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Abstract
In this paper, we consider the nonlinear eigenvalue problem

u′′′′ = λh(t)f (u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where h ∈ C([0, 1], (0,∞)); f ∈ C(R,R) and sf (s) > 0 for s �= 0, and f0 = f∞ = 0,
f0 = lim|s|→0 f (s)/s, f∞ = lim|s|→∞ f (s)/s. We investigate the global structure of one-sign
solutions by using bifurcation techniques.

MSC: 34B27; 34C23; 74K10

Keywords: Connected component; Green function; One-sign solutions; Bifurcation;
Simply supported beam

1 Introduction
The deformations of an elastic beam whose both end-points are simply supported are
described by the fourth order problem

u′′′′ = λh(t)f (u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.1)

where h ∈ C([0, 1], (0,∞)); f ∈ C(R,R) and sf (s) > 0 for s �= 0.
Existence and multiplicity of positive solutions of (1.1) have been extensively studied

by several authors, see [1, 2, 5–10, 13]. Cabada and Enguiça [2] developed the method of
lower and upper solutions to show the existence and multiplicity of solutions, Jiang [6]
and Li [7] proved the existence and multiplicity of solutions via the fixed point theorem
in cone.

Bonanno and Di Bella [1] used variational method to obtain the following.
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Theorem A ([1, Theorem 1.1]) Let f : R → R be a continuous function. Assume that
xf (x) > 0 for all x �= 0 and

f0 = lim|s|→0
f (s)/s = 0, f∞ = lim|s|→∞ f (s)/s = 0.

Then, for every

λ > λ̄ =:
(

8192
27

+ 8π2
)

max

{
inf
d>0

d2∫ d
0 f (x) dx

, inf
d<0

d2∫ d
0 f (x) dx

}
,

the problem

u′′′′ = λf (u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0

has at least four nontrivial classical solutions.

In the present work, we attempt to give a direct and complete description of the global
structure of one-sign solutions of (1.1) under the assumptions:

(A1) h : [0, 1] → (0,∞) is continuous;
(A2) f ∈ C(R,R) and sf (s) > 0 for |s| > 0;
(A3) f0 = 0;
(A4) f∞ = 0.

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

∣∣u(t)
∣∣.

We shall use Dancer’s bifurcation theorem and some properties of superior limit of cer-
tain infinity collection of connected sets to establish the following.

Theorem 1.1 Let (A1), (A2), (A3), and (A4) hold. Then there exist a connected component
C+ ⊂ R

+ × C[0, 1] of positive solutions of (1.1) and a connected component C– ⊂ R
+ ×

C[0, 1] of negative solutions of (1.1) such that
(1) C+ is of ⊂-shaped and joins (+∞, 0) to (+∞,∞);
(2) for every ρ > 0, there exists Λρ > 0 such that

(λ, u) ∈ C+ with ‖u‖∞ = ρ ⇒ λ > Λρ ;

(3) C– is of ⊂-shaped and joins (+∞, 0) to (+∞,∞);
(4) for every ρ > 0, there exists Λρ > 0 such that

(λ, u) ∈ C– with ‖u‖∞ = ρ ⇒ λ > Λρ .

The linear problem

⎧⎨
⎩

u′′′′(x) = y(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
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is equivalent to

u(t) =
∫ 1

0
G(t, s)y(s) ds =: Ty(t),

where

G(t, s) =
1
6

⎧⎨
⎩

t(1 – s)[2s – s2 – t2], 0 ≤ t ≤ s ≤ 1,

s(1 – t)[2t – t2 – s2], 0 ≤ s ≤ t ≤ 1.

Let

q(t) =
1
2

t(1 – t), t ∈ [0, 1],

j(s) =

⎧⎨
⎩

1 –
√

1–s2
3 , s ∈ [0, 1/2],√

s(2–s)
3 , s ∈ [1/2, 1].

Then

G
(
j(s), s

)
= max

0≤t≤1
G(t, s),

G
(
j(s), s

)
=

1
9

⎧⎨
⎩

s(1 – s)(1 + s)
√

1–s2
3 , s ∈ [0, 1/2],

s(1 – s)(2 – s)
√

s(2–s)
3 , s ∈ [1/2, 1],

G(t, s) ≥ q(t)G
(
j(s), s

)
, t ∈ [0, 1].

