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Abstract
In this paper, we are concerned with the existence and global exponential stability of
pseudo-almost-periodic solutions for quaternion-valued recurrent neural networks
(RNNs) with time-varying delays. By using the Banach fixed point theorem and proof
by contradiction, we directly study the existence and exponential stability of
pseudo-almost-periodic solutions of the quaternion-valued systems under
consideration without decomposing them into into real- or complex-valued systems.
Our results obtained in this paper are new. Finally, we give a numerical example and
computer simulation to illustrate the feasibility of our results.
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1 Introduction
RNNs have a natural time depth and are adaptable to any sequence data, that is, RNNs are
very suitable to solve problems when there is a correlation between samples. The recur-
rent structure has a natural advantage in modeling variable length data. In a sense, RNNs
are the best matching model for sequence data processing. At the same time, time delays
are ubiquitous and may change the long-term behavior of dynamical systems. Therefore,
RNNs with or without delays have been extensively studied and applied in many fields
[1–15].

On the one hand, it is well known that the dynamics of neural networks plays an impor-
tant role in their design, implementation, and application. Recurrence oscillation of neural
networks is an important dynamic behavior of neural networks, such as periodic oscilla-
tion, almost periodic oscillation, almost automorphic oscillation, and so on. Many scholars
have studied these oscillation problems of neural networks [16–21]. The pseudo-almost-
periodic functions as a generalization of almost periodic functions were introduced into
the research field of mathematics by Zhang [22]. At present, the existence of pseudo-
almost-periodic solutions of differential equations has been studied as an important qual-
itative behavior of differential equations. At the same time, pseudo-almost-periodic oscil-
lations of ecological and neural network models have also been regarded as one of their
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important dynamic properties, which has attracted the interest of many researchers [23–
30].

On the other hand, a quaternion consists of a real and three imaginary parts [31]. The
skew field of quaternions is defined by

H :=
{

x | x = xR + ixI + jxJ + kxK}
,

where xR, xI , xJ , xK ∈R and i, j, k obey the following multiplication rules:

i2 = j2 = k2 = ijk = –1, ij = –ji = k, jk = –kj = i, ki = –ik = j,

and the norm of x is defined by |x|H =
√

(xR)2 + (xI)2 + (xJ )2 + (xK )2. Quaternions can be
used in pure and applied mathematics, especially in the calculation of three-dimensional
rotation, such as three-dimensional computer graphics, computer vision, and crystal tex-
ture analysis. These characteristics make quaternion-valued neural networks more ad-
vantageous than the real- and complex-valued neural networks in dealing with problems
such as high-dimensional data and spacial rigid body rotations, and so on. Therefore, the
research on quaternion-valued neural networks has become a hot topic in the theory and
applications of neural networks. However, due to the noncommutativity of quaternion
multiplication, the results of quaternion-valued neural network dynamics are very few
[32–41]. Especially, the results obtained by a method of not decomposing quaternion-
valued systems into real- or complex-valued systems are even rarer. Also, up to date, there
has been no paper published on the existence of pseudo-almost-periodic solutions for
RNNs with time-varying delays by using direct methods.

Inspired by the above discussion, in this work, we consider the following quaternion-
valued RNN with mixed delays:

ẋp(t) = –ap(t)xp(t) +
n∑

q=1

bpq(t)fq
(
xq(t)

)
+

n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))

+
n∑

q=1

dpq(t)
∫ t

–∞
θpq(t – s)hq

(
xq(s)

)
ds + Qp(t), (1)

where p = 1, 2, . . . , n, xp(t) ∈ H corresponds to the state of the pth unit at time t, fq, gq, hq :
H →H denote the activation functions, bpq(t), cpq(t), dpq(t) ∈H represent the connection
weights, the discretely delayed connection weights and the distributively delayed connec-
tion weights between the qth neuron and the pth neuron at time t, respectively; Qp(t) ∈H

is the external input on the pth neuron at time t, τpq(t) ≥ 0 denotes the transmission delay,
ap(t) ∈ R represents the rate with which the pth unit will reset its potential to the resting
state when disconnected from the network and external inputs. The kernel is a positive
continuous integrable function and it such that

∫ +∞
0 θpq(s) ds = 1.

The initial value of system (1) is

xp(s) = ϕp(s), s ∈ (–∞, 0], p = 1, 2, . . . , n,

where ϕp : (–∞, 0] →H is a bounded continuous function.
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Our main aim in this paper is by using a direct method to study the existence and global
exponential stability of pseudo-almost-periodic solutions of (1). To our knowledge, this
is the first paper to study the existence and global exponential stability of pseudo-almost-
periodic solutions to system (1). Our results are completely new, and our methods can be
used to study other quaternion-valued neural networks.

The rest of this paper is structured as follows. Some basic definitions and lemmas are
stated in Sect. 2. The existence of pseudo-almost-periodic solutions of (1) is studied in
Sect. 3. In Sect. 4, the global exponential stability of pseudo-almost-periodic solutions of
(1) is established. In Sect. 5, a numerical example is given to illustrate the feasibility of the
obtained results. Finally, a concise conclusion is given in Sect. 6.

