Skip to main content

Generalizations and refinements of three-tuple Diamond-Alpha integral Hölder’s inequality on time scales

Abstract

In this paper, based on the existing Hölder’s inequality, some new three-tuple diamond-alpha integral Hölder’s inequalities on time scales are proposed and the related theorems and corollaries are given. At the same time, we also give the relevant conclusions and proof of n-tuple diamond-alpha integral Hölder’s inequalities on time scales.

1 Introduction

Let \(f(\delta )>0, g(\delta )>0, p>1, 1/p+1/q=1\). If \(f(\delta )\) and \(g(\delta )\) are continuous real-valued functions on \([\xi , \sigma ]\), then

$$ \int _{\xi }^{\sigma } f(\delta )g(\delta ) \,d\delta \leq \biggl( \int _{\xi }^{\sigma } f^{p}(x)\,d\delta \biggr)^{1/p} \biggl( \int _{\xi }^{ \sigma }g^{q}(x)\,d\delta \biggr)^{1/q}. $$

This famous Hölder inequality is extended in article [1] to the diamond-α integral Hölder inequality on time scales, in the following form:

Let \(f,g,h:[\xi , \sigma ]\to \mathbb{R}\) be \(\Diamond _{\alpha }\)-integrable functions, and \(1/p+1/q=1\) with \(p>1\), then

$$ \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )g(\delta ) \bigr\vert \Diamond _{ \alpha } \delta \leq \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p}\Diamond _{\alpha } \delta \biggr)^{\frac{1}{p}} \biggl( \int _{ \xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g(\delta ) \bigr\vert ^{q}\Diamond _{\alpha } \delta \biggr)^{\frac{1}{q}}. $$

Since Hilger [2] proposed the time-scale theory in 1998, many researchers [3, 4] have made extensive promotions and applications of his theory. The classical analytic inequality [58], especially Hölder’s inequality, plays a very important role in modern mathematics. Due to the importance of both, more and more scholars [915] have studied the intersections of two inequalities. The purpose of this article is to derive some generalizations and refinements of the three-tuple diamond-α integral Hölder inequality on time scales. The relevant conclusions of the n-tuple diamond-α integral Hölder inequality on time scales are also given.

2 Main lemmas

Before the main results are given in this paper, we need to introduce the following lemmas, which are helpful for the results of this paper.

Lemma 2.1

([16])

Let \(\sum_{j=1}^{m}\frac{1}{p_{j}}=1, \lambda _{j} \geq 0\ (j=1,2,\ldots ,m)\). Then

(1) for \(p_{j}>1\), we have

$$ \prod_{j=1}^{m}\lambda _{j}\leq \sum_{j=1}^{m} \frac{\lambda _{j}^{p_{j}}}{p _{j}}, $$
(1)

(2) for \(0< p_{m}<1, p_{j}<0\ (j=1,2,\ldots ,m-1)\), we have

$$ \prod_{j=1}^{m}\lambda _{j}\geq \sum_{j=1}^{m} \frac{\lambda _{j}^{p_{j}}}{p _{j}}. $$
(2)

Lemma 2.2

([10])

Let \(\mathbb{T}\)be a time scale, \(a, b\in \mathbb{T}\)with \(a< b\)and \(\sum_{j=1}^{m}\frac{1}{p_{j}}=1\). If \(f_{j}(\delta )>0\), and \(f_{j}\ (j=1,2,\ldots ,m)\)is continuous real-valued function on \([\xi , \sigma ]_{\mathbb{T}}\), then

(1) for \(p_{j}>1\), we have

$$ \int _{\xi }^{\sigma }\prod_{j=1}^{m} f_{j}(\delta )\Diamond _{\alpha } \delta \leq \prod _{j=1}^{m} \biggl( \int _{\xi }^{\sigma } f_{j}^{p_{j}}( \delta )\Diamond _{\alpha }\delta \biggr)^{1/p_{j}}, $$
(3)

(2) for \(0< p_{m}<1, p_{j}<0\ (j=1,2,\ldots ,m-1)\), we have

$$ \int _{\xi }^{\sigma }\prod_{j=1}^{m} f_{j}(\delta )\Diamond _{\alpha } \delta \geq \prod _{j=1}^{m} \biggl( \int _{\xi }^{\sigma } f_{j}^{p_{j}}( \delta )\Diamond _{\alpha }\delta \biggr)^{1/p_{j}}. $$
(4)

Lemma 2.3

([17])

Let \(f, g, h:\mathbb{T}\to \mathbb{R}\)be -integrable on \([\xi , \sigma ]_{\mathbb{T}}, p>1\)with \(q=p/(p-1)\). Then we have

$$ \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )g(\delta ) \bigr\vert \Diamond \delta \leq \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g( \delta ) \bigr\vert ^{q}\Diamond \delta \biggr)^{1/q}. $$
(5)

Lemma 2.4

([17])

