- Research
- Open Access
- Published:
Pseudo-almost-periodic solutions of quaternion-valued RNNs with mixed delays via a direct method
Journal of Inequalities and Applications volume 2020, Article number: 88 (2020)
Abstract
In this paper, we are concerned with the existence and global exponential stability of pseudo-almost-periodic solutions for quaternion-valued recurrent neural networks (RNNs) with time-varying delays. By using the Banach fixed point theorem and proof by contradiction, we directly study the existence and exponential stability of pseudo-almost-periodic solutions of the quaternion-valued systems under consideration without decomposing them into into real- or complex-valued systems. Our results obtained in this paper are new. Finally, we give a numerical example and computer simulation to illustrate the feasibility of our results.
1 Introduction
RNNs have a natural time depth and are adaptable to any sequence data, that is, RNNs are very suitable to solve problems when there is a correlation between samples. The recurrent structure has a natural advantage in modeling variable length data. In a sense, RNNs are the best matching model for sequence data processing. At the same time, time delays are ubiquitous and may change the long-term behavior of dynamical systems. Therefore, RNNs with or without delays have been extensively studied and applied in many fields [1–15].
On the one hand, it is well known that the dynamics of neural networks plays an important role in their design, implementation, and application. Recurrence oscillation of neural networks is an important dynamic behavior of neural networks, such as periodic oscillation, almost periodic oscillation, almost automorphic oscillation, and so on. Many scholars have studied these oscillation problems of neural networks [16–21]. The pseudo-almost-periodic functions as a generalization of almost periodic functions were introduced into the research field of mathematics by Zhang [22]. At present, the existence of pseudo-almost-periodic solutions of differential equations has been studied as an important qualitative behavior of differential equations. At the same time, pseudo-almost-periodic oscillations of ecological and neural network models have also been regarded as one of their important dynamic properties, which has attracted the interest of many researchers [23–30].
On the other hand, a quaternion consists of a real and three imaginary parts [31]. The skew field of quaternions is defined by
where \(x^{R},x^{I},x^{J},x^{K} \in \mathbb{R}\) and i, j, k obey the following multiplication rules:
and the norm of x is defined by \(\vert x \vert _{\mathbb{H}}=\sqrt{(x^{R})^{2}+(x^{I})^{2}+(x^{J})^{2}+(x^{K})^{2}}\). Quaternions can be used in pure and applied mathematics, especially in the calculation of three-dimensional rotation, such as three-dimensional computer graphics, computer vision, and crystal texture analysis. These characteristics make quaternion-valued neural networks more advantageous than the real- and complex-valued neural networks in dealing with problems such as high-dimensional data and spacial rigid body rotations, and so on. Therefore, the research on quaternion-valued neural networks has become a hot topic in the theory and applications of neural networks. However, due to the noncommutativity of quaternion multiplication, the results of quaternion-valued neural network dynamics are very few [32–41]. Especially, the results obtained by a method of not decomposing quaternion-valued systems into real- or complex-valued systems are even rarer. Also, up to date, there has been no paper published on the existence of pseudo-almost-periodic solutions for RNNs with time-varying delays by using direct methods.
Inspired by the above discussion, in this work, we consider the following quaternion-valued RNN with mixed delays:
where \(p=1,2,\ldots,n\), \(x_{p}(t)\in \mathbb{H}\) corresponds to the state of the pth unit at time t, \(f_{q}, g_{q},h_{q}: \mathbb{H}\rightarrow \mathbb{H}\) denote the activation functions, \(b_{pq}(t), c_{pq}(t), d_{pq}(t)\in \mathbb{H}\) represent the connection weights, the discretely delayed connection weights and the distributively delayed connection weights between the qth neuron and the pth neuron at time t, respectively; \(Q_{p}(t)\in \mathbb{H}\) is the external input on the pth neuron at time t, \(\tau _{pq}(t)\geq 0\) denotes the transmission delay, \(a_{p}(t)\in \mathbb{R}\) represents the rate with which the pth unit will reset its potential to the resting state when disconnected from the network and external inputs. The kernel is a positive continuous integrable function and it such that \(\int _{0}^{+\infty }\theta _{pq}(s)\,ds=1\).
The initial value of system (1) is
where \(\varphi _{p}:(-\infty ,0]\rightarrow \mathbb{H}\) is a bounded continuous function.