2 Preliminaries and lemmas
Let BC(R,Hn) denote the set of all bounded continuous functions from R to H

n. Then it
is easy to check that BC(R,Hn) with the norm ‖x‖ = max1≤p≤n{supt∈R |xp(t)|H} is a Banach
space. For x = (x1, x2, . . . , xn)T ∈ H

n, we denote |x|Hn = max1≤p≤n |xp|H.
We give the following definition of almost periodic functions in the sense of Bohr [42].

Definition 2.1 A function f ∈ BC(R,Hn) is said to be almost periodic, if for every ε > 0,
it is possible to find a real number l = l(ε) > 0 such that in every interval with length l(ε),
one can find a number τ = τ (ε) in this interval satisfying |f (t + τ ) – f (t)|Hn < ε for all t ∈R.
The collection of such functions will be denoted by AP(R,Hn).

From the above definition, following similar proof methods used to prove the corre-
sponding results in [43], one can easily establish the following four lemmas.

Lemma 2.1 If f ∈ AP(R,Hn), then f is bounded and uniformly continuous.

Lemma 2.2 If f , g ∈ AP(R,H), then f ± g, fg ∈ AP(R,H).

Lemma 2.3 If f ∈ C(H,Hn) satisfies the Lipschitz condition and ϕ ∈ AP(R,H), then
f (ϕ(·)) ∈ AP(R,Hn).

Lemma 2.4 If x ∈ AP(R,Hn) and τ ∈ AP(R,R), then x(· – τ (·)) ∈ AP(R,Hn).

Let

PAP0
(
R,Hn) =

{
f ∈ BC

(
R,Hn)

∣∣∣ lim
T→+∞

1
2T

∫ T

–T

∣∣f (t)
∣∣
Hn dt = 0

}
.

Then we give the following definition of pseudo-almost-periodic functions in the sense of
Zhang [22].

Definition 2.2 A function f ∈ BC(R,Hn) is said to be pseudo-almost-periodic if it can be
expressed as f = f1 + f0, where f1 ∈ AP(R,Hn) and f0 ∈ PAP0(R,Hn). The collection of all
such functions will be denoted by PAP(R,Hn).

Similar to the proof of Proposition 5.6 in [44], one can easily prove
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Lemma 2.5 If f = g + h ∈ PAP(R,Hn), then g(R) ⊂ f (R) and

‖f ‖ ≥ ‖g‖ ≥ inf
t∈R

∣∣g(t)
∣∣
Hn ≥ inf

t∈R
∣∣f (t)

∣∣
Hn .

Based on Lemma 2.5, similar to the proof of Lemma 5.8 in [44], one can prove

Lemma 2.6 If {ϕm}m∈N ⊂ PAP(R,Hn) such that ‖ϕm – ϕ‖ → 0 as n → ∞, then ϕ ∈
PAP(R,Hn).

Lemma 2.7 (PAP(R,Hn),‖ · ‖) is a Banach space.

Proof Obviously, PAP(R,Hn) ⊂ BC(R,Hn). In view of Lemma 2.6, PAP(R,Hn) is a closed
subspace of BC(R,Hn). Consequently, (PAP(R,Hn),‖ · ‖) is a Banach space. The proof is
complete. �

It is not difficult to prove the following three lemmas.

Lemma 2.8 If f , g ∈ PAP(R,H), then fg ∈ PAP(R,H).

Lemma 2.9 If ϕ ∈ PAP(R,Hn) and h ∈ R, then ϕ(· – h) ∈ PAP(R,Hn).

Lemma 2.10 Let f ∈ C(H,Hn) satisfy the Lipschitz condition and ϕ ∈ PAP(R,H), then
f (ϕ(·)) ∈ PAP(R,Hn).

Lemma 2.11 If x ∈ PAP(R,Hn), ν ∈ AP(R,R)∩C1(R,R) and there exist positive constants
ν+ and ν̇+ such that |ν(t)| ≤ ν+ and ν̇(t) ≤ ν̇+ < 1, then x(· – ν(·)) ∈ PAP(R,Hn).

Proof Since x ∈ PAP(R,Hn), we can write x = x1 + x0, where x1 ∈ AP(R,Hn) and x0 ∈
PAP0(R,Hn), so we have

x
(
t – ν(t)

)
= x1

(
t – ν(t)

)
+ x0

(
t – ν(t)

)
.