Let \(f, g, h:\mathbb{T}\to \mathbb{R}\)be -integrable on \([\xi , \sigma ]_{\mathbb{T}}, p>1\)with \(q=p/(p-1)\). Then we have

$$\begin{aligned} & \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )+g(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \\ &\quad \leq \biggl( \int _{\xi }^{\sigma } \bigl\vert h( \delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}+ \biggl( \int _{ \xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}. \end{aligned}$$
(6)

Lemma 2.5

([17])

Let \(f, g, h:\mathbb{T}\to \mathbb{R}\)be -integrable on \([\xi , \sigma ]_{\mathbb{T}}, 0< p<1\)with \(q=p/(p-1)\). If \(g^{q}\)is -integrable on \([\xi , \sigma ]_{\mathbb{T}}\), then

$$ \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )g(\delta ) \bigr\vert \Diamond \delta \geq \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g( \delta ) \bigr\vert ^{q}\Diamond \delta \biggr)^{1/q}. $$
(7)

Lemma 2.6

([17])

Let \(f, g, h:\mathbb{T}\to \mathbb{R}\)be -integrable on \([\xi , \sigma ]_{\mathbb{T}}, 0< p<1\)with \(q=p/(p-1)\). Then we have

$$\begin{aligned} & \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )+g(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \\ &\quad \geq \biggl( \int _{\xi }^{\sigma } \bigl\vert h( \delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}+ \biggl( \int _{ \xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}. \end{aligned}$$
(8)

3 Main results about diamond-α integral Hölder’s inequality

Now, based on Tian’s [18, 19] research results, we will give the following generalizations and refinements of the three-tuple diamond-α integral and n-tuple diamond-α integral Hölder inequality on time scales.

Theorem 3.1

Let \(\mathbb{T}\)be a time scale \(a, b \in \mathbb{T}\)with \(a< b\)and \(\alpha _{kj}\in \mathbb{R}\) \((j=1, 2, \ldots , m, k=1,2, \ldots , s), \sum_{k=1}^{s}\frac{1}{p_{k}}=1, \sum_{k=1}^{s}\alpha _{kj}=0\). If \(f_{j}(\delta )>0\), and \(f_{j}\ (j=1,2,\ldots , m)\)is a continuous real-valued function on \([\xi , \sigma ]_{\mathbb{T}}\), then

(1) for \(p_{k}>1\), we have

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+p_{k}\alpha _{kj}}( \delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}, \end{aligned} $$
(9)

(2) for \(0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1)\), we have

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+p_{k}\alpha _{kj}}( \delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned} $$
(10)

Proof

(1) Set

$$ \begin{aligned} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})= \Biggl(\prod _{j=1}^{m} f_{j} ^{1+p_{k} \alpha _{k j}}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / p_{k}}. \end{aligned} $$

Applying the assumptions \(\sum_{k=1}^{s}\frac{1}{p_{k}}=1\) and \(\sum_{k=1}^{s}\alpha _{kj}=0\), by computing, we can observe that

$$\begin{aligned} & \prod_{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \\ &\quad=g_{1} g _{2} \cdots g_{s} \\ &\quad= \Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{1} \alpha _{1 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{1}} \Biggl( \prod_{j=1} ^{m} f_{j}^{1+a_{2} \alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{2}}\cdots \\ &\qquad{}\times \Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{s} \alpha _{s_{j}}}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{s}} \\ &\quad=\prod_{j=1}^{m} f_{j}^{1 / a_{1}+\alpha _{1 j}}(\delta _{1}, \delta _{2}, \delta _{3}) \prod _{j=1}^{m} f_{j}^{1 / a_{2}+\alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \cdots \\ &\qquad{}\times \prod_{j=1}^{m} f_{j} ^{1 / a_{s}+\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3}) \\ &\quad= \prod_{j=1}^{m} f_{j}^{1 / a_{1}+1 / a_{2}+\cdots +1 / a_{s}+\alpha _{1 j}+\alpha _{2 j}+\cdots +\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3})=\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}). \end{aligned}$$

Hence, we obtain

$$ \begin{aligned}[b] &\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad = \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \prod _{k=1} ^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3}. \end{aligned} $$
(11)

By the Hölder inequality (3), we find

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} g_{k}^{p_{k}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \biggr)^{1 / p_{k}}. \end{aligned} $$
(12)

Substituting \(g_{k}(\delta _{1},\delta _{2},\delta _{3})\) into the inequality (12) can be obtained

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{k j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1} \Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned} $$

(2) After the same proof as inequality (9), we get

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} g_{k}^{p_{k}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \biggr)^{1 / p_{k}}. \end{aligned} $$
(13)

Substituting \(g_{k}(\delta _{1},\delta _{2}.\delta _{3})\) into the (12) can be obtained

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{k j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1} \Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned}$$

The proof of Theorem 3.1 is accomplished. □

Corollary 3.2

Under the conditions of Theorem 3.1, let \(s=m, \alpha _{kj}=-t/p_{k}\)for \(k \neq j\)and \(\alpha _{jj}=t(1-1/p_{j})\)with \(t \in \mathbb{R}\), then

(1) for \(p_{k}>1\), we have the following inequality:

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \Biggl(\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1-t} \\ &\qquad{}\times \bigl(f_{k}^{p_{k}}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr)^{t} \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{1 / p_{k}}, \end{aligned} $$
(14)

(2) \(0< p_{m}<1, p_{k}<0\ (k=1,2,\ldots , m-1)\), we have the following reverse inequality:

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \Biggl(\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1-t} \\ &\qquad{}\times \bigl(f_{k}^{p_{k}}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr)^{t} \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned} $$
(15)

On the basis of Theorem 3.1, we give the n-tuple diamond-α integral Hölder’s inequality on time scales.