G(t, s) ≥ 3
32

G
(
j(s), s

)
, t ∈

[
1
4

,
3
4

]
.

Let

K :=
{

w ∈ C[0, 1] : min
0≤t≤1

w(t) ≥ 0, min
1/4≤t≤3/4

w(t) ≥ 3
32

‖w‖∞
}

. (1.2)

Corollary 1.1 Let (A1), (A2), (A3), and (A4) hold. Then (1.1) with h ≡ 1 has at least two
positive solutions and at least two negative solutions (see Fig. 1) provided

λ > λ̂ =:
(

m̂ρ

∫ 3/4

1/4
G

(
j(s), s

)
h(s) ds

)–1

,

where

m̂ρ = min
3ρ/32≤x≤ρ

{
f (x)

}
.

For other related results on the existence and multiplicity of positive solutions and nodal
solutions of fourth order problems, see Rynne [13] and Ma [8, 9].

The rest of the paper is arranged as follows: In Sect. 2, we prove some properties of
superior limit of certain infinity collection of connected sets. In Sect. 3, we state and prove
some properties for the one-sign solutions (λ, u) of (1.1). Finally, in Sect. 4, we state and
prove our main results.
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Figure 1 Components of one-sign solutions in
Theorem 1.1

2 Superior limit and component
Definition 2.1 ([14]) Let X be a Banach space and {Cn | n = 1, 2, . . .} be a family of subsets
of X. Then the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn =
{

x ∈ X | ∃{ni} ⊂N and xni ∈ Cni such that xni → x
}

.

Definition 2.2 ([14]) A component of a set M means a maximal connected subset of M.

Lemma 2.1 ([14]) Suppose that Y is a compact metric space, A and B are non-intersecting
closed subsets of Y , and no component of Y intersects both A and B. Then there exist two
disjoint compact subsets YA and YB such that Y = YA ∪ YB, A ⊂ YA, B ⊂ YB.

Lemma 2.2 ([11]) Let X be a Banach space and let {Cn} be a family of closed connected
subsets of X. Assume that

(i) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ X such that zn → z∗;
(ii) rn = sup{‖x‖ | x ∈ Cn} = ∞;

(iii) for every R > 0, (
⋃∞

n=1 Cn) ∩ BR is a relatively compact set of X , where

BR =
{

x ∈ X | ‖x‖ ≤ R
}

.

Then there exists an unbounded component C in D and z∗ ∈ C .

Let E = {u ∈ C3[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0} with the norm

‖u‖ = max
{‖u‖∞,

∥∥u′∥∥∞,
∥∥u′′∥∥∞,

∥∥u′′′∥∥∞
}

.

It is well known that the linear eigenvalue problem
⎧⎨
⎩

u′′′′ = μh(x)u(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

has an infinite sequence of simple eigenvalues

0 < μ1 < μ2 < · · · < μk < · · · , k → ∞,

and the eigenfunction φk corresponding to μk has exactly k – 1 simple zeros in (0, 1), see
[13].
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3 Some preliminary results
Let us define an operator Tλ : Y → Y by

Tλu := λ

∫ 1

0
G(t, s)h(s)f

(
u(s)

)
ds.

Lemma 3.1 Assume that (A1)–(A4) hold. Then Tλ : K → K is completely continuous.

Lemma 3.2 Let Ωr := {u ∈ K : ‖u‖∞ < r}. Let (A1)–(A4) hold. If u ∈ ∂Ωr , r > 0, then

‖Tλu‖∞ ≤ λM̂r

∫ 1

0
G

(
j(s), s

)
h(s) ds, (3.1)

where M̂r = max0≤s≤r{f (s)}.