Our main aim in this paper is by using a direct method to study the existence and global exponential stability of pseudo-almost-periodic solutions of (1). To our knowledge, this is the first paper to study the existence and global exponential stability of pseudo-almost-periodic solutions to system (1). Our results are completely new, and our methods can be used to study other quaternion-valued neural networks.
The rest of this paper is structured as follows. Some basic definitions and lemmas are stated in Sect. 2. The existence of pseudo-almost-periodic solutions of (1) is studied in Sect. 3. In Sect. 4, the global exponential stability of pseudo-almost-periodic solutions of (1) is established. In Sect. 5, a numerical example is given to illustrate the feasibility of the obtained results. Finally, a concise conclusion is given in Sect. 6.
2 Preliminaries and lemmas
Let \(\operatorname{BC}(\mathbb{R},\mathbb{H}^{n})\) denote the set of all bounded continuous functions from \(\mathbb{R}\) to \(\mathbb{H}^{n}\). Then it is easy to check that \(\operatorname{BC}(\mathbb{R},\mathbb{H}^{n})\) with the norm \(\Vert x \Vert =\max_{1\leq p\leq n} \{\sup_{t\in \mathbb{R}} \vert x_{p}(t) \vert _{\mathbb{H}} \}\) is a Banach space. For \(x=(x_{1},x_{2},\ldots,x_{n})^{T}\in \mathbb{H}^{n}\), we denote \(\vert x \vert _{\mathbb{H}^{n}}=\max_{1\leq p\leq n} \vert x_{p} \vert _{ \mathbb{H}}\).
We give the following definition of almost periodic functions in the sense of Bohr [42].
Definition 2.1
AÂ function \(f\in \operatorname{BC}(\mathbb{R},\mathbb{H}^{n})\) is said to be almost periodic, if for every \(\varepsilon >0\), it is possible to find a real number \(l=l(\varepsilon )>0\) such that in every interval with length \(l(\varepsilon )\), one can find a number \(\tau =\tau (\varepsilon )\) in this interval satisfying \(\vert f(t+\tau )-f(t) \vert _{\mathbb{H}^{n}}<\varepsilon \) for all \(t\in \mathbb{R}\). The collection of such functions will be denoted by \(\operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\).
From the above definition, following similar proof methods used to prove the corresponding results in [43], one can easily establish the following four lemmas.
Lemma 2.1
If\(f\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\), thenfis bounded and uniformly continuous.
Lemma 2.2
If\(f,g\in \operatorname{AP}(\mathbb{R},\mathbb{H})\), then\(f\pm g,fg\in \operatorname{AP}(\mathbb{R},\mathbb{H})\).
Lemma 2.3
If\(f\in C(\mathbb{H},\mathbb{H}^{n})\)satisfies the Lipschitz condition and\(\varphi \in \operatorname{AP}(\mathbb{R},\mathbb{H}) \), then\(f(\varphi (\cdot ))\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\).
Lemma 2.4
If\(x\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\)and\(\tau \in \operatorname{AP}(\mathbb{R},\mathbb{R})\), then\(x(\cdot -\tau (\cdot ))\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\).
Let
Then we give the following definition of pseudo-almost-periodic functions in the sense of Zhang [22].
Definition 2.2
AÂ function \(f\in \operatorname{BC}(\mathbb{R},\mathbb{H}^{n})\) is said to be pseudo-almost-periodic if it can be expressed as \(f=f_{1}+f_{0}\), where \(f_{1}\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\) and \(f_{0}\in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H}^{n})\). The collection of all such functions will be denoted by \(\operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\).
Similar to the proof of Proposition 5.6 in [44], one can easily prove
Lemma 2.5
If\(f=g+h\in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\), then\(g(\mathbb{R})\subset \overline{f(\mathbb{R})}\)and
Based on Lemma 2.5, similar to the proof of Lemma 5.8 in [44], one can prove
Lemma 2.6
If\(\{\varphi _{m}\}_{m\in \mathbb{N}}\subset \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\)such that\(\Vert \varphi _{m}-\varphi \Vert \rightarrow 0\)as\(n\rightarrow \infty \), then\(\varphi \in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\).
Lemma 2.7
\((\operatorname{PAP}(\mathbb{R},\mathbb{H}^{n}), \Vert \cdot \Vert )\)is a Banach space.