Noticing that x1(· – ν(·)) ∈ AP(R,Hn), by Lemma 2.1, x1 is uniformly continuous. Thus,
for every ε > 0, there is a constant 0 < ζ = ζ (ε) < ε

2 such that

∣∣x1(t) – x1(s)
∣∣
Hn <

ε

2
, |t – s| < ζ . (2)

Since ν and x1 are almost periodic, for this ζ > 0, there exists an l(ζ ) > 0 such that in every
interval with length l(ζ ), there is a δ satisfying

∣∣ν(t + δ) – ν(t)
∣∣ < ζ ,

∣∣x1(t + δ) – x1(t)
∣∣
Hn < ζ <

ε

2
, t ∈R. (3)

It follows from (2) and (3) that

∣∣x1
(
t + δ – ν(t + δ)

)
– x1

(
t – ν(t)

)∣∣
Hn

≤ ∣∣x1
(
t + δ – ν(t + δ)

)
– x1

(
t + δ – ν(t)

)∣∣
Hn

+
∣∣x1

(
t + δ – ν(t)

)
– x1

(
t – ν(t)

)∣∣
Hn
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<
ε

2
+

ε

2
,

which implies that x1(· – ν(·)) ∈ AP(R,Hn).
Moreover, let s = t – ν(t), we find

lim
T→+∞

1
2T

∫ T

–T

∣∣x0
(
t – ν(t)

)∣∣
Hn dt

= lim
T→+∞

1
2T

∫ T+ν(T)

–T+ν(–T)

∣∣x0(s)
∣∣
Hn

1
1 – ν̇(t)

ds

= lim
T→+∞

1
2T

[∫ T+ν(T)

–T–ν(T)

∣∣x0(s)
∣∣
Hn

1
1 – ν̇(t)

ds

–
∫ –T+ν(–T)

–T–ν(T)

∣∣x0(s)
∣∣
Hn

1
1 – ν̇(t)

ds
]

= lim
T→+∞

1
2T

∫ T+ν(T)

–T–ν(T)

∣∣x0(s)
∣∣
Hn

1
1 – ν̇(t)

ds

≤ lim
T→+∞

1
1 – ν̇+

T + ν+

T
1

2(T + ν+)

∫ T+ν+

–T–ν+

∣∣x0(s)
∣∣
Hn ds

= 0,

which implies that x0(· – ν(·)) ∈ PAP0(R,Hn).
Hence, x(· – ν(·)) ∈ PAP(R,Hn). The proof is completed. �

In what follows, we will adopt the following notation:

a–
p = inf

t∈R
ap(t), b+

pq = sup
t∈R

∣∣bpq(t)
∣∣
H

, c+
pq = sup

t∈R

∣∣cpq(t)
∣∣
H

,

d+
pq = sup

t∈R

∣∣dpq(t)
∣∣
H

, τ+ = max
1≤p,q≤n

sup
t∈R

{
τpq(t)

}
, τ̇+ = max

1≤p,q≤n
sup
t∈R

{
τ̇pq(t)

}

and make the following assumptions:
(H1) For p, q = 1, 2, . . . , n, ap ∈ AP(R,R+) with inft∈R ap(t) > 0, bpq, cpq, dpq, Qp ∈ PAP(R,

H), τpq ∈ C1(R,R+) ∩ AP(R,R+) and τ̇+ < 1.
(H2) For p, q = 1, 2, . . . , n, the kernels θpq ∈ C(R,R+) are such that

∫ +∞
0 θpq(s) ds = 1 and

there exists a positive constant βϑ such that
∫ +∞

0 θpq(s)eβϑ s ds < +∞.
(H3) Functions fp, gp, hp ∈ C(H,H) and there exist constants Lf

p, Lg
p, Lh

p such that

∣∣fp(x) – fp(y)
∣∣
H

≤ Lf
p|x – y|H,

∣∣gp(x) – gp(y)
∣∣
H

≤ Lg
p|x – y|H,

∣∣hp(x) – hp(y)
∣∣
H

≤ Lh
p|x – y|H,

and fp(0) = gp(0) = hp(0) = 0, where p = 1, 2, . . . , n.
(H4) r := max1≤p≤n{ 1

a–
p

[
∑n

q=1 b+
pqLf

q +
∑n

q=1 c+
pqLg

q +
∑n

q=1 d+
pqLh

q]} < 1.

3 The existence of pseudo-almost-periodic solutions
In this section, we study the existence of pseudo-almost-periodic solutions of system (1).
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Lemma 3.1 Assume that (H1)–(H3) hold. If xq ∈ PAP(R,H), then for p, q = 1, 2, . . . , n, func-
tions ϕpq : t → ∫ t

–∞ θpq(t – s)hq(xq(s)) ds belong to PAP(R,H).

Proof It follows from Lemma 2.10 that hq(xq(·)) ∈ PAP(R,H). Let hq(xq(t)) = uq(t) + vq(t),
in which uq ∈ AP(R,H) and vq ∈ PAP0(R,H), then

ϕpq(t) =
∫ t

–∞
θpq(t – s)

[
uq(s) + vq(s)

]
ds

=
∫ t

–∞
θpq(t – s)uq(s) ds +

∫ t

–∞
θpq(t – s)vq(s) ds

:= ϕ1
p(t) + ϕ0

p(t).