Proof Since f (u(t)) ≤ M̂r for t ∈ [0, 1], it follows that

‖Tλu‖∞ ≤ λ

∫ 1

0
G

(
j(s), s

)
h(s)f

(
u(s)

)
ds

≤ λM̂r

∫ 1

0
G

(
j(s), s

)
h(s) ds. �

Lemma 3.3 Let (A1)–(A4) hold. Assume that {(μk , yk)} ⊂ (0, +∞) × K is a sequence of
positive solutions of (1.1). Assume that μk ≤ C0 for some constant C0 > 0, and

lim
k→∞

∥∥y′′′
k
∥∥∞ = ∞. (3.2)

Then

lim
k→∞

‖yk‖∞ = ∞. (3.3)

Proof Assume on the contrary that {‖yk‖∞} is bounded. Then

∥∥μkh(x)f
(
yk(x)

)∥∥∞ ≤ M

for some constant M that is independent of k. Thus, it follows from the relation

y′′′′
k (x) = μkh(x)f

(
yk(x)

)

that {y′′′′
k } is uniformly bounded in C[0, 1], and subsequently {y′′′

k } is uniformly bounded in
C[0, 1]. However, this contradicts (3.2). �

Lemma 3.4 Assume that (A1)–(A4) hold. If u ∈ ∂Ωr , r > 0, then

‖Tλu‖∞ ≥ λm̂r

∫ 3/4

1/4
G

(
j(s), s

)
h(s) ds, (3.4)

where

m̂r = min
3r/32≤x≤r

{
f (x)

}
. (3.5)
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Proof Since f (u(t)) ≥ m̂r for t ∈ [ 1
4 , 3

4 ], it follows that

‖Tλu‖∞ ≥ λ

∫ 1

0
G

(
j(s), s

)
h(s)f

(
u(s)

)
ds

≥ λm̂r

∫ 3/4

1/4
G

(
j(s), s

)
h(s) ds. �

4 Proof of the main results
We only deal with the global behavior of positive solutions of (1.1). The global behavior of
negative solutions of (1.1) can be treated by a similar method.

Let Σ+ be the closure of the set of positive solutions of (1.1) in E. To prove Theorem 1.1,
we will develop a bifurcation approach to treat the case f0 = 0. Crucial to this approach is
to construct a sequence of functions {f [n]} that is asymptotic linear at 0 and satisfies

f [n] → f ,
(
f [n])

0 → 0.

By means of the corresponding auxiliary equations, we obtain a sequence of unbounded
components {C[n]

+ } via nonlinear Krein–Rutman bifurcation theorem, see Dancer [3] and
Zeidler [15], and this enables us to find unbounded components ζ̂ satisfying

ζ̂ ⊂ lim sup
n→∞

C[n]
+

and joining (+∞, 0) with (+∞,∞).
Define g[n] : R →R by

g[n](s) =

⎧⎨
⎩

f (s), s ∈ ( 1
n ,∞) ∪ (–∞, – 1

n ),

nf ( 1
n )s, s ∈ [– 1

n , 1
n ].

(4.1)

Then g[n] ∈ C(R,R) with

sg[n](s) > 0, ∀|s| ∈ (0,∞), and
(
g[n])

0 = nf
(

1
n

)
. (4.2)

By (A3), it follows that

lim
n→∞

(
g[n])

0 = 0.

To apply the nonlinear Krein–Rutman theorem [4], let us consider the auxiliary family
of the equations

u′′′′ = λh(t)g[n](u), t ∈ (0, 1), (4.3)

u(0) = u(1) = u′′(0) = u′′(1) = 0. (4.4)

Let ξ [n] ∈ C(R) be such that

g[n](u) =
(
g[n])

0u + ξ [n](u) = nf
(

1
n

)
u + ξ [n](u). (4.5)
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Then

lim|u|→0

ξ [n](u)
u

= 0. (4.6)

Let D := {u ∈ C4[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0}. Let L : D → Y be the linear opera-
tor defined by

Lu := u′′′′, u ∈ D.

Let us consider

Lu – λh(t)
(
g[n])

0u = λh(t)ξ [n](u) (4.7)

as a bifurcation problem from the trivial solution u ≡ 0.
Equation (4.7) can be converted to the equivalent equation

u(t) =
∫ 1

0
G(t, s)

[
λh(s)

(
g[n])

0u(s) + λh(s)ξ [n](u(s)
)]

ds

:= λL–1[h(·)(g[n])
0u(·)](t) + λL–1[h(·)ξ [n](u(·))](t). (4.8)

Further we note that ‖L–1[h(·)ξ [n](u(·))]‖∞ = o(‖u‖∞) for u near θ in E.
By the fact (g[n])0 > 0, the results of nonlinear Krein–Rutman theorem (see Dancer [3]

and Zeidler [15, Corollary 15.12]) for (4.7) can be stated as follows: there exists a contin-
uum C[n]

+ of positive solutions of (4.7) joining ( λ1
(g[n])0

, θ ) to infinity in [0,∞)×K . Moreover,
C[n]

+ \ {( λ1
(g[n])0

, θ )} ⊂ ([0,∞) × int K) and ( λ1
(g[n])0

, θ ) is the only positive bifurcation point of
(4.7) lying on the trivial solutions line u ≡ θ .