Proof
Obviously, \(\operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\subset \operatorname{BC}(\mathbb{R},\mathbb{H}^{n})\). In view of Lemma 2.6, \(\operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\) is a closed subspace of \(\operatorname{BC}(\mathbb{R},\mathbb{H}^{n})\). Consequently, \((\operatorname{PAP}(\mathbb{R},\mathbb{H}^{n}), \Vert \cdot \Vert )\) is a Banach space. The proof is complete. □
It is not difficult to prove the following three lemmas.
Lemma 2.8
If\(f,g\in \operatorname{PAP}(\mathbb{R},\mathbb{H})\), then\(fg\in \operatorname{PAP}(\mathbb{R},\mathbb{H})\).
Lemma 2.9
If\(\varphi \in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\)and\(h\in \mathbb{R}\), then\(\varphi (\cdot -h)\in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\).
Lemma 2.10
Let\(f\in C(\mathbb{H},\mathbb{H}^{n})\)satisfy the Lipschitz condition and\(\varphi \in \operatorname{PAP}(\mathbb{R}, \mathbb{H})\), then\(f(\varphi (\cdot ))\in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\).
Lemma 2.11
If\(x\in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\), \(\nu \in \operatorname{AP}(\mathbb{R},\mathbb{R})\cap C^{1}(\mathbb{R},\mathbb{R})\)and there exist positive constants\(\nu ^{+}\)and\(\dot{\nu }^{+}\)such that\(\vert \nu (t) \vert \leq \nu ^{+}\)and\(\dot{\nu }(t)\leq \dot{\nu }^{+}<1\), then\(x(\cdot -\nu (\cdot ))\in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\).
Proof
Since \(x\in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\), we can write \(x=x_{1}+x_{0}\), where \(x_{1}\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n}) \) and \(x_{0}\in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H}^{n})\), so we have
Noticing that \(x_{1}(\cdot -\nu (\cdot ))\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\), by Lemma 2.1, \(x_{1}\) is uniformly continuous. Thus, for every \(\varepsilon >0\), there is a constant \(0<\zeta =\zeta (\varepsilon )<\frac{\varepsilon }{2}\) such that
Since ν and \(x_{1}\) are almost periodic, for this \(\zeta >0\), there exists an \(l(\zeta )>0\) such that in every interval with length \(l(\zeta )\), there is a δ satisfying
It follows from (2) and (3) that
which implies that \(x_{1}(\cdot -\nu (\cdot ))\in \operatorname{AP}(\mathbb{R},\mathbb{H}^{n})\).
Moreover, let \(s=t-\nu (t)\), we find
which implies that \(x_{0}(\cdot -\nu (\cdot ))\in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H}^{n})\).
Hence, \(x(\cdot -\nu (\cdot ))\in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\). The proof is completed. □
In what follows, we will adopt the following notation:
and make the following assumptions:
- (\(H_{1}\)):
For \(p,q=1,2,\ldots,n\), \(a_{p}\in \operatorname{AP}(\mathbb{R},\mathbb{R}^{+})\) with \(\inf_{t\in \mathbb{R}}a_{p}(t)>0\), \(b_{pq},c_{pq}, d_{pq}, Q_{p}\in \operatorname{PAP}(\mathbb{R}, \mathbb{H})\), \(\tau _{pq}\in C^{1}(\mathbb{R},\mathbb{R}^{+})\cap \operatorname{AP}(\mathbb{R}, \mathbb{R}^{+})\) and \(\dot{\tau }^{+}<1\).
- (\(H_{2}\)):
For \(p,q=1,2,\ldots,n\), the kernels \(\theta _{pq}\in C(\mathbb{R},\mathbb{R}^{+})\) are such that \(\int _{0}^{+\infty }\theta _{pq}(s)\,ds=1\) and there exists a positive constant \(\beta _{\vartheta }\) such that \(\int _{0}^{+\infty }\theta _{pq}(s)e^{\beta _{\vartheta }s}\,ds<+ \infty \).
