{[n]}(u) $$

as a bifurcation problem from the trivial solution \(u\equiv0\).

Equation (4.7) can be converted to the equivalent equation

$$ \begin{aligned}[b] u(t)&= \int^{1}_{0} G(t, s)\bigl[\lambda h(s) \bigl(g^{[n]}\bigr)_{0} u(s)+\lambda h(s) \xi^{[n]}\bigl(u(s)\bigr)\bigr]\,ds \\ &:=\lambda L^{-1}\bigl[ h(\cdot) \bigl(g^{[n]} \bigr)_{0} u(\cdot)\bigr](t) +\lambda L^{-1}\bigl[h(\cdot) \xi^{[n]}\bigl(u(\cdot)\bigr)\bigr](t). \end{aligned} $$

Further we note that \(\|L^{-1}[h(\cdot) \xi^{[n]}(u(\cdot))]\|_{\infty}=o(\|u\|_{\infty})\) for u near θ in E.

By the fact \((g^{[n]})_{0}>0\), the results of nonlinear Krein–Rutman theorem (see Dancer [3] and Zeidler [15, Corollary 15.12]) for (4.7) can be stated as follows: there exists a continuum \(C^{[n]}_{+}\) of positive solutions of (4.7) joining \((\frac{\lambda_{1}}{(g^{[n]})_{0}}, \theta )\) to infinity in \([0, \infty)\times K\). Moreover, \(C^{[n]}_{+} \setminus\{ (\frac {\lambda_{1}}{(g^{[n]})_{0}}, \theta )\}\subset ([0, \infty)\times\operatorname{int} K)\) and \((\frac{\lambda_{1}}{(g^{[n]})_{0}}, \theta )\) is the only positive bifurcation point of (4.7) lying on the trivial solutions line \(u\equiv\theta\).

Lemma 4.1

Let (A1)–(A4) hold. Then, for each fixedn, \(C^{[n]}_{+}\)joins\((\frac{\lambda_{1}}{(g^{[n]})_{0}}, \theta )\)to\((\infty, \boldsymbol{\infty})\)in\([0, \infty)\times K\).


We divide the proof into two steps.

Step 1. We show that \(\sup\{\lambda\mid(\lambda,u)\in C^{[n]}_{+} \} =\infty\).

Assume on the contrary that \(\sup\{\lambda\mid(\lambda,u)\in C^{[n]}_{+} \}=:c_{0} <\infty\). Let \(\{(\mu_{k}, y_{k})\}\subset C^{[n]}_{+} \) be such that

$$\vert \mu_{k} \vert + \Vert y_{k} \Vert _{\infty}\rightarrow\infty. $$

Then \(\|y_{k}\|_{\infty}\rightarrow\infty\). This together with the fact

$$ \min_{\sigma\leq t\leq1-\sigma} y_{k}(t)\geq q(\sigma) \Vert y_{k} \Vert _{\infty}, \quad\forall 0< \sigma< \frac{1}{2} $$

implies that, for arbitrary \(\sigma\in(0,\frac{1}{2})\),

$$ \lim_{k\rightarrow\infty} y_{k}(t)=\infty, \quad \mbox{uniformly for } t\in[\sigma, 1-\sigma]. $$

Since \((\mu_{k}, y_{k})\in C^{[n]}_{+}\), we have that

$$\begin{aligned}& y''''_{k}(t)= \mu_{k} h(t)g^{[n]}\bigl(y_{k}(t)\bigr), \quad t\in(0,1), \end{aligned}$$
$$\begin{aligned}& y_{k}(0)=y_{k}(1)=y''_{k}(0)=y''_{k}(1)=0. \end{aligned}$$

Set \(v_{k}(t)=\frac{y_{k}(t)}{\|y_{k}\|_{\infty}}\). Then

$$\begin{aligned}& \Vert v_{k} \Vert _{\infty}=1, \\& v''''_{k}(t)= \mu_{k} h(t)\frac{g^{[n]}(y_{k}(t))}{y_{k}(t)}v_{k}(t), \quad t \in(0,1), \end{aligned}$$
$$\begin{aligned}& v_{k}(0)=v_{k}(1)=v''_{k}(0)=v''_{k}(1)=0. \end{aligned}$$

From (4.13) and the fact that \((g^{[n]})_{\infty}=0\), we conclude that

$$\bigl\Vert v''''_{k} \bigr\Vert _{\infty}\leq M $$

for some constant \(M>0\) independent of k.

