Skip to main content

Sensitivity analysis for a new class of generalized parametric nonlinear ordered variational inequality problems in ordered Banach spaces

Abstract

In this study, we introduce a class of new generalized parametric nonlinear ordered variational inequality problems and discuss its existence result. Also, we prove the sensitivity of the solution for the parametric inequality class with the help of B-restricted-accretive method in ordered Banach spaces. Some special cases of the main results are also discussed.

1 Introduction

Ordered equations or inequalities have capacious significance to many fields, including neural networks, remote sensing, optimization of structures, optimization of electromagnetic systems, and many other applied sciences. Lately, much consideration has been given to the sensitivity analysis of variational inequalities. We comment that sensitivity analysis is imperative for a few reasons.

To begin with, since assessing issue information regularly presents estimation mistakes, sensitivity analysis soothes in distinguishing touchy factors that ought to be acquired with generally high exactness. Second, sensitivity analysis may anticipate in the doom changes of the steadiness because of alters in the dictating systems. Lastly, sensitivity gives valuable input for outlining or arranging different equilibrium in various frames. Moreover, from scientific and engineering perspectives, sensitivity analysis can give new bits of knowledge with respect to issues being considered and can fortify new thoughts for critical thinking.

During the most-recent decade, there has been expanding enthusiasm to concentrate on checking the sensitivity of different inequalities and inclusion systems. We contemplate the subjective conduct of the solution of the variational inequalities when the given operator and the feasible convex set change in a parameter. Such an investigation is known as sensitivity analysis, which is vital and significant. Sensitivity analysis gives us helpful data for outlining different equilibrium systems and for anticipating the coming alters of the equilibria because of the adjustments in the dictating systems.

Dafermos in [7] utilized the fixed-point technique to ponder the sensitivity analysis of Stampacchia’s variational inequalities. Time to time the model has been changed and stretched out by numerous writers for reviewing the sensitivity analysis of different classes of variational inequalities and inclusions problems; for more details, see [1, 2, 4,5,6, 12,13,14, 16,17,18].

Then again, in 1972, Amman [3] proposed the idea of finding the numbers of invariants under the nonlinear mapping in an ordered Banach space. Motivated by the idea of Amman, Li [9] instigated the work on the generalized nonlinear ordered variational inequalities and equation. By the B-restricted-accretive method for map A, Li initiated the study of existence and convergence result for approximation solution for the said problems in ordered Banach space. After that, in 2009, Li [10] started the study of a new class in ordered Banach space, and it was abbreviated as GNOVI. The sensitivity analysis was also investigated by Li [11], in which an existence result was proposed for another class of problems constricted as parametric GNOVI. Persuaded by the exploration in this tendency, we present a new class of generalized parametric nonlinear ordered variational inequalities involving ⊕ operator in ordered Banach space. We also prove the existence and continuity of the solution for the said problem.

2 Prelude

In this part of the paper, we review some basic facets which are supplementary for further processing.

Allow \((\mathcal{E}, \mbox{``}\leq\mbox{''})\) to be a real ordered Banach space with a norm \(\|\cdot \|\). Let \((\mathcal{C}, \mbox{``}\leq\mbox{''} )\) be a partial ordered cone having a normal constant N, θ is the zero member of \((\mathcal{E}, \mbox{``}\leq\mbox{''})\). Presume that \(\operatorname{glb}\{m,n\}\) and \(\operatorname{lub}\{m,n\}\) both exist.

Definition 2.1

\(\mathcal{C} \subset \mathcal{E}\), a non-void convex and closed subset, is termed cone if

  1. (i)

    as \(m\in \mathcal{C}\) and \(\kappa >0\), \(\kappa m \in \mathcal{C}\);

  2. (ii)

    if −m, \(m\in \mathcal{C}\), then \(m=\theta \).