- (\(H_{3}\)):
Functions \(f_{p},g_{p},h_{p}\in C(\mathbb{H},\mathbb{H})\) and there exist constants \(L_{p}^{f}\), \(L_{p}^{g}\), \(L_{p}^{h}\) such that
$$\begin{aligned}& \bigl\vert f_{p}(x)-f_{p}(y) \bigr\vert _{\mathbb{H}} \leq L_{p}^{f} \vert x-y \vert _{\mathbb{H}}, \\& \bigl\vert g_{p}(x)-g_{p}(y) \bigr\vert _{\mathbb{H}} \leq L_{p}^{g} \vert x-y \vert _{\mathbb{H}}, \\& \bigl\vert h_{p}(x)-h_{p}(y) \bigr\vert _{\mathbb{H}} \leq L_{p}^{h} \vert x-y \vert _{\mathbb{H}}, \end{aligned}$$and \(f_{p}(0)=g_{p}(0)=h_{p}(0)=0\), where \(p=1,2,\ldots,n\).
- \((H_{4})\):
\(r:=\max_{1\leq p\leq n} \{\frac{1}{a_{p}^{-}} [ \sum_{q=1}^{n}b_{pq}^{+}L_{q}^{f}+\sum_{q=1}^{n}c_{pq}^{+}L_{q}^{g}+ \sum_{q=1}^{n}d_{pq}^{+}L_{q}^{h} ] \}<1\).
3 The existence of pseudo-almost-periodic solutions
In this section, we study the existence of pseudo-almost-periodic solutions of system (1).
Lemma 3.1
Assume that\((H_{1})\)–\((H_{3})\)hold. If\(x_{q} \in \operatorname{PAP}(\mathbb{R},\mathbb{H})\), then for\(p,q=1,2,\ldots, n\), functions\(\varphi _{pq}:t\rightarrow \int _{-\infty }^{t}\theta _{pq}(t-s)h_{q}(x_{q}(s))\,ds\)belong to\(\operatorname{PAP}(\mathbb{R},\mathbb{H})\).
Proof
It follows from Lemma 2.10 that \(h_{q}(x_{q}(\cdot ))\in \operatorname{PAP}(\mathbb{R},\mathbb{H})\). Let \(h_{q}(x_{q}(t))=u_{q}(t)+v_{q}(t)\), in which \(u_{q}\in \operatorname{AP}(\mathbb{R},\mathbb{H}) \) and \(v_{q}\in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H})\), then
Now, we prove that \(\varphi _{pq}\in \operatorname{PAP}(\mathbb{R},\mathbb{H})\). To this end, firstly, we will prove that \(\varphi _{p}^{1}\in \operatorname{AP}(\mathbb{R},\mathbb{H})\). Since \(u_{q}\in \operatorname{AP}(\mathbb{R},\mathbb{H})\), for every \(\varepsilon >0\), there exists a number \(L({\varepsilon })>0\) such that in every interval of length L, one finds a number Ï„ such that
Hence, we have
which implies that \(\varphi _{p}^{1}\in \operatorname{AP}(\mathbb{R},\mathbb{H})\).
Then, we will prove that \(\varphi _{p}^{0}\in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H})\). In view of \(v_{q}\in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H})\) and the Lebesgue’s dominated convergence theorem, we have
which implies that \(\varphi _{p}^{0}\in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H})\). Therefore, \(\varphi _{p}\in \operatorname{PAP}(\mathbb{R},\mathbb{H})\). The proof is completed. □
Let \(\varphi _{0}(t)=(\int _{-\infty }^{t}e^{-\int _{s}^{t}a_{1}(u)\,du}Q_{1}(s)\,ds,\ldots,\int _{-\infty }^{t}e^{-\int _{s}^{t}a_{n}(u)\,du}Q_{n}(s)\,ds)^{T}\) and take a constant \(\alpha > \Vert \varphi _{0} \Vert \). Consider the set \(\mathbb{X}_{0}= \{ \varphi \in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n}): \Vert \varphi -\varphi _{0} \Vert \leq \frac{r\alpha }{1-r} \}\), then for every \(\varphi \in \mathbb{X}_{0}\), we have \(\Vert \varphi \Vert \leq \Vert \varphi -\varphi _{0} \Vert + \Vert \varphi _{0} \Vert \leq \frac{r\alpha }{1-r}+\alpha = \frac{\alpha }{1-r}\).
Theorem 3.1
Assume that\((H_{1})\)–\((H_{4})\)hold. Then system (1) has a pseudo-almost-periodic solution in\(\mathbb{X}_{0}\).