Now, choosing a subsequence and relabeling if necessary, it follows that there exists \((\mu_{*},v_{*})\in[0,c_{0}]\times E\) with

$$ \Vert v_{*} \Vert _{\infty}=1, $$

such that

$$ \lim_{k\rightarrow\infty} (\mu_{k}, v_{k}) = ( \mu_{*},v_{*}), \quad\mbox{in } [0,c_{0}]\times E. $$

Notice that (4.13), (4.14) is equivalent to

$$v_{k}(t)=\mu_{k} \int^{1}_{0} G(t,s) h(s)\frac{g^{[n]}(y_{k}(s))}{y_{k}(s)}v_{k}(s) \, ds, \quad t\in (0,1). $$

Combining this with (4.16) and using (4.10) and the Lebesgue dominated convergence theorem, we conclude that

$$v_{*}(t)=\mu_{*} \int^{1}_{0} G(t,s) h(s) 0 v_{*}(s) \,ds=0, \quad t\in (0,1). $$

This contradicts (4.15). Therefore

$$\sup\bigl\{ \lambda \mid(\lambda, y)\in C^{[n]}_{+} \bigr\} =\infty. $$

Step 2. We show that \(\sup\{\|u\|_{\infty}\mid(\lambda,u)\in C^{[n]}_{+} \} =\infty\).

Assume on the contrary that \(\sup\{\|u\|_{\infty}\mid(\lambda,u)\in C^{[n]}_{+} \}=:M_{\infty}<\infty\). Let \(\{(\mu_{k}, y_{k})\}\subset C^{[n]}_{+} \) be such that

$$ \mu_{k}\rightarrow\infty, \qquad \Vert y_{k} \Vert _{\infty}\leq M_{\infty}. $$

Since \((\mu_{k}, y_{k})\in C^{[n]}_{+}\), for any \(t\in[\sigma, 1-\sigma]\), we have from (1.2) that

$$\begin{aligned} y_{k}(t)&=\mu_{k} \int^{1}_{0} G(t,s)h(s)g^{[n]} \bigl(y_{k}(s)\bigr)\,ds \\ &\ge\mu_{k} \int^{1-\sigma}_{\sigma}q(\sigma) G\bigl(j(s),s\bigr)h(s) \frac{g^{[n]}(y_{k}(s))}{y_{k}(s)} y_{k}(s)\,ds \\ &\ge\mu_{k} \int^{1-\sigma}_{\sigma}q(\sigma) G\bigl(j(s),s\bigr)h(s) \frac {g^{[n]}(y_{k}(s))}{y_{k}(s)} q(\sigma) \,ds \Vert y_{k} \Vert _{\infty}\\ &\ge\mu_{k} \int^{1-\sigma}_{\sigma}q^{2}(\sigma) G \bigl(j(s),s\bigr)h(s)b_{*} \,ds \Vert y_{k} \Vert _{\infty}\end{aligned} $$

(where \(b_{*}:=\inf \{\frac{g^{[n]}(x)}{x} \mid x\in(0,M_{\infty}] \}>0\)), which yields that \(\{\mu_{k}\}\) is bounded. However, this contradicts (4.17).

Therefore, \(C^{[n]}_{+}\) joins \((\frac{\lambda_{1}}{(g^{[n]})_{0}}, \theta )\) to \((\infty, \boldsymbol{\infty})\) in K. □

Lemma 4.2

Let (A1)–(A4) hold and let\(I\subset (0,\infty)\)be a closed interval. Then there exists a positive constantMsuch that

$$\sup\bigl\{ \Vert y \Vert _{\infty}\mid(\mu, y)\in C^{[n]}_{+} \textit{ and } \mu\in I \bigr\} \leq M. $$


