# Generalizations and refinements of three-tuple Diamond-Alpha integral Hölder’s inequality on time scales

## Abstract

In this paper, based on the existing Hölder’s inequality, some new three-tuple diamond-alpha integral Hölder’s inequalities on time scales are proposed and the related theorems and corollaries are given. At the same time, we also give the relevant conclusions and proof of n-tuple diamond-alpha integral Hölder’s inequalities on time scales.

## Introduction

Let $$f(\delta )>0, g(\delta )>0, p>1, 1/p+1/q=1$$. If $$f(\delta )$$ and $$g(\delta )$$ are continuous real-valued functions on $$[\xi , \sigma ]$$, then

$$\int _{\xi }^{\sigma } f(\delta )g(\delta ) \,d\delta \leq \biggl( \int _{\xi }^{\sigma } f^{p}(x)\,d\delta \biggr)^{1/p} \biggl( \int _{\xi }^{ \sigma }g^{q}(x)\,d\delta \biggr)^{1/q}.$$

This famous Hölder inequality is extended in article [1] to the diamond-α integral Hölder inequality on time scales, in the following form:

Let $$f,g,h:[\xi , \sigma ]\to \mathbb{R}$$ be $$\Diamond _{\alpha }$$-integrable functions, and $$1/p+1/q=1$$ with $$p>1$$, then

$$\int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )g(\delta ) \bigr\vert \Diamond _{ \alpha } \delta \leq \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p}\Diamond _{\alpha } \delta \biggr)^{\frac{1}{p}} \biggl( \int _{ \xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g(\delta ) \bigr\vert ^{q}\Diamond _{\alpha } \delta \biggr)^{\frac{1}{q}}.$$

Since Hilger [2] proposed the time-scale theory in 1998, many researchers [3, 4] have made extensive promotions and applications of his theory. The classical analytic inequality [58], especially Hölder’s inequality, plays a very important role in modern mathematics. Due to the importance of both, more and more scholars [915] have studied the intersections of two inequalities. The purpose of this article is to derive some generalizations and refinements of the three-tuple diamond-α integral Hölder inequality on time scales. The relevant conclusions of the n-tuple diamond-α integral Hölder inequality on time scales are also given.

## Main lemmas

Before the main results are given in this paper, we need to introduce the following lemmas, which are helpful for the results of this paper.

### Lemma 2.1

([16])

Let $$\sum_{j=1}^{m}\frac{1}{p_{j}}=1, \lambda _{j} \geq 0\ (j=1,2,\ldots ,m)$$. Then

(1) for $$p_{j}>1$$, we have

$$\prod_{j=1}^{m}\lambda _{j}\leq \sum_{j=1}^{m} \frac{\lambda _{j}^{p_{j}}}{p _{j}},$$
(1)

(2) for $$0< p_{m}<1, p_{j}<0\ (j=1,2,\ldots ,m-1)$$, we have

$$\prod_{j=1}^{m}\lambda _{j}\geq \sum_{j=1}^{m} \frac{\lambda _{j}^{p_{j}}}{p _{j}}.$$
(2)

### Lemma 2.2

([10])

Let $$\mathbb{T}$$be a time scale, $$a, b\in \mathbb{T}$$with $$a< b$$and $$\sum_{j=1}^{m}\frac{1}{p_{j}}=1$$. If $$f_{j}(\delta )>0$$, and $$f_{j}\ (j=1,2,\ldots ,m)$$is continuous real-valued function on $$[\xi , \sigma ]_{\mathbb{T}}$$, then

(1) for $$p_{j}>1$$, we have

$$\int _{\xi }^{\sigma }\prod_{j=1}^{m} f_{j}(\delta )\Diamond _{\alpha } \delta \leq \prod _{j=1}^{m} \biggl( \int _{\xi }^{\sigma } f_{j}^{p_{j}}( \delta )\Diamond _{\alpha }\delta \biggr)^{1/p_{j}},$$
(3)

(2) for $$0< p_{m}<1, p_{j}<0\ (j=1,2,\ldots ,m-1)$$, we have

$$\int _{\xi }^{\sigma }\prod_{j=1}^{m} f_{j}(\delta )\Diamond _{\alpha } \delta \geq \prod _{j=1}^{m} \biggl( \int _{\xi }^{\sigma } f_{j}^{p_{j}}( \delta )\Diamond _{\alpha }\delta \biggr)^{1/p_{j}}.$$
(4)

### Lemma 2.3

([17])

Let $$f, g, h:\mathbb{T}\to \mathbb{R}$$be -integrable on $$[\xi , \sigma ]_{\mathbb{T}}, p>1$$with $$q=p/(p-1)$$. Then we have

$$\int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )g(\delta ) \bigr\vert \Diamond \delta \leq \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g( \delta ) \bigr\vert ^{q}\Diamond \delta \biggr)^{1/q}.$$
(5)

### Lemma 2.4

([17])

Let $$f, g, h:\mathbb{T}\to \mathbb{R}$$be -integrable on $$[\xi , \sigma ]_{\mathbb{T}}, p>1$$with $$q=p/(p-1)$$. Then we have

\begin{aligned} & \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )+g(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \\ &\quad \leq \biggl( \int _{\xi }^{\sigma } \bigl\vert h( \delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}+ \biggl( \int _{ \xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}. \end{aligned}
(6)

### Lemma 2.5

([17])

Let $$f, g, h:\mathbb{T}\to \mathbb{R}$$be -integrable on $$[\xi , \sigma ]_{\mathbb{T}}, 0< p<1$$with $$q=p/(p-1)$$. If $$g^{q}$$is -integrable on $$[\xi , \sigma ]_{\mathbb{T}}$$, then

$$\int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )g(\delta ) \bigr\vert \Diamond \delta \geq \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g( \delta ) \bigr\vert ^{q}\Diamond \delta \biggr)^{1/q}.$$
(7)