Proof
For every \(\varphi =(\varphi _{1},\varphi _{2},\ldots,\varphi _{n})^{T}\in \operatorname{PAP}( \mathbb{R},\mathbb{H}^{n})\), if φ satisfies
then by differentiating (4), we have
which implies that φ is a solution of (1).
Define an operator \(\mathcal{F} :\mathbb{X}_{0}\rightarrow \operatorname{BC}(\mathbb{R},\mathbb{H}^{n}) \) as follows:
where for every \(\varphi \in \operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\) and \(p=1,2,\ldots,n\),
From Lemmas 2.8–2.11 and 3.1, we have \(\varGamma _{p}\varphi \in \operatorname{PAP}(\mathbb{R},\mathbb{H})\), which implies that \(\varGamma _{p}\varphi \) can be written as \(\varGamma _{p}\varphi =\varGamma _{p}^{1}\varphi +\varGamma _{p}^{0}\varphi \), where \(\varGamma _{p}^{1}\varphi \in \operatorname{AP}(\mathbb{R},\mathbb{H})\), \(\varGamma _{p}^{0} \varphi \in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H})\), \(p=1,2,\ldots,n\). Therefore,
In order to show that \(\mathcal{F}_{p}\varGamma _{p}\varphi \in \operatorname{PAP}(\mathbb{R},\mathbb{H})\), we will first prove that \(\mathcal{F}_{p}\varGamma _{p}^{1}\varphi \in \operatorname{AP}(\mathbb{R},\mathbb{H})\). Since \(a_{p}\in \operatorname{AP}(\mathbb{R},\mathbb{R})\), \(\varGamma _{p}^{1}\in \operatorname{AP}(\mathbb{R}, \mathbb{H})\), for every \(\epsilon >0\), there exists \(l>0\) such that every interval of length l contains a number Ï„ satisfying
Thus,
which implies that \(\varGamma _{p}^{1}\varphi \in \operatorname{AP}(\mathbb{R},\mathbb{H})\).
Then, we will prove that \(\mathcal{F}_{p}\varGamma _{p}^{0} \in \operatorname{PAP}_{0}(\mathbb{R},\mathbb{H})\). In fact,
By Lebesgue’s dominated convergence theorem, we have that \(\mathcal{F}_{p}\varGamma _{p}^{0}\varphi \in \operatorname{PAP}_{0}(\mathbb{R}, \mathbb{H})\). Therefore, \(\mathcal{F}\) maps \(\mathbb{X}_{0}\) into \(\operatorname{PAP}(\mathbb{R},\mathbb{H}^{n})\).
Now, we prove that the mapping \(\mathcal{F}\) is a self-mapping from \(\mathbb{X}_{0}\) to \(\mathbb{X}_{0}\). In fact, for each \(\varphi \in \mathbb{X}_{0}\), we have
which means that \(\mathcal{F}\varphi \in \mathbb{X}_{0}\). Hence the mapping \(\mathcal{F}\) is a self-mapping from \(\mathbb{X}_{0}\) to \(\mathbb{X}_{0}\).
Finally, we prove that \(\mathcal{F}\) is a contraction mapping. In fact, for any \(\varphi ,\psi \in \mathbb{X}_{0}\), we have
which, combined with \((H_{4})\), implies that the mapping \(\mathcal{F}\) is a contraction. Therefore, \(\mathcal{F}\) has a unique fixed point, that is, system (1) has a unique-pseudo-almost periodic solution. The proof is completed. □
4 Global exponential stability
In this section, for \(z\in C(\mathbb{R},\mathbb{H}^{n})\) and \(\phi \in \operatorname{BC}((-\infty ,0],\mathbb{H}^{n})\), we denote \(\Vert z(t) \Vert = \max_{1\leq p\leq n} \{ \vert z_{p}(t) \vert _{\mathbb{H}} \}\) and \(\Vert \phi \Vert _{0}=\max_{1\leq p\leq n} \{\sup_{t \in (-\infty ,0]} \vert \phi (t) \vert _{\mathbb{H}} \}\).