Lemma 4.1 Let (A1)–(A4) hold. Then, for each fixed n, C[n]
+ joins ( λ1

(g[n])0
, θ ) to (∞,∞) in

[0,∞) × K .

Proof We divide the proof into two steps.
Step 1. We show that sup{λ | (λ, u) ∈ C[n]

+ } = ∞.
Assume on the contrary that sup{λ | (λ, u) ∈ C[n]

+ } =: c0 < ∞. Let {(μk , yk)} ⊂ C[n]
+ be such

that

|μk| + ‖yk‖∞ → ∞.

Then ‖yk‖∞ → ∞. This together with the fact

min
σ≤t≤1–σ

yk(t) ≥ q(σ )‖yk‖∞, ∀0 < σ <
1
2

(4.9)

implies that, for arbitrary σ ∈ (0, 1
2 ),

lim
k→∞

yk(t) = ∞, uniformly for t ∈ [σ , 1 – σ ]. (4.10)
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Since (μk , yk) ∈ C[n]
+ , we have that

y′′′′
k (t) = μkh(t)g[n](yk(t)

)
, t ∈ (0, 1), (4.11)

yk(0) = yk(1) = y′′
k (0) = y′′

k (1) = 0. (4.12)

Set vk(t) = yk (t)
‖yk‖∞ . Then

‖vk‖∞ = 1,

v′′′′
k (t) = μkh(t)

g[n](yk(t))
yk(t)

vk(t), t ∈ (0, 1), (4.13)

vk(0) = vk(1) = v′′
k (0) = v′′

k (1) = 0. (4.14)

From (4.13) and the fact that (g[n])∞ = 0, we conclude that

∥∥v′′′′
k

∥∥∞ ≤ M

for some constant M > 0 independent of k.
Now, choosing a subsequence and relabeling if necessary, it follows that there exists

(μ∗, v∗) ∈ [0, c0] × E with

‖v∗‖∞ = 1, (4.15)

such that

lim
k→∞

(μk , vk) = (μ∗, v∗), in [0, c0] × E. (4.16)

Notice that (4.13), (4.14) is equivalent to

vk(t) = μk

∫ 1

0
G(t, s)h(s)

g[n](yk(s))
yk(s)

vk(s) ds, t ∈ (0, 1).

Combining this with (4.16) and using (4.10) and the Lebesgue dominated convergence
theorem, we conclude that

v∗(t) = μ∗
∫ 1

0
G(t, s)h(s)0v∗(s) ds = 0, t ∈ (0, 1).

This contradicts (4.15). Therefore

sup
{
λ | (λ, y) ∈ C[n]

+
}

= ∞.

Step 2. We show that sup{‖u‖∞ | (λ, u) ∈ C[n]
+ } = ∞.

Assume on the contrary that sup{‖u‖∞ | (λ, u) ∈ C[n]
+ } =: M∞ < ∞. Let {(μk , yk)} ⊂ C[n]

+

be such that

μk → ∞, ‖yk‖∞ ≤ M∞. (4.17)
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Since (μk , yk) ∈ C[n]
+ , for any t ∈ [σ , 1 – σ ], we have from (1.2) that

yk(t) = μk

∫ 1

0
G(t, s)h(s)g[n](yk(s)

)
ds

≥ μk

∫ 1–σ

σ

q(σ )G
(
j(s), s

)
h(s)

g[n](yk(s))
yk(s)

yk(s) ds

≥ μk

∫ 1–σ

σ

q(σ )G
(
j(s), s

)
h(s)

g[n](yk(s))
yk(s)

q(σ ) ds‖yk‖∞

≥ μk

∫ 1–σ

σ

q2(σ )G
(
j(s), s

)
h(s)b∗ ds‖yk‖∞

(where b∗ := inf{ g[n](x)
x | x ∈ (0, M∞]} > 0), which yields that {μk} is bounded. However, this

contradicts (4.17).
Therefore, C[n]