Now, we prove that ϕpq ∈ PAP(R,H). To this end, firstly, we will prove that ϕ1
p ∈

AP(R,H). Since uq ∈ AP(R,H), for every ε > 0, there exists a number L(ε) > 0 such that
in every interval of length L, one finds a number τ such that

∣∣uq(t + τ ) – uq(t)
∣∣
H

< ε.

Hence, we have

∣∣ϕ1
p(t + τ ) – ϕ1

p(t)
∣∣
H

=
∣∣∣∣

∫ t+τ

–∞
θpq(t + τ – s)uq(s) ds –

∫ t

–∞
θpq(t – s)uq(s) ds

∣∣∣∣
H

≤
∫ t

–∞
θpq(t – s)

∣∣uq(s + τ ) – uq(s)
∣∣
H

ds

≤ ε

∫ +∞

0
θpq(t) dt = ε,

which implies that ϕ1
p ∈ AP(R,H).

Then, we will prove that ϕ0
p ∈ PAP0(R,H). In view of vq ∈ PAP0(R,H) and the Lebesgue’s

dominated convergence theorem, we have

lim
T→∞

1
2T

∫ T

–T

∣∣∣∣

∫ t

–∞
θpq(t – s)vq(s) ds

∣∣∣∣
H

dt

= lim
T→∞

1
2T

∫ T

–T

∣∣∣∣

∫ +∞

0
θpq(δ)vq(t – δ) dδ

∣∣∣∣
H

dt

≤ lim
T→∞

1
2T

∫ T

–T

∫ +∞

0
θpq(δ)

∣∣vq(t – δ)
∣∣
H

dδ dt

≤
∫ +∞

0
θpq(δ) lim

T→∞
1

2T

∫ T

–T

∣∣vq(t – δ)
∣∣
H

dt dδ

= 0,

which implies that ϕ0
p ∈ PAP0(R,H). Therefore, ϕp ∈ PAP(R,H). The proof is completed.�
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Let ϕ0(t) = (
∫ t

–∞ e–
∫ t

s a1(u) duQ1(s) ds, . . . ,
∫ t

–∞ e–
∫ t

s an(u) duQn(s) ds)T and take a constant α >
‖ϕ0‖. Consider the set X0 = {ϕ ∈ PAP(R,Hn) : ‖ϕ – ϕ0‖ ≤ rα

1–r }, then for every ϕ ∈ X0, we
have ‖ϕ‖ ≤ ‖ϕ – ϕ0‖ + ‖ϕ0‖ ≤ rα

1–r + α = α
1–r .

Theorem 3.1 Assume that (H1)–(H4) hold. Then system (1) has a pseudo-almost-periodic
solution in X0.

Proof For every ϕ = (ϕ1,ϕ2, . . . ,ϕn)T ∈ PAP(R,Hn), if ϕ satisfies

ϕp(t) =
∫ t

–∞
e–

∫ t
s ap(u) du

[ n∑

q=1

bpq(s)fq
(
ϕq(s)

)

+
n∑

q=1

cpq(s)gq
(
ϕq

(
s – τpq(s)

))

+
n∑

q=1

dpq(s)
∫ t

–∞
θpq(t – s)hq

(
ϕq(s)

)
ds

+ Qp(s)

]

ds, p = 1, 2, . . . , n, (4)

then by differentiating (4), we have

ϕ̇p(t) = –ap(t)ϕp(t) +
n∑

q=1

bpq(t)fq
(
ϕq(t)

)
+

n∑

q=1

cpq(t)gq
(
ϕq

(
t – τpq(t)

))

+
n∑

q=1

dpq(t)
∫ t

–∞
θpq(t – s)hq

(
ϕq(s)

)
du + Qp(t),

which implies that ϕ is a solution of (1).
Define an operator F : X0 → BC(R,Hn) as follows:

Fϕ = (F1ϕ,F2ϕ, . . . ,Fnϕ)T ,

where for every ϕ ∈ PAP(R,Hn) and p = 1, 2, . . . , n,

(Fpϕ)(t) =
∫ t

–∞
e–

∫ t
s ap(u) du(Γpϕ)(s) ds,

(Γpϕ)(s) =
n∑

q=1

bpq(s)fq
(
ϕq(s)

)
+

n∑

q=1

cpq(s)gq
(
ϕq

(
s – τpq(s)

))

+
n∑

q=1

dpq(s)
∫ s

–∞
θpq(s – u)hq

(
ϕq(u)

)
du + Qp(s).

From Lemmas 2.8–2.11 and 3.1, we have Γpϕ ∈ PAP(R,H), which implies that Γpϕ can
be written as Γpϕ = Γ 1

p ϕ + Γ 0
p ϕ, where Γ 1

p ϕ ∈ AP(R,H), Γ 0
p ϕ ∈ PAP0(R,H), p = 1, 2, . . . , n.