Definition 4.1
Let \(x=(x_{1},x_{2},\ldots,x_{n})^{T}\) be a pseudo-almost-periodic solution of system (1) with the initial value \(\varphi =(\varphi _{1},\varphi _{2},\ldots,\varphi _{n})^{T}\in C([- \infty ,0],\mathbb{H}^{n})\) and let \(y=(y_{1},y_{2},\ldots,y_{n})^{T}\) be an arbitrary solution of system (1) with the initial value \(\psi =(\psi _{1},\psi _{2},\ldots,\psi _{n})^{T}\in C([-\infty ,0], \mathbb{H}^{n})\), respectively. If there exist positive constants λ and M such that
then the pseudo-almost-periodic solution x of system (1) is said to be globally exponentially stable.
Theorem 4.1
Assume that\((H_{1})\)–\((H_{4})\)hold. Then system (1) has a unique pseudo-almost-periodic solution that is globally exponentially stable.
Proof
By Theorem 3.1, system (1) has a pseudo-almost-periodic solution, let \(x(t)\) be a pseudo-almost-periodic solution with initial value \(\varphi (t)\) and \(y(t)\) be an arbitrary solution with initial value \(\psi (t)\). Taking \(z_{p}(t)=y_{p}(t)-x_{p}(t)\), \(\phi _{p}(t)=\psi _{p}(t)-\varphi _{p}(t)\), we have
Let \(\varTheta _{p}\) be defined by
where \(p=1,2,\ldots,n\), \(\omega \in [0,+\infty )\). Then by \((H_{2})\) and \((H_{4})\), for each \(p=1,2,\ldots,n\), we have \(\varTheta _{p}(0)>0\), moreover, since \(\varTheta _{p}(\omega )\rightarrow -\infty \) as \(\omega \rightarrow +\infty \), there exists \(\varepsilon _{p}^{*}>0\) such that \(\varTheta _{p}(\varepsilon _{p})>0\) for \(\varepsilon _{p}\in (0,\varepsilon _{p}^{*})\). Let \(\eta =\min \{\varepsilon _{1}^{*},\varepsilon _{2}^{*},\ldots, \varepsilon _{n}^{*}\}\), then we have \(\varTheta _{p}(\eta )\geq 0\), \(p=1,2,\ldots,n\). So we can take a positive constant λ satisfying \(0<\lambda <\min \{\eta ,a_{1}^{-},a_{2}^{-},\ldots,a_{n}^{-},\beta _{ \vartheta }\}\) such that \(\varTheta _{p}(\lambda )>0\), which implies that
Multiplying both sides of (5) by \(e^{\int _{0}^{s}a_{p}(u)\,du}\) and integrating on \([0,t]\), we have
Let
By \((H_{4})\), \(M>1\), and
where \(0<\lambda <\min \{\eta ,a_{1}^{-},a_{2}^{-},\ldots,a_{n}^{-},\beta _{0} \}\).
Obviously,
We show that
To prove (9), we show for any \(\xi >1\),
If (10) is false, then there must be some \(t_{1}>0\) and some \(p\in \{1,2,\ldots,n\}\) such that
and
By (6)–(8), (12) and \((H_{3})\), we have
which contradicts (11), and so (10) holds. Letting \(\xi \rightarrow 1\), shows that (9) holds. Hence, the pseudo-almost-periodic solution of (1) is globally exponentially stable. The uniqueness follows from the global exponential stability. The proof is complete. □
5 An example
In this section, we give a numerical example and computer simulations.
Example 5.1
In system (1), let \(n=2\) and for \(p,q=1,2 \), consider
By straightforward computation, \(\vert f_{q}(x)-f_{q}(y) \vert _{\mathbb{H}}\leq \frac{1}{40} \vert x-y \vert _{\mathbb{H}}\), \(\vert g_{q}(x)-g_{q}(y) \vert _{\mathbb{H}}\leq \frac{1}{45} \vert x-y \vert _{\mathbb{H}}\), \(\vert h_{q}(x)-h_{q}(y) \vert _{\mathbb{H}}\leq \frac{1}{45} \vert x-y \vert _{\mathbb{H}}\), \(q=1,2\), \(a_{1}^{-}=2.49\), \(a_{2}^{-}=2.38\), \(b_{11}^{+}\leq 0.1112\), \(b_{12}^{+}\leq 0.014\), \(b_{21}^{+}\leq 0.016\), \(b_{22}^{+} \leq 0.023\), \(c_{11}^{+}\leq 0.07\), \(c_{12}^{+}\leq 0.165\), \(c_{21}^{+}\leq 0.282\), \(c_{22}^{+} \leq 0.229\), \(d_{11}^{+}\leq 0.102\), \(d_{12}^{+}\leq 0.170\), \(d_{21}^{+} \leq 0.152\), \(d_{22}^{+}\leq 0.229\). So \((H_{1})\)–\((H_{3})\) are satisfied. Besides, it is easy to obtain that
That is, \((H_{4})\) is verified. Therefore, by Theorem 4.1, system (1) has a unique pseudo-almost-periodic solution that is globally exponentially stable (see Figs. 1–4).