Definition 2.2

([8])

A non-void subset \(\mathcal{C} \subset \mathcal{E}\) characterizes as normal cone iff \(\exists\ N > 0\) with \(0\leq m \leq n\) such that \(\|m\| \leq N \|n\|\).

Definition 2.3

([15])

Define a partial order \(\mbox{``}\leq\mbox{''}\) for any elements \(m, n \in \mathcal{E}\) as \(m \leq n\) iff \(m-n \in \mathcal{C}\). Then \(( \mathcal{E}, \mbox{``}\leq\mbox{''})\) is a real ordered Banach space.

Definition 2.4

([15])

Elements \(m, n \in \mathcal{E}\) related by the partial order defined above are called comparable elements.

Definition 2.5

([15])

Let ∨, ∧, and ⊕ be operations named OR, AND, and XOR and characterized respectively as follows:

  1. (i)

    \(m \vee n = \operatorname{lub}\{m, n\}\);

  2. (ii)

    \(m \wedge n = \operatorname{glb}\{m, n\}\);

  3. (iii)

    \(m \oplus n = (m-n) \vee (n-m)\).

Lemma 2.1

[15] For any members \(m, n, w \in \mathcal{E}\), the following relations hold:

  1. (i)

    if \(m\leq n\), then \(m \vee n = n\), \(m\wedge n=m\);

  2. (ii)

    if \(m \propto n\), then \(\theta \leq m \oplus n\);

  3. (iii)

    \((m+w) \vee (n+w)\) exists and \((m+w)\vee (n+w)=(m \vee n)+w\);

  4. (iv)

    \((m \wedge n)=(m+n)-(m \vee n)\);

  5. (v)

    for \(\lambda \geq 0\), one can have \(\lambda (m \vee n)= \lambda m \vee \lambda n\);

  6. (vi)

    for \(\lambda \leq 0\), one can have \(\lambda (m \wedge n)= \lambda m \vee \lambda n\);

  7. (vii)

    the converse part of (v) and (vi) holds if \(m \neq n\);

  8. (viii)

    either \(m \vee n\) or \(m \wedge n\) exists, then \(\mathcal{E}\) is a lattice;

  9. (ix)

    \((m+w) \wedge (n+w)\) exists and \((m+w)\wedge (n+w) = (m \wedge n)+ w\);

  10. (m)

    \((m \wedge n)=-(-m \vee -n)\);

  11. (xi)

    \((-m)\wedge (m) \leq \theta \leq (-m) \vee m\).

Proposition 1

([8])

For the comparable members m and n in \(\mathcal{E}\), then \(m-n \propto n-m\), and \(\theta \leq (m-n)\vee (n-m)\).

Proposition 2

([8])

For any positive integer k, if \(m \propto n_{k}\) and \(n_{k} \rightarrow n^{\ast }\) (\(k \rightarrow \infty \)), then \(m \propto n^{\ast }\).

Lemma 2.2

([9])

For any comparable elements \(m,n,z,w \in \mathcal{E}\) and an operation ⊕, the following relations hold:

  1. (i)

    \(m \oplus n= n \oplus m\);

  2. (ii)

    \(m \oplus m =\theta \);

  3. (iii)

    \(\theta \leq m\oplus \theta \);

  4. (iv)

    let \(\lambda \in \mathbb{R}\), then \((\lambda m)\oplus ( \lambda n)=|\lambda |(m \oplus n)\);

  5. (v)

    \((m\oplus n) \leq (m \oplus w)+(w\oplus n)\);

  6. (vi)

    suppose \((m+n) \vee (p+q)\) exists, and if \(m \propto p\), q and \(n \propto p\), q, then

    $$ (m+n)\oplus (p+q) \leq (m \oplus p + n\oplus q)\wedge (m \oplus q + n \oplus p); $$
  7. (vii)

    suppose m, n, z, w can be comparative to each other, then

    $$ (m \wedge n)\oplus (z \wedge w)\leq \bigl((m\oplus z)\vee (n \oplus w)\bigr) \wedge \bigl((m\oplus w)\vee (n\oplus z)\bigr); $$
  8. (viii)

    if \(m \propto \theta \), then \(\alpha m \oplus \beta m=| \alpha -\beta |m +(\alpha \oplus \beta )m\).