Assume on the contrary that there exists a sequence \(\{(\mu_{k}, y_{k})\}\subset C^{[n]}_{+}\cap(I\times K)\) such that

$$\Vert y_{k} \Vert _{\infty}\rightarrow\infty. $$

Then, (4.9), (4.10), (4.11), and (4.12) hold. Set \(v_{k}(t)=\frac {y_{k}(t)}{\|y_{k}\|_{\infty}}\). Then

$$\Vert v_{k} \Vert _{\infty}=1. $$

Now, choosing a subsequence and relabeling if necessary, it follows that there exists \((\mu_{*},v_{*})\in I\times Y\) with

$$ \Vert v_{*} \Vert _{\infty}=1 $$

such that

$$\lim_{k\rightarrow\infty} (\mu_{k}, v_{k}) = ( \mu_{*},v_{*})\quad \mbox{in } \mathbb {R}\times Y. $$

Moreover, from (4.11), (4.12), (4.10) and the assumption \(f_{\infty}=0\), it follows that

$$\begin{gathered} v''''_{*}(t)=\mu_{*} h(t)\cdot0, \quad t\in(0,1), \\ v_{*}(0)=v_{*}(1)= v''_{*}(0)=v''_{*}(1)=0, \end{gathered}$$

and subsequently, \(v_{*}(t)\equiv0\) for \(t\in[0,1]\). This contradicts (4.18). Therefore

$$\sup\bigl\{ \Vert y \Vert _{\infty}\mid(\mu, y)\in C^{[n]}_{+} \mbox{ and } \mu\in I \bigr\} \leq M. $$


Lemma 4.3

Let (A1)–(A4) hold. Then there exists\(\rho^{*}>0\)such that

$$\Biggl(\bigcup^{\infty}_{n=1} C^{[n]}_{+} \Biggr)\cap \bigl(\bigl(0,\rho^{*}\bigr)\times K \bigr)=\emptyset. $$


Assume on the contrary that there exists \(\{(\mu_{k}, y_{k})\}\subset ( \bigcup^{\infty}_{n=1} C^{[n]}_{+} )\cap ((0,+\infty)\times K ) \) such that \(\mu_{k}\rightarrow0\). Then

$$y_{k}(t)=\mu_{k} \int^{1}_{0} G(t,s)h(s)g^{[n]} \bigl(y_{k}(s)\bigr)\,ds, \quad t\in(0,1). $$

Set \(v_{k}(t)=\frac{y_{k}(t)}{\|y_{k}\|_{\infty}}\). Then

$$\Vert v_{k} \Vert _{\infty}=1, $$

and for all \(t\in(0,1)\),

$$\begin{aligned} v_{k}(t)&=\mu_{k} \int^{1}_{0} G(t,s)h(s)\frac{g^{[n]}(y_{k}(s))}{y_{k}(s)} \frac {y_{k}(s)}{ \Vert y_{k} \Vert _{\infty}}\,ds \\ &\leq\mu_{k} \int^{1}_{0} G\bigl(j(s),s\bigr)h(s)B_{n}^{*} \Vert v_{k} \Vert _{\infty}\, ds, \end{aligned} $$

where \(B_{n}^{*}=\sup \{\frac{g^{[n]}(x)}{x}\mid x\in(0,\infty), n\in\mathbb{N} \}\). Let

$$B^{*}=\sup\bigl\{ B_{n}^{*} \mid n\in\mathbb{N}\bigr\} . $$

Then \(B^{*}<\infty\), and

$$v_{k}(t)\leq\mu_{k} \int^{1}_{0} G\bigl(j(s),s\bigr)h(s)B^{*} \Vert v_{k} \Vert _{\infty}\, ds \rightarrow 0, $$

which contradicts the fact \(\|v_{k}\|_{\infty}=1\). Therefore, there exists \(\rho^{*}>0\), such that

$$\Biggl(\bigcup^{\infty}_{n=1} C^{[n]}_{+} \Biggr)\cap \bigl(\bigl(0,\rho^{*}\bigr)\times K \bigr)=\emptyset. $$


Proof of Theorem 1.1

By Lemmas 4.14.3 and the similar method to prove Ma and An [12, Theorem 4.1], with obvious changes, we may get a desired connected component \(\mathcal{C}^{+}\subset\limsup C^{[n]}_{+}\) of positive solutions of (1.1) and a connected component \(\mathcal{C}^{-}\subset\limsup C^{[n]}_{-}\) of negative solutions of (1.1) such that

  1. (1)