### Lemma 2.6

([17])

Let $$f, g, h:\mathbb{T}\to \mathbb{R}$$be -integrable on $$[\xi , \sigma ]_{\mathbb{T}}, 0< p<1$$with $$q=p/(p-1)$$. Then we have

\begin{aligned} & \biggl( \int _{\xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert f(\delta )+g(\delta ) \bigr\vert ^{p} \Diamond \delta \biggr)^{1/p} \\ &\quad \geq \biggl( \int _{\xi }^{\sigma } \bigl\vert h( \delta ) \bigr\vert \bigl\vert f(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}+ \biggl( \int _{ \xi }^{\sigma } \bigl\vert h(\delta ) \bigr\vert \bigl\vert g(\delta ) \bigr\vert ^{p}\Diamond \delta \biggr)^{1/p}. \end{aligned}
(8)

## Main results about diamond-α integral Hölder’s inequality

Now, based on Tian’s [18, 19] research results, we will give the following generalizations and refinements of the three-tuple diamond-α integral and n-tuple diamond-α integral Hölder inequality on time scales.

### Theorem 3.1

Let $$\mathbb{T}$$be a time scale $$a, b \in \mathbb{T}$$with $$a< b$$and $$\alpha _{kj}\in \mathbb{R}$$ $$(j=1, 2, \ldots , m, k=1,2, \ldots , s), \sum_{k=1}^{s}\frac{1}{p_{k}}=1, \sum_{k=1}^{s}\alpha _{kj}=0$$. If $$f_{j}(\delta )>0$$, and $$f_{j}\ (j=1,2,\ldots , m)$$is a continuous real-valued function on $$[\xi , \sigma ]_{\mathbb{T}}$$, then

(1) for $$p_{k}>1$$, we have

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+p_{k}\alpha _{kj}}( \delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}, \end{aligned}
(9)

(2) for $$0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1)$$, we have

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+p_{k}\alpha _{kj}}( \delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned}
(10)

### Proof

(1) Set

\begin{aligned} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})= \Biggl(\prod _{j=1}^{m} f_{j} ^{1+p_{k} \alpha _{k j}}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / p_{k}}. \end{aligned}

Applying the assumptions $$\sum_{k=1}^{s}\frac{1}{p_{k}}=1$$ and $$\sum_{k=1}^{s}\alpha _{kj}=0$$, by computing, we can observe that

\begin{aligned} & \prod_{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \\ &\quad=g_{1} g _{2} \cdots g_{s} \\ &\quad= \Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{1} \alpha _{1 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{1}} \Biggl( \prod_{j=1} ^{m} f_{j}^{1+a_{2} \alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{2}}\cdots \\ &\qquad{}\times \Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{s} \alpha _{s_{j}}}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{s}} \\ &\quad=\prod_{j=1}^{m} f_{j}^{1 / a_{1}+\alpha _{1 j}}(\delta _{1}, \delta _{2}, \delta _{3}) \prod _{j=1}^{m} f_{j}^{1 / a_{2}+\alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \cdots \\ &\qquad{}\times \prod_{j=1}^{m} f_{j} ^{1 / a_{s}+\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3}) \\ &\quad= \prod_{j=1}^{m} f_{j}^{1 / a_{1}+1 / a_{2}+\cdots +1 / a_{s}+\alpha _{1 j}+\alpha _{2 j}+\cdots +\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3})=\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}). \end{aligned}

Hence, we obtain

\begin{aligned}[b] &\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad = \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \prod _{k=1} ^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3}. \end{aligned}
(11)

By the Hölder inequality (3), we find

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} g_{k}^{p_{k}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \biggr)^{1 / p_{k}}. \end{aligned}
(12)

Substituting $$g_{k}(\delta _{1},\delta _{2},\delta _{3})$$ into the inequality (12) can be obtained

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{k j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1} \Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned}

(2) After the same proof as inequality (9), we get

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} g_{k}^{p_{k}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \biggr)^{1 / p_{k}}. \end{aligned}
(13)

Substituting $$g_{k}(\delta _{1},\delta _{2}.\delta _{3})$$ into the (12) can be obtained

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{k j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1} \Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned}

The proof of Theorem 3.1 is accomplished. □

### Corollary 3.2

Under the conditions of Theorem 3.1, let $$s=m, \alpha _{kj}=-t/p_{k}$$for $$k \neq j$$and $$\alpha _{jj}=t(1-1/p_{j})$$with $$t \in \mathbb{R}$$, then

(1) for $$p_{k}>1$$, we have the following inequality:

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \Biggl(\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1-t} \\ &\qquad{}\times \bigl(f_{k}^{p_{k}}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr)^{t} \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{1 / p_{k}}, \end{aligned}
(14)

(2) $$0< p_{m}<1, p_{k}<0\ (k=1,2,\ldots , m-1)$$, we have the following reverse inequality:

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \Biggl(\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1-t} \\ &\qquad{}\times \bigl(f_{k}^{p_{k}}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr)^{t} \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned}
(15)

On the basis of Theorem 3.1, we give the n-tuple diamond-α integral Hölder’s inequality on time scales.