Theorem 3.3

Let \(\mathbb{T}\)be a time scale \(\xi ,\sigma \in \mathbb{T}\)with \(\xi <\sigma \)and \(\alpha _{kj}\in \mathbb{R}\) \((j=1, 2, \ldots , m, k=1,2, \ldots , s), \sum_{k=1}^{s}\frac{1}{p_{k}}=1, \sum_{k=1}^{s} \alpha _{kj}=0\). If \(f_{j}(\delta )>0\), and \(f_{j}\ (j=1,2,\ldots , m)\)is a continuous real-valued function on \([\xi , \sigma ]_{\mathbb{T}}\), then

(1) for \(p_{k}>1\), we have the following inequality:

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n})\Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{ \alpha } \delta _{n} \Biggr)^{\frac{1}{p_{k}}}, \end{aligned} $$
(16)

(2) for \(0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1)\), we have the following reverse inequality:

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n})\Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{ \alpha } \delta _{n} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned}$$
(17)

Proof

Similar to the proof of Theorem 3.1, we get the result of Theorem 3.3. □

Remark 3.4

The three-tuple diamond-\(alpha\) inequalities in Theorem 3.1 and the n-tuple diamond-α inequalities in Theorem 3.3 are generalizations to Theorem 3.3 in Ref. [10].

Theorem 3.5

Let \(\mathbb{T}\)be a time scale, \(\xi , \sigma \in \mathbb{T}\)with \(\xi <\sigma \)and \(r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2, \ldots ,m, k=1,2,\ldots ,s)\), \(\sum_{k=1}^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0\). If \(f_{j}(\delta )>0\), and \(f_{j}\ (j=1,2, \ldots ,m)\)is a continuous real-valued function on \([\xi , \sigma ]_{ \mathbb{T}}\), then

(1) for \(rp_{k}>1\), we have the following inequality:

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+rp_{k}\alpha _{kj}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{rp_{k}}}, \end{aligned} $$
(18)

(2) for \(0< rp_{k}<1, rp_{k}<0\ (k=1, 2,\ldots , s-1)\), we have the following reverse inequality:

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+rp_{k}\alpha _{kj}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{rp_{k}}}. \end{aligned} $$
(19)

Proof

(1) According to \(rp_{k}>1\) and \(\sum_{k=1}^{s}\frac{1}{p_{k}}=r\), we get \(\sum_{k=1}^{s}\frac{1}{rp_{k}}=1\). Then, by inequality (9), we immediately obtain the inequality (18).

(2) According to \(0< rp_{k}<1, rp_{k}<0\ (k=1,2,\ldots ,s-1)\) and \(\sum_{k=1}^{s}\frac{1}{p_{k}}=r\), we have \(\sum_{k=1}^{s}\frac{1}{rp _{k}}=1\), by inequality (10), we immediately have the inequality (19). This completes the proof. □

Similarly, on the basis of Theorem 3.5, we give the n-tuple diamond-α integral Hölder’s inequality on time scales.

Theorem 3.6

Let \(\mathbb{T}\)be a time scale, \(\xi , \sigma \in \mathbb{T}\)with \(\xi <\sigma \)and \(r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2, \ldots ,m, k=1,2,\ldots ,s)\), \(\sum_{k=1}^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0\). If \(f_{j}(\delta )>0\), and \(f_{j}\ (j=1,2, \ldots ,m)\)is a continuous real-valued function on \([\xi , \sigma ]_{ \mathbb{T}}\), then

(1) for \(rp_{k}>1\), we have the following inequality:

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+rp _{k}\alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \Biggr)^{\frac{1}{rp_{k}}}, \end{aligned} $$
(20)

(2) for \(0< rp_{k}<1, rp_{k}<0\ (k=1, 2,\ldots , s-1)\), we have the following reverse inequality:

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+rp _{k}\alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \Biggr)^{\frac{1}{rp_{k}}}. \end{aligned} $$
(21)

Proof

Similar to the proof of Theorem 3.5, we get the result of Theorem 3.6. □

Remark 3.7

For the inequality of Theorem 3.4 in the Reference [10], we put forward Theorem 3.5 and Theorem 3.6 as the generalization results.

Theorem 3.8

Assume that \(\mathbb{T}\)is a time scale, \(\xi , \sigma \in \mathbb{T}\)with \(\xi <\sigma \)and \(p_{k}>0, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots , s), \sum_{k=1}^{s}\frac{1}{p _{k}}=1, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h:\mathbb{T}\to \mathbb{R}\). Ifhand \(f_{j}\)are -integrable on \([\xi , \sigma ]_{\mathbb{T}}\), then the following assertions hold true.