    \(\mathcal{C}^{+}\) is of -shaped and joins \((+\infty, \theta )\) to \((+\infty, \boldsymbol{\infty})\);

  2. (2)

    for every \(\rho>0\), there exists \(\varLambda_{\rho}>0\) such that

    $$(\lambda,u)\in\mathcal{C}^{+} \quad\text{with } \Vert u \Vert _{\infty}=\rho\quad\Rightarrow\quad \lambda>\varLambda_{\rho}; $$
  3. (3)

    \(\mathcal{C}^{-}\) is of -shaped and joins \((+\infty, \theta )\) to \((+\infty, \boldsymbol{\infty})\);

  4. (4)

    for every \(\rho>0\), there exists \(\varLambda_{\rho}>0\) such that

    $$(\lambda,u)\in\mathcal{C}^{-} \quad\text{with } \Vert u \Vert _{\infty}=\rho\quad\Rightarrow\quad \lambda>\varLambda_{\rho}. $$



  1. Bonanno, G., Di Bella, B.: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 343, 1166–1176 (2008)

    MathSciNet  Article  Google Scholar 

  2. Cabada, A., Enguiça, R.R.: Positivity and lower and upper solutions for fourth order boundary value problems. Nonlinear Anal. 67(5), 1599–1612 (2007)

    MathSciNet  Article  Google Scholar 

  3. Dancer, E.: Global solutions branches for positive maps. Arch. Ration. Mech. Anal. 55, 207–213 (1974)

    Article  Google Scholar 

  4. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  Google Scholar 

  5. Drábek, P., Holubová, G.: On the maximum and antimaximum principles for the beam equation. Appl. Math. Lett. 56, 29–33 (2016)

    MathSciNet  Article  Google Scholar 

  6. Jiang, D., Liu, H., Xu, X.: Nonresonant singular fourth-order boundary value problems. Appl. Math. Lett. 18(1), 69–75 (2005)

    MathSciNet  Article  Google Scholar 

  7. Li, Y.: On the existence of positive solutions for the bending elastic beam equations. Appl. Math. Comput. 189(1), 821–827 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Ma, R.: Existence of positive solutions of a fourth-order boundary value problem. Appl. Math. Comput. 168(2), 1219–1231 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Ma, R.: Nodal solutions of boundary value problems of fourth-order ordinary differential equations. J. Math. Anal. Appl. 319(2), 424–434 (2006)

    MathSciNet  Article  Google Scholar 

  10. Ma, R.: Nodal solutions for a fourth-order two-point boundary value problem. J. Math. Anal. Appl. 314(1), 254–265 (2006)

    MathSciNet  Article  Google Scholar 

  11. Ma, R., An, Y.: Global structure of positive solutions for superlinear second order m-point boundary value problems. Topol. Methods Nonlinear Anal. 34(2), 279–290 (2009)

    MathSciNet  Article  Google Scholar 

  12. Ma, R., An, Y.: Global structure of positive solutions for nonlocal boundary value problems involving integral conditions. Nonlinear Anal. 71, 4364–4376 (2009)

    MathSciNet  Article  Google Scholar 

  13. Rynne, B.P.: Infinitely many solutions of superlinear fourth order boundary value problems. Topol. Methods Nonlinear Anal. 19(2), 303–312 (2002)

    MathSciNet  Article  Google Scholar 

  14. Whyburn, G.T.: Topological Analysis. Princeton University Press, Princeton (1958)

    MATH  Google Scholar 

  15. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1986)

    Book  Google Scholar 

Download references


The authors are very grateful to an anonymous referee for his or her very valuable suggestions.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated.


This work was supported by the National Natural Science Foundation of China (No. 11671322).

Author information

Authors and Affiliations



The authors claim that the research was realized in collaboration with the same responsibility. All authors read and approved the last version of the manuscript.

Corresponding author

Correspondence to Ruyun Ma.

Ethics declarations

Competing interests

All of the authors of this article claim that together they have no competing interests.

Additional information


Not applicable.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Ma, R. & Su, X. Global structure of one-sign solutions for a simply supported beam equation. J Inequal Appl 2020, 112 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • 34B27
  • 34C23
  • 74K10


  • Connected component
  • Green function
  • One-sign solutions
  • Bifurcation
  • Simply supported beam