### Theorem 3.3

Let $$\mathbb{T}$$be a time scale $$\xi ,\sigma \in \mathbb{T}$$with $$\xi <\sigma$$and $$\alpha _{kj}\in \mathbb{R}$$ $$(j=1, 2, \ldots , m, k=1,2, \ldots , s), \sum_{k=1}^{s}\frac{1}{p_{k}}=1, \sum_{k=1}^{s} \alpha _{kj}=0$$. If $$f_{j}(\delta )>0$$, and $$f_{j}\ (j=1,2,\ldots , m)$$is a continuous real-valued function on $$[\xi , \sigma ]_{\mathbb{T}}$$, then

(1) for $$p_{k}>1$$, we have the following inequality:

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n})\Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{ \alpha } \delta _{n} \Biggr)^{\frac{1}{p_{k}}}, \end{aligned}
(16)

(2) for $$0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1)$$, we have the following reverse inequality:

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+p_{k} \alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n})\Diamond _{ \alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{ \alpha } \delta _{n} \Biggr)^{\frac{1}{p_{k}}}. \end{aligned}
(17)

### Proof

Similar to the proof of Theorem 3.1, we get the result of Theorem 3.3. □

### Remark 3.4

The three-tuple diamond-$$alpha$$ inequalities in Theorem 3.1 and the n-tuple diamond-α inequalities in Theorem 3.3 are generalizations to Theorem 3.3 in Ref. [10].

### Theorem 3.5

Let $$\mathbb{T}$$be a time scale, $$\xi , \sigma \in \mathbb{T}$$with $$\xi <\sigma$$and $$r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2, \ldots ,m, k=1,2,\ldots ,s)$$, $$\sum_{k=1}^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0$$. If $$f_{j}(\delta )>0$$, and $$f_{j}\ (j=1,2, \ldots ,m)$$is a continuous real-valued function on $$[\xi , \sigma ]_{ \mathbb{T}}$$, then

(1) for $$rp_{k}>1$$, we have the following inequality:

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+rp_{k}\alpha _{kj}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{rp_{k}}}, \end{aligned}
(18)

(2) for $$0< rp_{k}<1, rp_{k}<0\ (k=1, 2,\ldots , s-1)$$, we have the following reverse inequality:

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2} \Diamond _{\alpha } \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}}\prod _{j=1}^{m} f_{j}^{1+rp_{k}\alpha _{kj}}( \delta _{1}, \delta _{2}, \delta _{3}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\Diamond _{\alpha } \delta _{3} \Biggr)^{\frac{1}{rp_{k}}}. \end{aligned}
(19)

### Proof

(1) According to $$rp_{k}>1$$ and $$\sum_{k=1}^{s}\frac{1}{p_{k}}=r$$, we get $$\sum_{k=1}^{s}\frac{1}{rp_{k}}=1$$. Then, by inequality (9), we immediately obtain the inequality (18).

(2) According to $$0< rp_{k}<1, rp_{k}<0\ (k=1,2,\ldots ,s-1)$$ and $$\sum_{k=1}^{s}\frac{1}{p_{k}}=r$$, we have $$\sum_{k=1}^{s}\frac{1}{rp _{k}}=1$$, by inequality (10), we immediately have the inequality (19). This completes the proof. □

Similarly, on the basis of Theorem 3.5, we give the n-tuple diamond-α integral Hölder’s inequality on time scales.

### Theorem 3.6

Let $$\mathbb{T}$$be a time scale, $$\xi , \sigma \in \mathbb{T}$$with $$\xi <\sigma$$and $$r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2, \ldots ,m, k=1,2,\ldots ,s)$$, $$\sum_{k=1}^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0$$. If $$f_{j}(\delta )>0$$, and $$f_{j}\ (j=1,2, \ldots ,m)$$is a continuous real-valued function on $$[\xi , \sigma ]_{ \mathbb{T}}$$, then

(1) for $$rp_{k}>1$$, we have the following inequality:

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+rp _{k}\alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \Biggr)^{\frac{1}{rp_{k}}}, \end{aligned}
(20)

(2) for $$0< rp_{k}<1, rp_{k}<0\ (k=1, 2,\ldots , s-1)$$, we have the following reverse inequality:

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \prod _{j=1}^{m} f_{j}(\delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{ \alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}}\prod _{j=1}^{m} f_{j}^{1+rp _{k}\alpha _{kj}}( \delta _{1},\delta _{2},\ldots , \delta _{n}) \Diamond _{\alpha } \delta _{1}\Diamond _{\alpha } \delta _{2}\cdots \Diamond _{\alpha } \delta _{n} \Biggr)^{\frac{1}{rp_{k}}}. \end{aligned}
(21)

### Proof

Similar to the proof of Theorem 3.5, we get the result of Theorem 3.6. □

### Remark 3.7

For the inequality of Theorem 3.4 in the Reference [10], we put forward Theorem 3.5 and Theorem 3.6 as the generalization results.

### Theorem 3.8

Assume that $$\mathbb{T}$$is a time scale, $$\xi , \sigma \in \mathbb{T}$$with $$\xi <\sigma$$and $$p_{k}>0, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots , s), \sum_{k=1}^{s}\frac{1}{p _{k}}=1, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h:\mathbb{T}\to \mathbb{R}$$. Ifhand $$f_{j}$$are -integrable on $$[\xi , \sigma ]_{\mathbb{T}}$$, then the following assertions hold true.