6 Conclusion
In this paper, we studied the existence and global exponential stability of pseudo-almost-periodic solutions for a class of quaternion-valued RNNs by a direct method. Our results and methods are new. At the same time, our method can be used to study the existence and stability of other functional solutions of other types of quaternion numerical neural network models.
References
Mike, S., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)
Mandic, D.P., Chambers, J.A.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, New York (2001)
Xia, Y., Wang, J.: Robust regression estimation based on low-dimensional recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 5935–5946 (2018)
Zhang, X.M., Han, Q.L., Ge, X., Ding, D.: An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313, 392–401 (2018)
Fei, J., Lu, C.: Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1275–1286 (2018)
Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2019)
Şaylı, M., Yılmaz, E.: Anti-periodic solutions for state-dependent impulsive recurrent neural networks with time-varying and continuously distributed delays. Ann. Oper. Res. 258(1), 159–185 (2017)
Aouiti, C., M’hamdi, M.S., Touati, A.: Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays. Neural Process. Lett. 45(1), 121–140 (2017)
Aouiti, C., M’hamdi, M.S., Chérif, F., Alimi, A.M.: Impulsive generalized high-order recurrent neural networks with mixed delays: stability and periodicity. Neurocomputing 321, 296–307 (2018)
Liu, Y., Zhang, D., Lu, J.: Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays. Nonlinear Dyn. 87(1), 553–565 (2017)
Zhang, D., Kou, K.I., Liu, Y., Cao, J.: Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field. Neural Netw. 94, 55–66 (2017)
Zhang, Z., Liu, X., Lin, C., Chen, B.: Finite-time synchronization for complex-valued recurrent neural networks with time delays. Complexity 2018, Article ID 8456737 (2018)
Zhang, D., Jiang, H., Wang, J., Yu, Z.: Global stability of complex-valued recurrent neural networks with both mixed time delays and impulsive effect. Neurocomputing 282, 157–166 (2018)
Yan, M., Qiu, J., Chen, X., Chen, X., Yang, C., Zhang, A.: Almost periodic dynamics of the delayed complex-valued recurrent neural networks with discontinuous activation functions. Neural Comput. Appl. 30(11), 3339–3352 (2018)
Yang, S., Yu, J., Hu, C., Jiang, H.: Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks. Neural Netw. 104, 104–113 (2018)
Li, Y., Qin, J.: Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays. Neurocomputing 292, 91–103 (2018)
Li, Y., Xiang, J.: Global asymptotic almost periodic synchronization of Clifford-valued CNNs with discrete delays. Complexity 2019, Article ID 6982109 (2019)
Alimi, A.M., Aouiti, C., Chérif, F., Dridi, F., M’hamdi, M.S.: Dynamics and oscillations of generalized high-order Hopfield neural networks with mixed delays. Neurocomputing 321, 274–295 (2018)
M’hamdi, M.S.: Pseudo almost automorphic solutions for multidirectional associative memory neural network with mixed delays. Neural Process. Lett. 49(3), 1567–1592 (2019)
M’hamdi, M.S.: Oscillation and stability of multidirectional associative memory neural network with mixed delays. Afr. Math. 30(5–6), 837–855 (2019)
Li, Y., Xiang, J.: Existence and global exponential stability of anti-periodic solution for Clifford-valued inertial Cohen–Grossberg neural networks with delays. Neurocomputing 332, 259–269 (2019)
Zhang, C.Y.: Pseudo almost periodic functions and their applications. Thesis, The University of Western, Ontario (1992)
Xiong, W.: New results on positive pseudo-almost periodic solutions for a delayed Nicholson’s blowflies model. Nonlinear Dyn. 85(1), 563–571 (2016)
Chérif, F.: Pseudo almost periodic solution of Nicholson’s blowflies model with mixed delays. Appl. Math. Model. 39(17), 5152–5163 (2015)