(1) For \(p_{k}>1\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad \leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned} $$
(22)

(2) For \(0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1), f_{j}^{1+p_{k}\alpha _{kj}}\)is -integrable on \([\xi , \sigma ]_{\mathbb{T}}\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad \geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned} $$
(23)

Proof

(1) Let

$$ \begin{aligned} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})= \Biggl(\prod _{j=1}^{m} f_{j} ^{1+p_{k}\alpha _{kj}(\delta _{1}, \delta _{2}, \delta _{3})} \Biggr)^{1/p _{k}}. \end{aligned} $$

Based on the assumptions \(\sum_{k=1}^{s}\frac{1}{p_{k}}=1\) and \(\sum_{k=1}^{s}\alpha _{kj}=0\), from a direct computation, it is obvious to show that

$$\begin{aligned} &\prod_{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})\\ &\quad=g_{1} g _{2} \cdots g_{s} \\ &\quad= \Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{1} \alpha _{1 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{1}} \Biggl( \prod_{j=1} ^{m} f_{j}^{1+a_{2} \alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{2}}\cdots \\ &\qquad{}\times\Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{s} \alpha _{s_{j}}}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{s}} \\ &\quad=\prod_{j=1}^{m} f_{j}^{1 / a_{1}+\alpha _{1 j}}(\delta _{1}, \delta _{2}, \delta _{3}) \prod _{j=1}^{m} f_{j}^{1 / a_{2}+\alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \cdots \\ &\qquad{}\times \prod_{j=1}^{m} f_{j} ^{1 / a_{s}+\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3}) \\ &\quad= \prod_{j=1}^{m} f_{j}^{1 / a_{1}+1 / a_{2}+\cdots +1 / a_{s}+\alpha _{1 j}+\alpha _{2 j}+\cdots +\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3})=\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}). \end{aligned}$$

From the above result, we can obtain

$$ \begin{aligned} \prod_{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})=\prod_{j=1} ^{m}f_{j}(\delta _{1}, \delta _{2}, \delta _{3}). \end{aligned} $$

Hence, we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned} $$

It follows from Hölder’s inequality (5) that

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p _{k}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p _{k}}. \end{aligned} $$

Thus, we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad \leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned} $$

(2) The proof of inequality (23) is similar to the proof of inequality (22), we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p _{k}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p _{k}}. \end{aligned} $$

Thus, we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ & \quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned} $$

Thus, the proof of Theorem 3.8 is completed. □

Corollary 3.9

Under the assumptions of Theorem 3.8, taking \(s=m, \alpha _{kj}=-t/p_{k}\)for \(j \neq k\)and \(\alpha _{kk}=t(1-1/p_{k})\)with \(t \in \mathbb{R}\), the following assertions hold true.

(1) For \(p_{k}>1\), one has

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl(\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggr)^{1-t} \\ &\qquad{}\times \bigl( \bigl\vert f_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p_{k}}\bigr)^{t}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/p_{k}}. \end{aligned} $$

(2) For \(0< p_{m}<1, p_{k}<0\ (k=1,2,\ldots ,m-1)\), one has

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl(\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggr)^{1-t} \\ &\qquad{}\times \bigl( \bigl\vert f_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p_{k}}\bigr)^{t}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/p_{k}}. \end{aligned} $$

Theorem 3.10

Assume that \(\mathbb{T}\)is a time scale, \(\xi , \sigma \in \mathbb{T}\)with \(\xi <\sigma \)and \(p_{k}>0, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots , s), \sum_{k=1}^{s}\frac{1}{p _{k}}=1, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h:\mathbb{T}\to \mathbb{R}\). Ifhand \(f_{j}\)are -integrable on \([\xi , \sigma ]_{\mathbb{T}}\), then the following assertions hold true.

(1) For \(p_{k}>1\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ &\quad \leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}} ^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1 / p_{k}}. \end{aligned} $$
(24)

(2) For \(0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1), f_{j}^{1+p_{k}\alpha _{kj}}\)is -integrable on \([\xi , \sigma ]_{\mathbb{T}}\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ & \quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}} ^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1 / p_{k}}. \end{aligned} $$
(25)

Proof

Similar to the proof of Theorem 3.8, we get the result of Theorem 3.10. □

Remark 3.11

The inequalities in Theorem 3.8 and Theorem 3.10 are the result of generalization of Theorem 4.1 in Ref. [17].

Theorem 3.12

Assume that \(\mathbb{T}\)is a time scale, \(\xi , \sigma \in \mathbb{T}\)with \(\xi <\sigma \)and \(p_{k}>0, r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots ,s), \sum_{k=1} ^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h: \mathbb{T}\to \mathbb{R}\). If \(f_{j}\)and h are -integrable on \([\xi , \sigma ]_{T}\), then the following assertions hold true.