(1) For $$p_{k}>1$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad \leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned}
(22)

(2) For $$0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1), f_{j}^{1+p_{k}\alpha _{kj}}$$is -integrable on $$[\xi , \sigma ]_{\mathbb{T}}$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad \geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned}
(23)

### Proof

(1) Let

\begin{aligned} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})= \Biggl(\prod _{j=1}^{m} f_{j} ^{1+p_{k}\alpha _{kj}(\delta _{1}, \delta _{2}, \delta _{3})} \Biggr)^{1/p _{k}}. \end{aligned}

Based on the assumptions $$\sum_{k=1}^{s}\frac{1}{p_{k}}=1$$ and $$\sum_{k=1}^{s}\alpha _{kj}=0$$, from a direct computation, it is obvious to show that

\begin{aligned} &\prod_{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})\\ &\quad=g_{1} g _{2} \cdots g_{s} \\ &\quad= \Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{1} \alpha _{1 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{1}} \Biggl( \prod_{j=1} ^{m} f_{j}^{1+a_{2} \alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{2}}\cdots \\ &\qquad{}\times\Biggl(\prod_{j=1}^{m} f_{j}^{1+a_{s} \alpha _{s_{j}}}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr)^{1 / a_{s}} \\ &\quad=\prod_{j=1}^{m} f_{j}^{1 / a_{1}+\alpha _{1 j}}(\delta _{1}, \delta _{2}, \delta _{3}) \prod _{j=1}^{m} f_{j}^{1 / a_{2}+\alpha _{2 j}}( \delta _{1}, \delta _{2}, \delta _{3}) \cdots \\ &\qquad{}\times \prod_{j=1}^{m} f_{j} ^{1 / a_{s}+\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3}) \\ &\quad= \prod_{j=1}^{m} f_{j}^{1 / a_{1}+1 / a_{2}+\cdots +1 / a_{s}+\alpha _{1 j}+\alpha _{2 j}+\cdots +\alpha _{s j}}(\delta _{1}, \delta _{2}, \delta _{3})=\prod _{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}). \end{aligned}

From the above result, we can obtain

\begin{aligned} \prod_{k=1}^{s} g_{k}(\delta _{1}, \delta _{2}, \delta _{3})=\prod_{j=1} ^{m}f_{j}(\delta _{1}, \delta _{2}, \delta _{3}). \end{aligned}

Hence, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned}

It follows from Hölder’s inequality (5) that

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p _{k}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p _{k}}. \end{aligned}

Thus, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad \leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned}

(2) The proof of inequality (23) is similar to the proof of inequality (22), we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p _{k}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p _{k}}. \end{aligned}

Thus, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ & \quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1 / p_{k}}. \end{aligned}

Thus, the proof of Theorem 3.8 is completed. □

### Corollary 3.9

Under the assumptions of Theorem 3.8, taking $$s=m, \alpha _{kj}=-t/p_{k}$$for $$j \neq k$$and $$\alpha _{kk}=t(1-1/p_{k})$$with $$t \in \mathbb{R}$$, the following assertions hold true.

(1) For $$p_{k}>1$$, one has

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl(\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggr)^{1-t} \\ &\qquad{}\times \bigl( \bigl\vert f_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p_{k}}\bigr)^{t}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/p_{k}}. \end{aligned}

(2) For $$0< p_{m}<1, p_{k}<0\ (k=1,2,\ldots ,m-1)$$, one has

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \prod_{k=1}^{m} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl(\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggr)^{1-t} \\ &\qquad{}\times \bigl( \bigl\vert f_{k}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p_{k}}\bigr)^{t}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/p_{k}}. \end{aligned}

### Theorem 3.10

Assume that $$\mathbb{T}$$is a time scale, $$\xi , \sigma \in \mathbb{T}$$with $$\xi <\sigma$$and $$p_{k}>0, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots , s), \sum_{k=1}^{s}\frac{1}{p _{k}}=1, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h:\mathbb{T}\to \mathbb{R}$$. Ifhand $$f_{j}$$are -integrable on $$[\xi , \sigma ]_{\mathbb{T}}$$, then the following assertions hold true.

(1) For $$p_{k}>1$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ &\quad \leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}} ^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1 / p_{k}}. \end{aligned}
(24)

(2) For $$0< p_{s}<1, p_{k}<0\ (k=1,2,\ldots ,s-1), f_{j}^{1+p_{k}\alpha _{kj}}$$is -integrable on $$[\xi , \sigma ]_{\mathbb{T}}$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ & \quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}} ^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+p_{k} \alpha _{k j}} \Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1 / p_{k}}. \end{aligned}
(25)

### Proof

Similar to the proof of Theorem 3.8, we get the result of Theorem 3.10. □

### Remark 3.11

The inequalities in Theorem 3.8 and Theorem 3.10 are the result of generalization of Theorem 4.1 in Ref. [17].

### Theorem 3.12

Assume that $$\mathbb{T}$$is a time scale, $$\xi , \sigma \in \mathbb{T}$$with $$\xi <\sigma$$and $$p_{k}>0, r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots ,s), \sum_{k=1} ^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h: \mathbb{T}\to \mathbb{R}$$. If $$f_{j}$$and h are -integrable on $$[\xi , \sigma ]_{T}$$, then the following assertions hold true.

(1) For $$rp_{k}>1$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+rp _{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/rp_{k}}. \end{aligned}
(26)

(2) For $$0< rp_{k}<1, rp_{k}<0\ (k=1,2,\ldots , s-1), f_{j}^{1+rp_{k} \alpha _{kj}}$$is -integrable on $$[\xi , \sigma ]_{ \mathbb{T}}$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \Biggr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{1+rp _{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \Biggr)^{1/rp_{k}}. \end{aligned}
(27)

### Proof

(1) Since $$rp_{k}>1$$ and $$\sum_{k=1}^{s}\frac{1}{rp_{k}}=1$$. Then by inequality (22) we can obtain inequality (26).

(2) Since $$0< rp_{s}<1, rp_{k}<0$$ and $$\sum_{k=1}^{s}\frac{1}{rp_{k}}=1$$, by inequality (23), we can obtain inequality (27).