+ joins ( λ1
(g[n])0

, θ ) to (∞,∞) in K . �

Lemma 4.2 Let (A1)–(A4) hold and let I ⊂ (0,∞) be a closed interval. Then there exists
a positive constant M such that

sup
{‖y‖∞ | (μ, y) ∈ C[n]

+ and μ ∈ I
} ≤ M.

Proof Assume on the contrary that there exists a sequence {(μk , yk)} ⊂ C[n]
+ ∩ (I × K) such

that

‖yk‖∞ → ∞.

Then, (4.9), (4.10), (4.11), and (4.12) hold. Set vk(t) = yk (t)
‖yk‖∞ . Then

‖vk‖∞ = 1.

Now, choosing a subsequence and relabeling if necessary, it follows that there exists
(μ∗, v∗) ∈ I × Y with

‖v∗‖∞ = 1 (4.18)

such that

lim
k→∞

(μk , vk) = (μ∗, v∗) in R× Y .

Moreover, from (4.11), (4.12), (4.10) and the assumption f∞ = 0, it follows that

v′′′′
∗ (t) = μ∗h(t) · 0, t ∈ (0, 1),

v∗(0) = v∗(1) = v′′
∗(0) = v′′

∗(1) = 0,

and subsequently, v∗(t) ≡ 0 for t ∈ [0, 1]. This contradicts (4.18). Therefore

sup
{‖y‖∞ | (μ, y) ∈ C[n]

+ and μ ∈ I
} ≤ M. �
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Lemma 4.3 Let (A1)–(A4) hold. Then there exists ρ∗ > 0 such that
( ∞⋃

n=1

C[n]
+

)
∩ ((

0,ρ∗) × K
)

= ∅.

Proof Assume on the contrary that there exists {(μk , yk)} ⊂ (
⋃∞

n=1 C[n]
+ ) ∩ ((0, +∞) × K)

such that μk → 0. Then

yk(t) = μk

∫ 1

0
G(t, s)h(s)g[n](yk(s)

)
ds, t ∈ (0, 1).

Set vk(t) = yk (t)
‖yk‖∞ . Then

‖vk‖∞ = 1,

and for all t ∈ (0, 1),

vk(t) = μk

∫ 1

0
G(t, s)h(s)

g[n](yk(s))
yk(s)

yk(s)
‖yk‖∞

ds

≤ μk

∫ 1

0
G

(
j(s), s

)
h(s)B∗

n‖vk‖∞ ds,

where B∗
n = sup{ g[n](x)

x | x ∈ (0,∞), n ∈N}. Let

B∗ = sup
{

B∗
n | n ∈N

}
.

Then B∗ < ∞, and

vk(t) ≤ μk

∫ 1

0
G

(
j(s), s

)
h(s)B∗‖vk‖∞ ds → 0,

which contradicts the fact ‖vk‖∞ = 1. Therefore, there exists ρ∗ > 0, such that
( ∞⋃

n=1

C[n]
+

)
∩ ((

0,ρ∗) × K
)

= ∅. �

Proof of Theorem 1.1 By Lemmas 4.1–4.3 and the similar method to prove Ma and An [12,
Theorem 4.1], with obvious changes, we may get a desired connected component C+ ⊂
lim sup C[n]

+ of positive solutions of (1.1) and a connected component C– ⊂ lim sup C[n]
– of

negative solutions of (1.1) such that
(1) C+ is of ⊂-shaped and joins (+∞, θ ) to (+∞,∞);
(2) for every ρ > 0, there exists Λρ > 0 such that

(λ, u) ∈ C+ with ‖u‖∞ = ρ ⇒ λ > Λρ ;

(3) C– is of ⊂-shaped and joins (+∞, θ ) to (+∞,∞);
(4) for every ρ > 0, there exists Λρ > 0 such that

(λ, u) ∈ C– with ‖u‖∞ = ρ ⇒ λ > Λρ . �
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