Zhang, A.: Pseudo almost periodic solutions for SICNNs with oscillating leakage coefficients and complex deviating arguments. Neural Process. Lett. 45(1), 183–196 (2017)
Li, Y., Meng, X.: Existence and global exponential stability of pseudo almost periodic solutions for neutral type quaternion-valued neural networks with delays in the leakage term on time scales. Complexity 2017, Article ID 9878369 (2017)
Li, Y., Meng, X., Xiong, L.: Pseudo almost periodic solutions for neutral type high-order Hopfield neural networks with mixed time-varying delays and leakage delays on time scales. Int. J. Mach. Learn. Cybern. 8(6), 1915–1927 (2017)
Xu, Y.: Weighted pseudo-almost periodic delayed cellular neural networks. Neural Comput. Appl. 30(8), 2453–2458 (2018)
Meng, X., Li, Y.: Pseudo almost periodic solutions for quaternion-valued cellular neural networks with discrete and distributed delays. J. Inequal. Appl. 2018, Article ID 245 (2018)
Amdouni, M., Chérif, F.: The pseudo almost periodic solutions of the new class of Lotka–Volterra recurrent neural networks with mixed delays. Chaos Solitons Fractals 113, 79–88 (2018)
Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85(2), 199–225 (1979)
Chen, X.F., Li, Z.S., Song, Q.K., Hua, J., Tan, Y.S.: Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties. Neural Netw. 91, 55–65 (2017)
You, X., Song, Q., Liang, J., Liu, Y., Alsaadi, F.E.: Global μ-stability of quaternion-valued neural networks with mixed time-varying delays. Neurocomputing 290, 12–25 (2018)
Song, Q., Chen, X.: Multistability analysis of quaternion-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5430–5440 (2018)
Li, Y., Qin, J., Li, B.: Existence and global exponential stability of anti-periodic solutions for delayed quaternion-valued cellular neural networks with impulsive effects. Math. Methods Appl. Sci. 42(1), 5–23 (2019)
Li, Y., Qin, J., Li, B.: Anti-periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays. Neural Process. Lett. 49(3), 1217–1237 (2019)
Zhu, J., Sun, J.: Stability of quaternion-valued impulsive delay difference systems and its application to neural networks. Neurocomputing 284, 63–69 (2018)
Xiang, J., Li, Y.: Pseudo almost automorphic solutions of quaternion-valued neural networks with infinitely distributed delays via a non-decomposing method. Adv. Differ. Equ. 2019, Article ID 356 (2019)
Tu, Z., Zhao, Y., Ding, N., Feng, Y., Zhang, W.: Stability analysis of quaternion-valued neural networks with both discrete and distributed delays. Appl. Math. Comput. 343, 342–353 (2019)
Liu, X., Li, Z.: Global μ-stability of quaternion-valued neural networks with unbounded and asynchronous time-varying delays. IEEE Access 7, 9128–9141 (2019)
Zhu, J., Sun, J.: Stability of quaternion-valued neural networks with mixed delays. Neural Process. Lett. 49(2), 819–833 (2019)
Bohr, H.: Zur Theorie der fast periodischen Funktionen. Acta Math. 45(1), 29–127 (1925)
Fink, A.M.: Almost Periodic Differential Equations. Springer, Berlin (1974)
Diagana, T.: Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, New York (2013)
Acknowledgements
The authors would like to thank the anonymous referee and the editor for their constructive suggestions on improving the presentation of the paper.
Availability of data and materials
Not applicable.
Funding
This work is supported by the National Natural Science Foundation of People’s Republic of China under Grant 11861072.
Author information
Authors and Affiliations
Contributions
The three authors contributed equally to the manuscript and typed, read, and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Li, Y., Xiang, J. & Li, B. Pseudo-almost-periodic solutions of quaternion-valued RNNs with mixed delays via a direct method. J Inequal Appl 2020, 88 (2020). https://doi.org/10.1186/s13660-020-02356-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02356-2
Keywords
- Pseudo-almost-periodic solution
- Quaternion-valued neural networks
- Global exponential stability