The proof of Theorem 3.12 is completed. □

### Theorem 3.13

Assume that $$\mathbb{T}$$is a time scale, $$\xi , \sigma \in \mathbb{T}$$with $$\xi <\sigma$$and $$p_{k}>0, r\in \mathbb{R}, \alpha _{kj}\in \mathbb{R}\ (j=1,2,\ldots ,m, k=1,2,\ldots ,s), \sum_{k=1} ^{s}\frac{1}{p_{k}}=r, \sum_{k=1}^{s}\alpha _{kj}=0, f_{j},h: \mathbb{T}\to \mathbb{R}$$. If $$f_{j}$$and h are -integrable on $$[\xi , \sigma ]_{T}$$, then the following assertions hold true.

(1) For $$rp_{k}>1$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ &\quad\leq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+rp_{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1/rp_{k}}. \end{aligned}
(28)

(2) For $$0< rp_{k}<1, rp_{k}<0\ (k=1,2,\ldots , s-1), f_{j}^{1+rp_{k} \alpha _{kj}}$$is -integrable on $$[\xi , \sigma ]_{ \mathbb{T}}$$, one has

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Biggl\vert \prod_{j=1}^{m} f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \Biggr\vert \Diamond \delta _{1} \Diamond \delta _{2} \cdots \Diamond \delta _{n} \\ &\quad\geq \prod_{k=1}^{s} \Biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\prod_{j=1}^{m} \bigl\vert f_{j}(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{1+rp_{k}\alpha _{kj}}\Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{n} \Biggr)^{1/rp_{k}}. \end{aligned}
(29)

### Proof

Similar to the proof of Theorem 3.12, we get the result of Theorem 3.13. □

### Theorem 3.14

Let $$f, g, h:\mathbb{T}\to \mathbb{R}$$be -integrable on $$[\xi , \sigma ]_{T}$$, and $$s, t \in \mathbb{R}$$, and let $$p=(s-t)/(1-t), q=(s-t)/(s-1)$$.

(1) If $$s<1<t$$or $$s>1>t$$, then

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned}
(30)

(2) If $$s>t>1$$or $$s< t<1$$; $$t>s>1$$or $$t< s<1$$, then

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ & \qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned}
(31)

### Proof

(1) Let $$p=\frac{s-t}{1-t}$$ and in view of $$s<1<t$$ or $$s>1>t$$, we have

\begin{aligned} p=\frac{s-t}{1-t}>1, \end{aligned}

by Hölder’s inequality (5) with indices $$\frac{s-t}{1-t}$$ and $$\frac{s-t}{s-1}$$, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s(1-t)/(s-t)} \vert fg \vert ^{t(s-1)/(s-t)} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned}

On the other hand, from Hölder’s inequality (5) again for $$p=\frac{s-t}{1-t}>1$$, it follows that the following two inequalities are true:

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{s(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{s(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)} \end{aligned}

and

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{t(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{t(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned}

Thus, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ & \qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned}

(2) Let $$p=\frac{s-t}{1-t}$$ and in view of $$s>t>1$$ or $$s< t<1$$, we have

\begin{aligned} p=\frac{s-t}{1-t}< 0 \end{aligned}

and $$t>s>1$$ or $$t< s<1$$, we have $$0<\frac{s-t}{1-t}<1$$, by the reverse Hölder inequality (6) with indices $$\frac{s-t}{1-t}$$ and $$\frac{s-t}{s-1}$$, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s(1-t)/(s-t)} \vert fg \vert ^{t(s-1)/(s-t)} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned}

On the other hand, from Hölder’s inequality (6) again for $$0< p=\frac{s-t}{1-t}<1$$ or $$p=\frac{s-t}{1-t}<0$$, it follows that the following two inequalities are true:

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{s(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{s(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)} \end{aligned}

and

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \vert h \vert \vert fg \vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}} ^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert f \vert ^{t(s-t)/(1-t)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(1-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h \vert \vert g \vert ^{t(s-t)/(s-1)}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-1)/(s-t)}. \end{aligned}

Thus, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p^{2}} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/q^{2}} \\ & \qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/pq}. \end{aligned}

Thus, the proof of Theorem 3.14 is completed. □

### Theorem 3.15

Let $$f, g, h:\mathbb{T}\to \mathbb{R}$$be -integrable on $$[\xi , \sigma ]_{T}$$, and $$s, t \in \mathbb{R}$$, and let $$p=(s-t)/(1-t), q=(s-t)/(s-1)$$.

(1) If $$s<1<t$$or $$s>1>t$$, then

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})g( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Diamond \delta _{1} \Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/p^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/q^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/pq}. \end{aligned}
(32)

(2) If $$s>t>1$$or $$s< t<1$$; $$t>s>1$$or $$t< s<1$$, then

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})g( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \Diamond \delta _{1} \Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/p^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h( \delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/q^{2}} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{tp}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\qquad{}\times \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert \bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{sq}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{1/pq}. \end{aligned}
(33)

### Proof

Similar to the proof of Theorem 3.14, we get the result of Theorem 3.15. □

### Remark 3.16

For the inequality of Theorem 5.1 in the Reference [17], we put forward Theorem 3.14 and Theorem 3.15 as the generalization results.

## Main results about diamond-alpha integral Minkowski’s inequality

Next, we give some generalizations of diamond-α integral Minkowski’s inequality in the following theorems.

### Theorem 4.1

Let $$f, g, h: \mathbb{T}\to \mathbb{R}$$be $$\Diamond -integrable$$on $$[\xi , \sigma ]_{\mathbb{T}}, p>0, s,t\in \mathbb{R}$$, and $$s\neq t$$.