Definition 2.6

([9])

Allow \(\mathcal{A}, \mathcal{B}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) to be two parametric maps and \(\varSigma \subset \mathcal{E}\) be a non-void open subset in which Ï‚ lives.

  1. (i)

    \(\mathcal{A}\) is called comparison regarding the slot Ï‚, if for any \(\varsigma \in \varSigma \) and each \(m(\varsigma ), n(\varsigma ) \in \mathcal{E}\) we have \(m(\varsigma ) \propto n( \varsigma )\), then \(\mathcal{A}(m(\varsigma ), \varsigma ) \propto \mathcal{A}(n(\varsigma ), \varsigma )\), \(m(\varsigma ) \propto \mathcal{A}(m(\varsigma ), \varsigma )\), and \(n(\varsigma ) \propto \mathcal{A}(n(\varsigma ),\varsigma )\).

  2. (ii)

    \(\mathcal{A}\) and \(\mathcal{B}\) are termed comparison regarding the spot Ï‚ to each other, if for each \(m(\varsigma ) \in \mathcal{E}\), \(\mathcal{A}(m(\varsigma ), \varsigma ) \propto \mathcal{B}(m(\varsigma ), \varsigma )\) (denoted by \(\mathcal{A} \propto \mathcal{B}\)).

Definition 2.7

([9])

Allow \(\mathcal{A}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) to be a parametric map. \(\mathcal{A}\) is called β-ordered compression regarding the second slot ς, if \(\mathcal{A}\) is comparative with respect to ς, and \(\exists \beta \in (0, 1)\) such that, for any \(\varsigma \in \varSigma \),

$$ \mathcal{A}\bigl(m(\varsigma ), \varsigma \bigr) \oplus \mathcal{A}\bigl(n( \varsigma ), \varsigma \bigr) \leq \beta \bigl(m(\varsigma )\oplus n(\varsigma ) \bigr) $$

holds.

Definition 2.8

([9])

Let \((\mathcal{E},\mbox{``}\leq\mbox{''})\), \(\mathcal{C}\), N, and Σ have their predefined meanings. Allow \(\mathcal{A}, \mathcal{B}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) to be two parametric maps, I stands for an identity map on \(\mathcal{E}\times \mathcal{E}\).

  1. (i)

    A map \(\mathcal{A}\) is referred as restricted-accretive regarding the slot Ï‚ if \(\mathcal{A}\) is comparative, and there exist two constants \(0 < \alpha _{1}, \alpha _{2} \leq 1\) such that, for any \(\varsigma \in \varSigma \) and arbitrary \(m(\varsigma ), n( \varsigma ) \in \mathcal{E}\),

    $$\begin{aligned}& \bigl(\mathcal{A}\bigl(m(\varsigma ),\varsigma \bigr) + I\bigl(m(\varsigma ), \varsigma \bigr)\bigr) \oplus \bigl(\mathcal{A}\bigl(n(\varsigma ),\varsigma \bigr) + I\bigl(n(\varsigma ), \varsigma \bigr)\bigr) \\& \quad \leq \alpha _{1} \bigl(\mathcal{A}\bigl(m(\varsigma ),\varsigma \bigr) \oplus \mathcal{A}\bigl(n( \varsigma ),\varsigma \bigr)\bigr) +\alpha _{2}\bigl(m(\varsigma ) \oplus n(\varsigma )\bigr) \end{aligned}$$

    holds.