Therefore,

(Fpϕ)(t) =
∫ t

–∞
e–

∫ t
s ap(u) du(Γ 1

p ϕ
)
(s) ds +

∫ t

–∞
e–

∫ t
s ap(u) du(Γ 0

p ϕ
)
(s) ds

:=
(
FpΓ

1
p ϕ

)
(t) +

(
FpΓ

0
p ϕ

)
(t), p = 1, 2, . . . , n.
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In order to show that FpΓpϕ ∈ PAP(R,H), we will first prove that FpΓ
1

p ϕ ∈ AP(R,H).
Since ap ∈ AP(R,R), Γ 1

p ∈ AP(R,H), for every ε > 0, there exists l > 0 such that every
interval of length l contains a number τ satisfying

∣∣(Γ 1
p ϕ

)
(t + τ ) –

(
Γ 1

p ϕ
)
(t)

∣∣
H

< ε,
∣∣ap(t + τ ) – ap(t)

∣∣ < ε, t ∈R.

Thus,

∣∣(FpΓ
1

p ϕ
)
(t + τ ) –

(
FPΓ 1

p ϕ
)
(t)

∣∣
H

=
∣∣∣∣

∫ t+τ

–∞
e–

∫ t+τ
s ap(u) du(Γ 1

p ϕ
)
(s) ds –

∫ t

–∞
e–

∫ t
s ap(u) du(Γ 1

p ϕ
)
(s) ds

∣∣∣∣
H

≤
∣∣∣∣

∫ t

–∞
e–

∫ t
s ap(u+τ ) du(Γ 1

p ϕ
)
(s + τ ) ds –

∫ t

–∞
e–

∫ t
s ap(u) du(Γ 1

p ϕ
)
(s + τ ) ds

∣∣∣∣
H

+
∣∣∣∣

∫ t

–∞
e–

∫ t
s ap(u) du(Γ 1

p ϕ
)
(s + τ ) ds –

∫ t

–∞
e–

∫ t
s ap(u) du(Γ 1

p ϕ
)
(s) ds

∣∣∣∣
H

≤
∫ t

–∞

∣∣e–
∫ t

s ap(u+τ ) du – e–
∫ t

s ap(u) du∣∣∣∣(Γ 1
p ϕ

)
(s + τ )

∣∣
H

ds

+
∫ t

–∞

∣∣e–
∫ t

s ap(u) du∣∣∣∣(Γ 1
p ϕ

)
(s + τ ) –

(
Γ 1

p ϕ
)
(s)

∣∣
H

ds

≤ ∥∥Γ 1
p ϕ

∥∥
∫ t

–∞
e–a–

p (t–s)(t – s)ε ds + ε

∫ t

–∞
e–a–

p (t–s) ds

=
∥∥Γ 1

p ϕ
∥∥ ε

(a–
p )2 +

ε

a–
p

,

which implies that Γ 1
p ϕ ∈ AP(R,H).

Then, we will prove that FpΓ
0

p ∈ PAP0(R,H). In fact,

lim
T→+∞

1
2T

∫ T

–T

∣∣(FpΓ
0

p ϕ
)
(t)

∣∣
H

dt

= lim
T→+∞

1
2T

∫ T

–T

∣∣∣∣

∫ t

–∞
e–

∫ t
s ap(u) du(Γ 0

p ϕ
)
(s) ds

∣∣∣∣
H

dt

≤ lim
T→+∞

1
2T

∫ T

–T

∫ t

–∞

∣∣e–
∫ t

s ap(u) du∣∣∣∣(Γ 0
p ϕ

)
(s)

∣∣
H

ds dt

≤ lim
T→+∞

1
2T

∫ T

–T

∫ t

–∞
e–a–

p (t–s)∣∣(Γ 0
p ϕ

)
(s)

∣∣
H

ds dt

= lim
T→+∞

1
2T

∫ T

–T

∫ +∞

0
e–a–

p u∣∣(Γ 0
p ϕ

)
(t – u)

∣∣
H

du dt

= lim
T→+∞

∫ +∞

0
e–a–

p u 1
2T

∫ T

–T

∣∣(Γ 0
p ϕ

)
(t – u)

∣∣
H

dt du.

By Lebesgue’s dominated convergence theorem, we have that FpΓ
0

p ϕ ∈ PAP0(R,H).
Therefore, F maps X0 into PAP(R,Hn).
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Now, we prove that the mapping F is a self-mapping from X0 to X0. In fact, for each
ϕ ∈X0, we have

‖Fϕ – ϕ0‖

≤ max
1≤p≤n

{

sup
t∈R

[∫ t

–∞

∣∣∣∣∣
e–

∫ t
s ap(u) du

n∑

q=1

bpq(s)fq
(
ϕq(s)

)
∣∣∣∣∣
H

ds

+
∫ t

–∞

∣∣∣∣∣
e–

∫ t
s ap(u) du

n∑

q=1

cpq(s)gq
(
ϕq

(
s – τpq(s)

))
∣∣∣∣∣
H

ds

+
∫ t

–∞

∣∣∣∣∣
e–

∫ t
s ap(u) du

n∑

q=1

dpq(s)
∫ s

–∞
θpq(s – u)hq

(
xq(u)