(1) Let $$p, s, t\in \mathbb{R}$$be different such that $$s,t>1$$and $$(s-t)/(p-t)>1$$. Then

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{} \times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}
(34)

(2) Let $$p, s, t\in \mathbb{R}$$be different such that $$0< s<1, 0<t<1$$and $$(s-t)/(p-t)<1$$. Then

\begin{aligned}[b] & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{} \times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}
(35)

### Proof

(1) We have $$(s-t)/(p-t)>1$$, and

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \bigr)^{(p-t)/(s-t)} \\ &\qquad{}\times \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \bigr)^{(s-p)/(s-t)} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}, \end{aligned}

by using Hölder’s inequality (5) with indices $$(s-t)/(p-t)$$ and $$(s-t)/(s-p)$$, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(p-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-p)/(s-t)}. \end{aligned}

On the other hand, by using Minkowski’s inequality (6) for $$s>1$$ and $$t>1$$, respectively, we can see that the following assertions hold true:

\begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \end{aligned}

and

\begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}}. \end{aligned}

So we get the result

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{} \times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}

(2) We have $$(s-t)/(p-t)<1$$ and

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad= \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \bigr)^{(p-t)/(s-t)} \\ &\qquad{}\times \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \bigr)^{(s-p)/(s-t)} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}, \end{aligned}

by using Hölder’s inequality (7) with indices $$(s-t)/(p-t)$$ and $$(s-t)/(s-p)$$, we have

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(p-t)/(s-t)} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{(s-p)/(s-t)}. \end{aligned}

On the other hand, by using Minkowski’s inequality (8) for $$s>1$$ and $$t>1$$, respectively, we can see that the following assertions hold true

\begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \end{aligned}

and

\begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{ \frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}}. \end{aligned}

So we get the result

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ & \qquad{}\times \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}

□

### Remark 4.2

(1) Under the conditions of Theorem 4.1, for $$p>1$$, letting $$s=p+\varepsilon , t=p-\varepsilon$$, when $$p, s, t$$ are different, $$s,t>1$$, and letting $$\varepsilon \to 0$$, we obtain

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\leq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{p}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{p}}. \end{aligned}

(2) Under the conditions of Theorem 4.1, for $$0< p<1$$, letting $$s=p+\varepsilon , t=p-\varepsilon$$, when $$p, s, t$$ are different, $$0< s,t<1$$, and letting $$\varepsilon \to 0$$, we obtain

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &\quad\geq \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{\frac{1}{p}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{\frac{1}{p}}. \end{aligned}

Now, on the basis of Theorem 4.1, we give the n-tuple diamond-α integral Minkowski’s inequality on time scales.

### Theorem 4.3

Let $$f, g, h: \mathbb{T}\to \mathbb{R}$$be -integrable on $$[\xi , \sigma ]_{\mathbb{T}}, p>0, s,t\in \mathbb{R}$$, and $$s\neq t$$.

(1) Let $$p, s, t\in \mathbb{R}$$be different such that $$s,t>1$$and $$(s-t)/(p-t)>1$$. Then

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})+g(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\leq \biggl[ \biggl( \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times \bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{}\times \biggl[ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}
(36)

(2) Let $$p, s, t\in \mathbb{R}$$be different such that $$0< s<1, 0<t<1$$and $$(s-t)/(p-t)<1$$. Then

\begin{aligned} & \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1},\delta _{2}, \ldots , \delta _{n})+g(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \\ &\quad\geq \biggl[ \biggl( \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{s}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{s}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{s}} \biggr]^{s(p-t)/(s-t)} \\ &\qquad{}\times \biggl[ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{\frac{1}{t}} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \bigl\vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \bigr\vert \\ &\qquad{}\times\bigl\vert g(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \bigr\vert ^{t}\Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n} \biggr)^{ \frac{1}{t}} \biggr]^{t(s-p)/(s-t)}. \end{aligned}
(37)

### Proof

Similar to the proof of Theorem 4.1, we get the result of Theorem 4.3. □

### Remark 4.4

Aiming at the diamond-α integral Minkowski’s inequality proposed by Theorem 3.5 in Ref. [17], we generalize it in this paper and obtain the three-tuple and n-tuple diamond-α inequalities (34)–(37).

### Theorem 4.5

Let $$f,g,h: \mathbb{T}\to \mathbb{R}$$and $$0< r<1<p$$. If $$f,g$$andhare -integrable on $$[\xi ,\sigma ]_{\mathbb{T}}$$, then

\begin{aligned}[b] & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned}
(38)

### Proof

From inequality (5) and inequality (6), we have

\begin{aligned} & \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/(p-r)} \\ &\quad\leq \biggl( \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \biggr)^{p/(p-r)} \\ &\quad= \biggl( \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/p} \\ &\qquad{} \times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/p} \\ &\qquad{}\times \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \biggr)^{p/(p-r)} \\ &\quad\leq \biggl( \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \\ &\qquad{}+ \biggl(\frac{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \biggr) \\ &\qquad{}\times \biggl( \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \\ &\qquad{}+ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \biggr)^{r/(p-r)}. \end{aligned}

From inequality (6), we get

\begin{aligned} & \biggl( \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \biggr)^{r} \\ &\quad\leq \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3}. \end{aligned}

Hence, we have

\begin{aligned} & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned}

The proof of Theorem 4.5 is completed. □

Next, on the basis of Theorem 4.5, we give the n-tuple diamond-α integral Minkowski’s inequality on time scales.