(1) For \(rp_{k}>1\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+rp _{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/rp_{k}}. \end{aligned} $$
(26)

(2) For \(0< rp_{k}<1, rp_{k}<0\ (k=1,2,\ldots , s-1), f_{j}^{1+rp_{k} \alpha _{kj}}\)is -integrable on \([\xi , \sigma ]_{ \mathbb{T}}\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+rp _{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/rp_{k}}. \end{aligned} $$
(27)

Proof

(1) Since \(rp_{k}>1\) and \(\sum_{k=1}^{s}\frac{1}{rp_{k}}=1\). Then by inequality (22) we can obtain inequality (26).

(2) Since \(0< rp_{s}<1, rp_{k}<0\) and \(\sum_{k=1}^{s}\frac{1}{rp_{k}}=1\), by inequality (23), we can obtain inequality (27).

The proof of Theorem 3.12 is completed. □

Theorem 3.13

Assume that \(\mathbb{T}\)is a time scale, \(\xi , \sigma \in \mathbb{T}\)with \(\xi <\sigma \)and \(p_{k}>0, r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots ,s), \sum_{k=1} ^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h: \mathbb{T}\to \mathbb{R}\). If \(f_{j}\)and h are -integrable on \([\xi , \sigma ]_{T}\), then the following assertions hold true.

(1) For \(rp_{k}>1\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+rp_{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1/rp_{k}}. \end{aligned} $$
(28)

(2) For \(0< rp_{k}<1, rp_{k}<0\ (k=1,2,\ldots , s-1), f_{j}^{1+rp_{k} \alpha _{kj}}\)is -integrable on \([\xi , \sigma ]_{ \mathbb{T}}\), one has

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+rp_{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1/rp_{k}}. \end{aligned} $$
(29)

Proof

Similar to the proof of Theorem 3.12, we get the result of Theorem 3.13. □

Theorem 3.14

Let \(f, g, h:\mathbb{T}\to \mathbb{R}\)be -integrable on \([\xi , \sigma ]_{T}\), and \(s, t \in \mathbb{R}\), and let \(p=(s-t)/(1-t), q=(s-t)/(s-1)\).

(1) If \(s<1<t\)or \(s>1>t\), then

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned} $$
(30)

(2) If \(s>t>1\)or \(s< t<1\); \(t>s>1\)or \(t< s<1\), then

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ & \qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned}$$
(31)

Proof

(1) Let \(p=\frac{s-t}{1-t}\) and in view of \(s<1<t\) or \(s>1>t\), we have

$$ \begin{aligned} p=\frac{s-t}{1-t}>1, \end{aligned} $$

by Hölder’s inequality (5) with indices \(\frac{s-t}{1-t}\) and \(\frac{s-t}{s-1}\), we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s(1-t)/(s-t)} \vert fg \vert ^{t(s-1)/(s-t)} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned} $$

On the other hand, from Hölder’s inequality (5) again for \(p=\frac{s-t}{1-t}>1\), it follows that the following two inequalities are true:

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{s(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{s(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)} \end{aligned} $$

and

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{t(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{t(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned}$$

Thus, we have

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ & \qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned}$$

(2) Let \(p=\frac{s-t}{1-t}\) and in view of \(s>t>1\) or \(s< t<1\), we have

$$ \begin{aligned} p=\frac{s-t}{1-t}< 0 \end{aligned} $$

and \(t>s>1\) or \(t< s<1\), we have \(0<\frac{s-t}{1-t}<1\), by the reverse Hölder inequality (6) with indices \(\frac{s-t}{1-t}\) and \(\frac{s-t}{s-1}\), we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s(1-t)/(s-t)} \vert fg \vert ^{t(s-1)/(s-t)} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned} $$

On the other hand, from Hölder’s inequality (6) again for \(0< p=\frac{s-t}{1-t}<1\) or \(p=\frac{s-t}{1-t}<0\), it follows that the following two inequalities are true:

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{s(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{s(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)} \end{aligned} $$

and

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{t(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{t(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned} $$

Thus, we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ & \qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned} $$

Thus, the proof of Theorem 3.14 is completed. □

Theorem 3.15

Let \(f, g, h:\mathbb{T}\to \mathbb{R}\)be -integrable on \([\xi , \sigma ]_{T}\), and \(s, t \in \mathbb{R}\), and let \(p=(s-t)/(1-t), q=(s-t)/(s-1)\).

(1) If \(s<1<t\)or \(s>1>t\), then

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})g( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Diamond \delta _{1} \Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/p^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/q^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/pq}. \end{aligned} $$
(32)

(2) If \(s>t>1\)or \(s< t<1\); \(t>s>1\)or \(t< s<1\), then

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})g( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Diamond \delta _{1} \Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/p^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/q^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/pq}. \end{aligned}$$
(33)

Proof

Similar to the proof of Theorem 3.14, we get the result of Theorem 3.15. □

Remark 3.16

For the inequality of Theorem 5.1 in the Reference [17], we put forward Theorem 3.14 and Theorem 3.15 as the generalization results.

4 Main results about diamond-alpha integral Minkowski’s inequality

Next, we give some generalizations of diamond-α integral Minkowski’s inequality in the following theorems.