)
du

∣∣∣∣∣
H

ds

]}

≤ max
1≤p≤n

{

sup
t∈R

[∫ t

–∞
e–a–

p (t–s)
n∑

q=1

b+
pqLf

q‖ϕ‖ds

+
∫ t

–∞
e–a–

p (t–s)
n∑

q=1

c+
pqLg

q‖ϕ‖ds +
∫ t

–∞
e–a–

p (t–s)
n∑

q=1

d+
pqLh

q‖ϕ‖ds

]}

≤ ‖ϕ‖ max
1≤p≤n

{
1

a–
p

[ n∑

q=1

b+
pqLf

q +
n∑

q=1

c+
pqLg

q +
n∑

q=1

d+
pqLh

q

]}

≤ rα
1 – r

,

which means that Fϕ ∈X0. Hence the mapping F is a self-mapping from X0 to X0.
Finally, we prove that F is a contraction mapping. In fact, for any ϕ,ψ ∈ X0, we have

‖Fϕ – Fψ‖
= max

1≤p≤n

{
sup
t∈R

∣∣Fpϕ(t) – Fpψ(t)
∣∣
H

}

≤ max
1≤p≤n

{

sup
t∈R

[∫ t

–∞

∣∣∣
∣∣
e–

∫ t
s ap(u) du

n∑

q=1

bpq(s)
[
fq

(
ϕq(s)

)
– fq

(
ψq(s)

)]
∣∣∣∣∣
H

ds

+
∫ t

–∞

∣∣∣∣∣
e–

∫ t
s ap(u) du

n∑

q=1

cpq(s)
[
gq

(
ϕq

(
s – τpq(s)

))
– gq

(
ψq

(
s – τpq(s)

))]
∣∣∣∣∣
H

ds

+
∫ t

–∞

∣∣∣∣∣
e–

∫ t
s ap(u) du

n∑

q=1

dpq(s)
∫ s

–∞
θpq(s – u)

× [
hq

(
ϕq(u)

)
– hq

(
ψq(u)

)]
du

∣∣∣∣∣
H

ds

]}

≤ max
1≤p≤n

{
1

a–
p

[ n∑

q=1

b+
pqLf

q‖ϕq – ψq‖ +
n∑

q=1

c+
pqLg

q‖ϕq – ψq‖

+
n∑

q=1

d+
pqLh

q‖ϕq – ψq‖
]}

≤ r‖ϕ – ψ‖,
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which, combined with (H4), implies that the mapping F is a contraction. Therefore, F
has a unique fixed point, that is, system (1) has a unique-pseudo-almost periodic solution.
The proof is completed. �

4 Global exponential stability
In this section, for z ∈ C(R,Hn) and φ ∈ BC((–∞, 0],Hn), we denote ‖z(t)‖ =
max1≤p≤n{|zp(t)|H} and ‖φ‖0 = max1≤p≤n{supt∈(–∞,0] |φ(t)|H}.

Definition 4.1 Let x = (x1, x2, . . . , xn)T be a pseudo-almost-periodic solution of system
(1) with the initial value ϕ = (ϕ1,ϕ2, . . . ,ϕn)T ∈ C([–∞, 0],Hn) and let y = (y1, y2, . . . , yn)T

be an arbitrary solution of system (1) with the initial value ψ = (ψ1,ψ2, . . . ,ψn)T ∈
C([–∞, 0],Hn), respectively. If there exist positive constants λ and M such that

∥∥x(t) – y(t)
∥∥ ≤ M‖ϕ – ψ‖0e–λt , ∀t > 0,

then the pseudo-almost-periodic solution x of system (1) is said to be globally exponen-
tially stable.

Theorem 4.1 Assume that (H1)–(H4) hold. Then system (1) has a unique pseudo-almost-
periodic solution that is globally exponentially stable.

Proof By Theorem 3.1, system (1) has a pseudo-almost-periodic solution, let x(t) be a
pseudo-almost-periodic solution with initial value ϕ(t) and y(t) be an arbitrary solution
with initial value ψ(t). Taking zp(t) = yp(t) – xp(t), φp(t) = ψp(t) – ϕp(t), we have

żp(t) + ap(t)zp(t)

=
n∑

q=1

cpq(t)
[
fq

(
zq(t) + xq(t)

)
– fq

(
xq(t)

)]

+
n∑

q=1

cpq(t)
[
fq

(
zq

(
t – τpq(t)

)
+ xq

(
t – τpq(t)

))
– fq

(
yq

(
t – τpq(t)

))]

+
n∑

q=1

dpq(t)
∫ t

–∞
θpq(t – s)

[
hq

(
zp(s) + xq(s)

)
– hq

(
xq(s)

)]
ds. (5)