### Theorem 4.6

Let $$f,g,h: \mathbb{T}\to \mathbb{R}$$and $$0< r<1<p$$. If $$f,g$$andhare -integrable on $$[\xi ,\sigma ]_{\mathbb{T}}$$, then

\begin{aligned} & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert \vert f(\delta _{1}, \delta _{2},\ldots , \delta _{n})+g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert \vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n})+g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ &\quad \leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots ,\delta _{n}) \vert \vert f(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2}, \ldots ,\delta _{n}) \vert \vert f(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ &\qquad{} + \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert \vert g(\delta _{1}, \delta _{2}, \ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \cdots \Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}} ^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1}, \delta _{2},\ldots , \delta _{n}) \vert \vert g(\delta _{1}, \delta _{2}, \ldots ,\delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)}. \end{aligned}
(39)

### Proof

Similar to the proof of Theorem 4.5, we get the result of Theorem 4.6. □

### Remark 4.7

The inequalities in Theorem 4.5 and Theorem 4.6 are generalized results for Theorem 3.6 in Ref. [17].

### Theorem 4.8

Let $$f,g,h: \mathbb{T}\to \mathbb{R}$$and $$p\leq 0\leq r$$. If $$f,g, f^{p},g^{p}$$andhare -integrable on $$[\xi , \sigma ]_{\mathbb{T}}$$, then

\begin{aligned}[b] & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\geq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned}
(40)

### Proof

Let $$\alpha _{1}\geq 0, \alpha _{2}\geq 0, \beta _{1}>0$$, and $$\beta _{2}>0$$, and $$-1<\lambda <0$$, using the following Radon inequality:

$$\sum_{k=1}^{n} \frac{a_{k}^{p}}{b_{k}^{p-1}} \leq \frac{ (\sum_{k=1}^{n} a_{k} )^{p}}{ (\sum_{k=1}^{n} b_{k} )^{p-1}},\quad a_{k} \geq 0, b_{k}>0,0< p< 1,$$

we have

$$\frac{\alpha _{1}^{\lambda +1}}{\beta _{1}^{\lambda }}+\frac{\alpha _{2} ^{\lambda +1}}{\beta _{2}^{\lambda }} \leq \frac{ (\alpha _{1}+ \alpha _{2} )^{\lambda +1}}{ (\beta _{1}+\beta _{2} )^{ \lambda }}.$$

Let

\begin{aligned} &\alpha _{1}= \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{p} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / p}, \\ &\beta _{1}= \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / r},\\ & \alpha _{2}= \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{p} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / p}, \\ &\beta _{2}= \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / r}, \end{aligned}

and let $$\lambda =\frac{r}{p-r}$$, it follows that

\begin{aligned} &\frac{\alpha _{1}^{\lambda +1}}{\beta _{1}^{\lambda }}+\frac{\alpha _{2} ^{\lambda +1}}{\beta _{2}^{\lambda }} \\ &\quad= \frac{ (\int _{\xi _{1}}^{ \sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h( \delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{(\lambda +1) / p}}{ ( \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{\lambda / r}} \\ &\qquad{}+\frac{ (\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{(\lambda +1) / p}}{ (\int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} )^{\lambda / r}} \\ &\quad= \biggl(\frac{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{ \sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h( \delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \\ &\qquad{}+ \biggl(\frac{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{ \sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h( \delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1/(p-r)} \\ &\quad\leq \frac{ ( \alpha _{1}+\alpha _{2} )^{\lambda +1}}{ (\beta _{1}+\beta _{2} )^{\lambda }} \\ &\quad= \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{p}\Diamond \delta _{1} \Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{} +\biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{p}\Diamond \delta _{1} \Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1/p} \biggr]^{p/(p-r)} \\ & \qquad\Big/ \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{r}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \\ &\qquad{} +\biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/r} \biggr]^{r/(p-r)}. \end{aligned}

Since $$-1<\lambda =\frac{r}{p-r}<0$$, we may assume $$p<0<r$$, and $$0< r\leq 1$$, we obtain

\begin{aligned} & \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1 / r}\\ &\qquad{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1 / r} \biggr]^{r} \\ &\quad\leq \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \vert f+g \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned}

For $$p<0$$, we obtain

\begin{aligned} \sum_{k=1}^{n} m_{k}^{p} n_{k}^{1 / p-1} \geq \Biggl(\sum_{k=1}^{n} m _{k} \Biggr)^{p} \Biggl(\sum _{k=1}^{n} n_{k}^{1 / p} \Biggr)^{1-p}. \end{aligned}

Assume that $$f(\delta )$$ and $$g(\delta )$$ are nonzero, let

\begin{aligned} M={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}, \\ N={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}, \\ W={}& \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \biggr)^{1/p} \\ &{}+ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ ={}&M^{1/p}+N^{1/p}. \end{aligned}

From the above inequality, we have

\begin{aligned} W={}&M^{1/p}+N^{1/p} \\ ={}&M^{1/p-1} \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ &{}+N^{1/p-1} \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3} \\ ={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{ \sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl( \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}M^{1/p-1} \\ &{}+ \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}N^{1/p-1} \bigr) \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ \geq{}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}} ^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \\ &{} \times \bigl(M^{1/p}+N^{1/p} \bigr)^{1-p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \\ ={}& \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}W^{1-p} \Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3} \\ ={}&W^{1-p} \int _{\xi _{1}}^{ \sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1} \Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned}

That is,

\begin{aligned} W\geq W^{1-p} \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned}

Hence, we have

\begin{aligned} W^{p}\geq \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}. \end{aligned}