Theorem 4.1

Let \(f, g, h: \mathbb{T}\to \mathbb{R}\)be \(\Diamond -integrable\)on \([\xi , \sigma ]_{\mathbb{T}}, p>0, s,t\in \mathbb{R}\), and \(s\neq t\).

(1) Let \(p, s, t\in \mathbb{R}\)be different such that \(s,t>1\)and \((s-t)/(p-t)>1\). Then

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{} \times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned} $$
(34)

(2) Let \(p, s, t\in \mathbb{R}\)be different such that \(0< s<1, 0<t<1\)and \((s-t)/(p-t)<1\). Then

$$ \begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{} \times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned} $$
(35)

Proof

(1) We have \((s-t)/(p-t)>1\), and

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \bigr)^{(p-t)/(s-t)} \\ &\qquad{}\times \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \bigr)^{(s-p)/(s-t)} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}, \end{aligned} $$

by using Hölder’s inequality (5) with indices \((s-t)/(p-t)\) and \((s-t)/(s-p)\), we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(p-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-p)/(s-t)}. \end{aligned} $$

On the other hand, by using Minkowski’s inequality (6) for \(s>1\) and \(t>1\), respectively, we can see that the following assertions hold true:

$$ \begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \end{aligned} $$

and

$$ \begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}}. \end{aligned} $$

So we get the result

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{} \times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}$$

(2) We have \((s-t)/(p-t)<1\) and

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \bigr)^{(p-t)/(s-t)} \\ &\qquad{}\times \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \bigr)^{(s-p)/(s-t)} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}, \end{aligned} $$

by using Hölder’s inequality (7) with indices \((s-t)/(p-t)\) and \((s-t)/(s-p)\), we have

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(p-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-p)/(s-t)}. \end{aligned} $$

On the other hand, by using Minkowski’s inequality (8) for \(s>1\) and \(t>1\), respectively, we can see that the following assertions hold true

$$ \begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \end{aligned} $$

and

$$ \begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}}. \end{aligned} $$

So we get the result

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ & \qquad{}\times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}$$

 □

Remark 4.2

(1) Under the conditions of Theorem 4.1, for \(p>1\), letting \(s=p+\varepsilon , t=p-\varepsilon \), when \(p, s, t\) are different, \(s,t>1\), and letting \(\varepsilon \to 0\), we obtain

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{p}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{p}}. \end{aligned} $$

(2) Under the conditions of Theorem 4.1, for \(0< p<1\), letting \(s=p+\varepsilon , t=p-\varepsilon \), when \(p, s, t\) are different, \(0< s,t<1\), and letting \(\varepsilon \to 0\), we obtain

$$ \begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{p}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{p}}. \end{aligned} $$

Now, on the basis of Theorem 4.1, we give the n-tuple diamond-α integral Minkowski’s inequality on time scales.

Theorem 4.3

Let \(f, g, h: \mathbb{T}\to \mathbb{R}\)be -integrable on \([\xi , \sigma ]_{\mathbb{T}}, p>0, s,t\in \mathbb{R}\), and \(s\neq t\).

(1) Let \(p, s, t\in \mathbb{R}\)be different such that \(s,t>1\)and \((s-t)/(p-t)>1\). Then

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})+g(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\leq \biggl[ \biggl( \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times \bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{}\times \biggl[ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}$$
(36)

(2) Let \(p, s, t\in \mathbb{R}\)be different such that \(0< s<1, 0<t<1\)and \((s-t)/(p-t)<1\). Then

$$\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})+g(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\geq \biggl[ \biggl( \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{}\times \biggl[ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}$$
(37)

Proof

Similar to the proof of Theorem 4.1, we get the result of Theorem 4.3. □

Remark 4.4

Aiming at the diamond-α integral Minkowski’s inequality proposed by Theorem 3.5 in Ref. [17], we generalize it in this paper and obtain the three-tuple and n-tuple diamond-α inequalities (34)–(37).

Theorem 4.5

Let \(f,g,h: \mathbb{T}\to \mathbb{R}\)and \(0< r<1<p\). If \(f,g\)andhare -integrable on \([\xi ,\sigma ]_{\mathbb{T}}\), then

$$ \begin{aligned}[b] & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned} $$
(38)

Proof

From inequality (5) and inequality (6), we have

$$\begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/(p-r)} \\ &\quad\leq \biggl( \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \biggr)^{p/(p-r)} \\ &\quad= \biggl( \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/p} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/p} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \biggr)^{p/(p-r)} \\ &\quad\leq \biggl( \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \\ &\qquad{}+ \biggl(\frac{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \biggr) \\ &\qquad{}\times \biggl( \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \\ &\qquad{}+ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \biggr)^{r/(p-r)}. \end{aligned}$$

From inequality (6), we get

$$\begin{aligned} & \biggl( \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \biggr)^{r} \\ &\quad\leq \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3}. \end{aligned}$$

Hence, we have

$$\begin{aligned} & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned}$$

The proof of Theorem 4.5 is completed. □

Next, on the basis of Theorem 4.5, we give the n-tuple diamond-α integral Minkowski’s inequality on time scales.