Let Θp be defined by

Θp(ω) = a–
p – ω –

n∑

q=1

[
b+

pqLf
q + c+

pqLg
qeωτ+

+ d+
pqLh

q

∫ +∞

0
θpq(s)eωs ds

]
,

where p = 1, 2, . . . , n, ω ∈ [0, +∞). Then by (H2) and (H4), for each p = 1, 2, . . . , n, we have
Θp(0) > 0, moreover, since Θp(ω) → –∞ as ω → +∞, there exists ε∗

p > 0 such that Θp(εp) >
0 for εp ∈ (0, ε∗

p). Let η = min{ε∗
1 , ε∗

2 , . . . , ε∗
n}, then we have Θp(η) ≥ 0, p = 1, 2, . . . , n. So we

can take a positive constant λ satisfying 0 < λ < min{η, a–
1 , a–

2 , . . . , a–
n ,βϑ } such that Θp(λ) >

0, which implies that

1
a–

p – λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
qeλτ+

+ d+
pqLh

q

∫ +∞

0
θpq(s)eλs ds

]
< 1, p = 1, 2, . . . , n. (6)
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Multiplying both sides of (5) by e
∫ s

0 ap(u) du and integrating on [0, t], we have

zp(t)

= φp(0)e–
∫ t

0 ap(u) du +
∫ t

0
e–

∫ t
s ap(u) du

n∑

q=1

{
bpq(t)

[
fq

(
zq(t) + xq(t)

)

– fq
(
xq(t)

)]
+ cpq(t)

[
fq

(
zq

(
t – τpq(t)

)
+ xq

(
t – τpq(t)

))
– fq

(
yq

(
t – τpq(t)

))]

+ dpq(t)
∫ s

–∞
θpq(s – μ)

[
hq

(
zp(μ) + xq(μ)

)
– hq

(
xq(μ)

)]
dμ

}
ds. (7)

Let

M = max
1≤p≤n

{

a–
p

[ n∑

q=1

[
b+

pqLf
q + c+

pqLg
q + d+

pqLh
q
]
]–1}

.

By (H4), M > 1, and

(
1
M

–
1

a–
p – λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
qeλτ+

+ d+
pqLh

q

∫ +∞

0
θpq(s)eλs ds

])

≤ 0, (8)

where 0 < λ < min{η, a–
1 , a–

2 , . . . , a–
n ,β0}.

Obviously,

∥∥z(t)
∥∥ ≤ ‖φ‖0 ≤ M‖φ‖0e–λt , t ∈ (–∞, 0].

We show that

∥∥z(t)
∥∥ ≤ M‖φ‖0e–λt , t > 0. (9)

To prove (9), we show for any ξ > 1,

∥∥z(t)
∥∥ ≤ ξM‖φ‖0e–λt , t > 0. (10)

If (10) is false, then there must be some t1 > 0 and some p ∈ {1, 2, . . . , n} such that

∥∥z(t1)
∥∥ =

∥∥zp(t1)
∥∥ = ξM‖φ‖0e–λt1 , t > 0 (11)

and

∥∥z(t)
∥∥ < ξM‖φ‖0e–λt , t ∈ (–∞, t1). (12)

By (6)–(8), (12) and (H3), we have

∥∥zp(t1)
∥∥

≤ ‖φp‖0e–t1a–
p +

∫ t1

0
e–(t1–s)a–

p

n∑

q=1

{
b+

pqLf
q
∥∥zq(s)

∥∥ + c+
pqLg

q
∥∥zq

(
s – τpq(s)

)∥∥
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+ d+
pq

∫ s

–∞
θpq(s – μ)Lh

q
∥∥zq(s)

∥∥dμ

}
ds

≤ ‖φp‖0e–t1a–
p +

∫ t1

0
e–(t1–s)a–

p

n∑

q=1

{
b+

pqLf
qξM‖φ‖0e–λs

+ c+
pqLg

qξM‖φ‖0e–λ(s–τpq(s)) + d+
pq

∫ s

–∞
θpq(μ)Lh

qξM‖φ‖0e–λ(s–μ) dμ

}
ds

≤ ‖φp‖0e–t1a–
p +

∫ t1

0
e–(t1–s)a–

p ξM‖φ‖0e–λs
n∑

q=1

{

b+
pqLf

q

+
n∑

q=1

c+
pqLg

qeλτ+
+

n∑

q=1

d+
pq

∫ s

–∞
θpq(μ)Lh

qeλμ dμ

}

ds

≤ ξM‖φ‖0e–λt1

{
e(λ–a–

p )t1

ξM
+

1
a–

p –λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
qeλτ+

+ d+
pq

∫ s

–∞
θpq(μ)Lh

qeλμ dμ
(
1 – e(λ–a–

p )t1
)]

}

≤ ξM‖φ‖0e–λt1

{

e(λ–a–
p )t1

(
1
M

–
1

a–
p – λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
qeλτ+

+ d+
pqLh

q

∫ +∞

0
θpq(s)eλs ds

])