Based on the above inequality, we obtain

\begin{aligned} & \biggl[ \biggl( \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \\ &\qquad{}+ \biggl( \int _{\xi _{1}} ^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h( \delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3} \biggr)^{1/p} \biggr]^{p} \\ &\quad\geq \int _{\xi _{1}}^{\sigma _{1}} \int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \bigl\vert h(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert \bigl\vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \bigr\vert ^{p}\Diamond \delta _{1}\Diamond \delta _{2} \Diamond \delta _{3}. \end{aligned}

Through the above inequalities, we finally get the result

\begin{aligned} & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}} ^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3})+g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert f(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g( \delta _{1}, \delta _{2}, \delta _{3}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\int _{\xi _{3}}^{\sigma _{3}} \vert h(\delta _{1}, \delta _{2}, \delta _{3}) \vert \vert g(\delta _{1}, \delta _{2}, \delta _{3}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\Diamond \delta _{3}} \biggr)^{1 /(p-r)}. \end{aligned}

Thus, Theorem 4.8 is completely proved. □

### Theorem 4.9

Let $$f,g,h: \mathbb{T}\to \mathbb{R}$$and $$0< r<1<p$$. If f, g and h are -integrable on $$[\xi , \sigma ]_{\mathbb{T}}$$, then we have the following assertion

\begin{aligned}[b] & \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}} \cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n})+g(x_{1},x _{2}\cdots ,x_{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n})+g( \delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1} \Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ & \quad\leq \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert \vert f(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)} \\ &\qquad{}+ \biggl(\frac{\int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2}, \ldots , \delta _{n}) \vert \vert g(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{p} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}}{ \int _{\xi _{1}}^{\sigma _{1}}\int _{\xi _{2}}^{\sigma _{2}}\cdots \int _{\xi _{n}}^{\sigma _{n}} \vert h(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert \vert g(\delta _{1},\delta _{2},\ldots , \delta _{n}) \vert ^{r} \Diamond \delta _{1}\Diamond \delta _{2}\cdots \Diamond \delta _{n}} \biggr)^{1 /(p-r)}. \end{aligned}
(41)

### Proof

Similar to the proof of Theorem 4.8, we get the result of Theorem 4.9. □

### Remark 4.10

For the inequality of Theorem 3.7 in Ref. [17], we generalize it in this paper and obtain the generalized inequalities in Theorem 4.8 and Theorem 4.9.

## References

1. Ozkan, U.M., Sarikaya, M.Z., Yildirim, H.: Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 21, 993–1000 (2008)

2. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, Würzburg, Germany (1988)

3. Agarwal, R.P., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, New York (2014)

4. Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)

5. Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018)

6. Yang, Z.-H., Tian, J.-F.: A class of completely mixed monotonic functions involving the gamma function with applications. Proc. Am. Math. Soc. 146(11), 4707–4721 (2018)

7. Tian, J.: Note on common fixed point theorems in fuzzy metric spaces using the CLRg property. Fuzzy Sets Syst. 379, 134–137 (2020)

8. Wang, M.K., Zhang, W., Chu, Y.M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. Ser. B Engl. Ed. 39(5), 1440–1450 (2019)

9. Tian, J.F., Ha, M.H., Wang, C.: Improvements of generalized Hölder’s inequalities and their applications. J. Math. Inequal. 12, 459–471 (2018)

10. Chen, G.S., Huang, F.L., Liao, L.F.: Generalizations of Hölder inequality and some related results on time scales. J. Inequal. Appl. 2014, 207 (2014)

11. Agahi, H., Ouyang, Y., Mesiar, R., Pap, E., S̆trboja, M.: Hölder and Minkowski type inequalities for pseudo-integral. Appl. Math. Comput. 217, 8630–8639 (2011)

12. Tian, J.F., Ha, M.H.: Properties of generalized sharp Hölder’s inequalities. J. Math. Inequal. 11, 511–525 (2017)

13. Zhao, C., Cheung, W.: Hölder’s reverse inequality and its applications. Publ. L. Math. 99, 211–216 (2016)

14. Tian, J.F.: New property of a generalized Hölder’s inequality and its applications. Inf. Sci. 288, 45–54 (2014)

15. Tian, J.F.: Reversed version of a generalized sharp Hölder’s inequality and its applications. Inf. Sci. 201, 61–69 (2012)

16. Lou, Y.T.: Generalizations of Young inequality and Hölder inequality. J. Nanjing Inst. Posts Telecommun. 14, 98–103 (1994)

17. Chen, G.S., Wei, C.D.: The diamond integral reverse Hölder inequality and related results on time scales. Adv. Differ. Equ. 2015, 180 (2015)

18. Tian, J.F.: Triple Diamond-Alpha integral and Hölder-type inequalities. J. Inequal. Appl. 2018, 111 (2018)

19. Tian, J.F., Zhu, Y.R., Cheung, W.S.: N-tuple Diamond-Alpha integral and inequalities on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 2189–2200 (2019)

## Acknowledgements

The authors gratefully acknowledge the anonymous referees for their constructive comments and advice on the earlier version for this paper.

## Funding

This paper was supported by the Fundamental Research Funds for the Central Universities (Nos. 2019MS129, 2015ZD29).

## Author information

Authors

### Contributions

The authors read and approved the final manuscript.

### Corresponding author

Correspondence to Fei Yan.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

### Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Reprints and Permissions

Yan, F., Wang, J. Generalizations and refinements of three-tuple Diamond-Alpha integral Hölder’s inequality on time scales. J Inequal Appl 2019, 318 (2019). https://doi.org/10.1186/s13660-019-2271-8

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/s13660-019-2271-8

• 26D15
• 39A13

### Keywords

• Hölder’s inequality
• Diamond-Alpha integral
• Three-tuple
• Time scales
• Minkowski’s inequality