Theorem 4.6

Let \(f,g,h: \mathbb{T}\to \mathbb{R}\)and \(0< r<1<p\). If \(f,g\)andhare -integrable on \([\xi ,\sigma ]_{\mathbb{T}}\), then

$$\begin{aligned} & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert \vert f(\delta _{1}, \delta _{2},\ldots , \delta _{n})+g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert \vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n})+g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ &\quad \leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots ,\delta _{n}) \vert \vert f(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2}, \ldots ,\delta _{n}) \vert \vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ &\qquad{} + \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert \vert g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}} ^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert \vert g(\delta _{1}, \delta _{2}, \ldots ,\delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)}. \end{aligned}$$
(39)

Proof

Similar to the proof of Theorem 4.5, we get the result of Theorem 4.6. □

Remark 4.7

The inequalities in Theorem 4.5 and Theorem 4.6 are generalized results for Theorem 3.6 in Ref. [17].

Theorem 4.8

Let \(f,g,h: \mathbb{T}\to \mathbb{R}\)and \(p\leq 0\leq r\). If \(f,g, f^{p},g^{p}\)andhare -integrable on \([\xi , \sigma ]_{\mathbb{T}}\), then

$$ \begin{aligned}[b] & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\geq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned} $$
(40)

Proof

Let \(\alpha _{1}\geq 0, \alpha _{2}\geq 0, \beta _{1}>0\), and \(\beta _{2}>0\), and \(-1<\lambda <0\), using the following Radon inequality:

$$ \sum_{k=1}^{n} \frac{a_{k}^{p}}{b_{k}^{p-1}} \leq \frac{ (\sum_{k=1}^{n} a_{k} )^{p}}{ (\sum_{k=1}^{n} b_{k} )^{p-1}},\quad a_{k} \geq 0, b_{k}>0,0< p< 1, $$

we have

$$ \frac{\alpha _{1}^{\lambda +1}}{\beta _{1}^{\lambda }}+\frac{\alpha _{2} ^{\lambda +1}}{\beta _{2}^{\lambda }} \leq \frac{ (\alpha _{1}+ \alpha _{2} )^{\lambda +1}}{ (\beta _{1}+\beta _{2} )^{ \lambda }}. $$

Let

$$\begin{aligned} &\alpha _{1}= \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{p} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / p}, \\ &\beta _{1}= \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / r},\\ & \alpha _{2}= \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{p} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / p}, \\ &\beta _{2}= \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / r}, \end{aligned}$$

and let \(\lambda =\frac{r}{p-r}\), it follows that

$$ \begin{aligned} &\frac{\alpha _{1}^{\lambda +1}}{\beta _{1}^{\lambda }}+\frac{\alpha _{2} ^{\lambda +1}}{\beta _{2}^{\lambda }} \\ &\quad= \frac{ (\int _{\xi _{1}}^{ \sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h( \delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{(\lambda +1) / p}}{ ( \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{\lambda / r}} \\ &\qquad{}+\frac{ (\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{(\lambda +1) / p}}{ (\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{\lambda / r}} \\ &\quad= \biggl(\frac{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{ \sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h( \delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \\ &\qquad{}+ \biggl(\frac{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{ \sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h( \delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \\ &\quad\leq \frac{ ( \alpha _{1}+\alpha _{2} )^{\lambda +1}}{ (\beta _{1}+\beta _{2} )^{\lambda }} \\ &\quad= \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{p}\Diamond \delta _{1} \Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{} +\biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{p}\Diamond \delta _{1} \Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1/p} \biggr]^{p/(p-r)} \\ & \qquad\Big/ \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{r}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \\ &\qquad{} +\biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \biggr]^{r/(p-r)}. \end{aligned} $$

Since \(-1<\lambda =\frac{r}{p-r}<0\), we may assume \(p<0<r\), and \(0< r\leq 1\), we obtain

$$\begin{aligned} & \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / r}\\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1 / r} \biggr]^{r} \\ &\quad\leq \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f+g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned}$$

For \(p<0\), we obtain

$$ \begin{aligned} \sum_{k=1}^{n} m_{k}^{p} n_{k}^{1 / p-1} \geq \Biggl(\sum_{k=1}^{n} m _{k} \Biggr)^{p} \Biggl(\sum _{k=1}^{n} n_{k}^{1 / p} \Biggr)^{1-p}. \end{aligned} $$

Assume that \(f(\delta )\) and \(g(\delta )\) are nonzero, let

$$\begin{aligned} M={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}, \\ N={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}, \\ W={}& \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1/p} \\ &{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ ={}&M^{1/p}+N^{1/p}. \end{aligned}$$

From the above inequality, we have

$$ \begin{aligned} W={}&M^{1/p}+N^{1/p} \\ ={}&M^{1/p-1} \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &{}+N^{1/p-1} \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \\ ={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}M^{1/p-1} \\ &{}+ \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}N^{1/p-1} \bigr) \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ \geq{}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \\ &{} \times \bigl(M^{1/p}+N^{1/p} \bigr)^{1-p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ ={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}W^{1-p} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \\ ={}&W^{1-p} \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned} $$