+
(

1
a–

p – λ

[
bpqLf

q + cpqLg
qeλτ+

+ dpqLh
q

∫ +∞

0
θpq(s)eλs ds

])}

≤ ξM‖φ‖0e–λt1

{
1

a–
p – λ

n∑

q=1

[
b+

pqLf
q + c+

pqLg
qeλτ+

+ d+
pqLh

q

∫ +∞

0
θpq(s)eλs ds

]}

< ξM‖φ‖0e–λt1 ,

which contradicts (11), and so (10) holds. Letting ξ → 1, shows that (9) holds. Hence, the
pseudo-almost-periodic solution of (1) is globally exponentially stable. The uniqueness
follows from the global exponential stability. The proof is complete. �

5 An example
In this section, we give a numerical example and computer simulations.

Example 5.1 In system (1), let n = 2 and for p, q = 1, 2, consider

xp(t) = xR
p (t) + ixI

p(t) + jxJ
p(t) + kxK

p (t) ∈H, θpq(t) = e–t ,

fq(xq) =
1

40
sin 6xR

q +
1

45
i sin 3xI

q +
1

42
j sin 5xJ

q +
1

54
k sin 13xK

q ,

gq(xq) =
1

45
sin 3xR

q +
1

45
i sin 6xI

q +
1

55
j sin 7xJ

q +
1

48
k sin 4xK

q ,

hq(xq) =
1

55
sin 6xR

q +
1

45
i sin 7xI

q +
1

48
j sin 10xJ

q +
1

55
k sin 11xK

q ,
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Figure 1 Curves of xRp(t) and xIp(t), p = 1, 2

Figure 2 Curves of xJp(t) and xKp (t), p = 1, 2

(
a1(t)
a2(t)

)

=

(
2.6 + 0.11 sin 3t

2.5 + 0.12 cos
√

2t

)

,

(
b11(t) b12(t)
b21(t) b22(t)

)

=

(
1

9+t2 + 0.001i sin
√

6t + 0.002j sin
√

3t 0.013 + 0.001k sin
√

7t
0.015 – 0.001i cos

√
13t + 0.002k cos

√
15t 0.011 + 0.02j sin

√
2t

)

,
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Figure 3 Curves of xR1(t), x
I
1(t), x

J
1(t), and xK1 (t) in 3-dimensional space for the stable case

Figure 4 Curves of xR2(t), x
I
2(t), x

J
2(t), and xK2 (t) in 3-dimensional space for the stable case

(
c11(t) c12(t)
c21(t) c22(t)

)

=

(
0.01 sin t + 0.06i sin

√
5t 0.13 + 0.1k sin

√
7t

1
16+t2 – 0.11i cos

√
13t + 0.2k cos

√
6t 0.11 + 0.2j sin

√
8t

)

,

(
d11(t) d12(t)
d21(t) d22(t)

)

=

(
0.1 sin t + 0.02i sin

√
3t 1

25+t2 + 0.1k sin
√

15t
0.15 – 0.01i cos

√
14t + 0.02j cos

√
17t 0.11 + 0.2k sin

√
5t

)

,
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(
τ11(t) τ12(t)
τ21(t) τ22(t)

)

=

(
0.02 sin 8t + 0.12 1 – 0.3 sin t

3 – 0.2 cos t 0.01 sin 8t + 0.11

)

,

(
Q1(t)
Q2(t)

)

=

(
1

1+t2 + 1
2 i sin

√
6t + 1

12 j cos
√

3t + 1
15 k sin

√
5t

1
1+t2 + 1

8 i sin
√

7t + 1
10 j cos

√
5t + 1

5 k sin
√

11t

)

.

By straightforward computation, |fq(x) – fq(y)|H ≤ 1
40 |x – y|H, |gq(x) – gq(y)|H ≤ 1

45 |x – y|H,
|hq(x) – hq(y)|H ≤ 1

45 |x – y|H, q = 1, 2, a–
1 = 2.49, a–

2 = 2.38, b+
11 ≤ 0.1112, b+

12 ≤ 0.014, b+
21 ≤

0.016, b+
22 ≤ 0.023, c+

11 ≤ 0.07, c+
12 ≤ 0.165, c+

21 ≤ 0.282, c+
22 ≤ 0.229, d+

11 ≤ 0.102, d+
12 ≤

0.170, d+
21 ≤ 0.152, d+

22 ≤ 0.229. So (H1)–(H3) are satisfied. Besides, it is easy to obtain that

max
1≤p≤2

1
a–

p

[ 2∑

q=1

b+
pqLf

q +
2∑

q=1

c+
pqLg

q +
2∑

q=1

d+
pqLh

q

]

≈ 0.058 < 1.

That is, (H4) is verified. Therefore, by Theorem 4.1, system (1) has a unique pseudo-
almost-periodic solution that is globally exponentially stable (see Figs. 1–4).

6 Conclusion
In this paper, we studied the existence and global exponential stability of pseudo-almost-
periodic solutions for a class of quaternion-valued RNNs by a direct method. Our results
and methods are new. At the same time, our method can be used to study the existence
and stability of other functional solutions of other types of quaternion numerical neural
network models.
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