That is,

$$ \begin{aligned} W\geq W^{1-p} \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned} $$

Hence, we have

$$ \begin{aligned} W^{p}\geq \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned} $$

Based on the above inequality, we obtain

$$ \begin{aligned} & \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{}+ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \biggr]^{p} \\ &\quad\geq \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3}. \end{aligned} $$

Through the above inequalities, we finally get the result

$$ \begin{aligned} & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned} $$

Thus, Theorem 4.8 is completely proved. □

Theorem 4.9

Let \(f,g,h: \mathbb{T}\to \mathbb{R}\)and \(0< r<1<p\). If f, g and h are -integrable on \([\xi , \sigma ]_{\mathbb{T}}\), then we have the following assertion

$$ \begin{aligned}[b] & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n})+g(x_{1},x _{2}\cdots ,x_{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n})+g( \delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ & \quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \vert \vert g(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert \vert g(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)}. \end{aligned} $$
(41)

Proof

Similar to the proof of Theorem 4.8, we get the result of Theorem 4.9. □

Remark 4.10

For the inequality of Theorem 3.7 in Ref. [17], we generalize it in this paper and obtain the generalized inequalities in Theorem 4.8 and Theorem 4.9.

References

  1. Ozkan, U.M., Sarikaya, M.Z., Yildirim, H.: Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 21, 993–1000 (2008)

    Article  MathSciNet  Google Scholar 

  2. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, Würzburg, Germany (1988)

  3. Agarwal, R.P., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, New York (2014)

    Book  Google Scholar 

  4. Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018)

    Article  MathSciNet  Google Scholar 

  6. Yang, Z.-H., Tian, J.-F.: A class of completely mixed monotonic functions involving the gamma function with applications. Proc. Am. Math. Soc. 146(11), 4707–4721 (2018)

    Article  MathSciNet  Google Scholar 

  7. Tian, J.: Note on common fixed point theorems in fuzzy metric spaces using the CLRg property. Fuzzy Sets Syst. 379, 134–137 (2020)

    Article  MathSciNet  Google Scholar 

  8. Wang, M.K., Zhang, W., Chu, Y.M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. Ser. B Engl. Ed. 39(5), 1440–1450 (2019)

    Google Scholar 

  9. Tian, J.F., Ha, M.H., Wang, C.: Improvements of generalized Hölder’s inequalities and their applications. J. Math. Inequal. 12, 459–471 (2018)

    Article  MathSciNet  Google Scholar 

  10. Chen, G.S., Huang, F.L., Liao, L.F.: Generalizations of Hölder inequality and some related results on time scales. J. Inequal. Appl. 2014, 207 (2014)

    Article  Google Scholar 

  11. Agahi, H., Ouyang, Y., Mesiar, R., Pap, E., S̆trboja, M.: Hölder and Minkowski type inequalities for pseudo-integral. Appl. Math. Comput. 217, 8630–8639 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Tian, J.F., Ha, M.H.: Properties of generalized sharp Hölder’s inequalities. J. Math. Inequal. 11, 511–525 (2017)

    Article  MathSciNet  Google Scholar 

  13. Zhao, C., Cheung, W.: Hölder’s reverse inequality and its applications. Publ. L. Math. 99, 211–216 (2016)

    Article  Google Scholar 

  14. Tian, J.F.: New property of a generalized Hölder’s inequality and its applications. Inf. Sci. 288, 45–54 (2014)

    Article  Google Scholar 

  15. Tian, J.F.: Reversed version of a generalized sharp Hölder’s inequality and its applications. Inf. Sci. 201, 61–69 (2012)

    Article  Google Scholar 

  16. Lou, Y.T.: Generalizations of Young inequality and Hölder inequality. J. Nanjing Inst. Posts Telecommun. 14, 98–103 (1994)

    Google Scholar 

  17. Chen, G.S., Wei, C.D.: The diamond integral reverse Hölder inequality and related results on time scales. Adv. Differ. Equ. 2015, 180 (2015)

    Article  Google Scholar 

  18. Tian, J.F.: Triple Diamond-Alpha integral and Hölder-type inequalities. J. Inequal. Appl. 2018, 111 (2018)

    Article  Google Scholar 

  19. Tian, J.F., Zhu, Y.R., Cheung, W.S.: N-tuple Diamond-Alpha integral and inequalities on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 2189–2200 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the anonymous referees for their constructive comments and advice on the earlier version for this paper.

Funding

This paper was supported by the Fundamental Research Funds for the Central Universities (Nos. 2019MS129, 2015ZD29).

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding author

Correspondence to Fei Yan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Wang, J. Generalizations and refinements of three-tuple Diamond-Alpha integral Hölder’s inequality on time scales. J Inequal Appl 2019, 318 (2019). https://doi.org/10.1186/s13660-019-2271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2271-8

MSC

Keywords