  2. (ii)

    A map \(\mathcal{A}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) is called a B-restricted-accretive map regarding the slot ς if \(\mathcal{A}\), \(\mathcal{B}\) and \(\mathcal{A} \wedge \mathcal{B}: \mathcal{E}\times \varSigma \rightarrow \mathcal{A}(m( \varsigma ), \varsigma )\wedge \mathcal{B}(m(\varsigma ),\varsigma ) \in \mathcal{E}\) all are comparative and they are comparison regarding the slot ς to each other, and ∃ constants \(0 < \alpha _{1}, \alpha _{2} \leq 1\) such that, for any \(\varsigma \in \varSigma \) and any \(m(\varsigma ), n(\varsigma ) \in \mathcal{E}\),

    $$\begin{aligned}& \bigl(\mathcal{A}\bigl(m(\varsigma ),\varsigma \bigr)\wedge \mathcal{B}\bigl(m( \varsigma ),\varsigma \bigr)+I\bigl(m(\varsigma ),\varsigma \bigr)\bigr) \\& \qquad {}\oplus \bigl(\mathcal{A}\bigl(n( \varsigma ),\varsigma \bigr)\wedge \mathcal{B}\bigl(n( \varsigma ),\varsigma \bigr)+I\bigl(n( \varsigma ),\varsigma \bigr)\bigr) \\& \quad \leq \alpha _{1} \bigl(\bigl(\mathcal{A}\bigl(m(\varsigma ),\varsigma \bigr)\wedge \mathcal{B}\bigl(m(\varsigma ),\varsigma \bigr)\bigr) \oplus \bigl( \mathcal{A}\bigl(n(\varsigma ),\varsigma \bigr)\wedge \mathcal{B}\bigl(n(\varsigma ),\varsigma \bigr)\bigr) \bigr) \\& \qquad {}+ \alpha _{2}\bigl(m(\varsigma )\oplus n(\varsigma )\bigr) \end{aligned}$$

    holds.

Proposition 3

([11])

Allow \(\mathcal{A}:\mathcal{E}\rightarrow \mathcal{E}\) to be a comparison map, then for each \(m, n \in \mathcal{E}\), the following relations hold:

  1. (i)

    \(\|\theta +\theta \|= \|\theta \|=\theta \);

  2. (ii)

    \(\|m \vee n\| \leq \|m\|\vee \|n\| \leq \|m\|+ \|n\|\);

  3. (iii)

    \(\|m \oplus n\|\leq \|m-n\|\leq N\|m \oplus n\|\);

  4. (iv)

    if \(m \propto n\), then \(\|m \oplus n\|= \|m-n\|\);

  5. (v)

    \(\lim_{m\rightarrow m_{0}}\|\mathcal{A}(m)-\mathcal{A}(m _{0})\|=0\) iff \(\lim_{m\rightarrow m_{0}} \mathcal{A}(m)\oplus \mathcal{A}(m_{0})=0\).

3 Formatting of the problem

Let \(\varSigma \subset \mathcal{E}\) be a non-void open subset in which the parameter Ï‚ lives. Let \(\mathcal{M}, \mathcal{A}, \mathcal{F}, g, h: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) be single-valued compression maps and \(\operatorname{range} g(\cdot , \varsigma )\cap \operatorname{dom} \mathcal{A}(\cdot , \varsigma ) \neq \varPhi \), \(\operatorname{range} h(\cdot , \varsigma ) \cap \operatorname{dom} \mathcal{F}( \cdot , \varsigma ) \neq \varPhi \) for any \(\varsigma \in \varSigma \).

We contemplate the following problem:

Find \(m=m(\varsigma ): \varSigma \rightarrow \mathcal{E}\) such that

$$ \theta \leq \mathcal{M}(m, \varsigma )+ \mathcal{A}\bigl(g(m, \varsigma ), \varsigma \bigr)\oplus \mathcal{F}\bigl(h(m, \varsigma ),\varsigma \bigr). $$
(1)

Problem (1) is referred to as a new class of generalized parametric nonlinear ordered variational inequalities involving XOR operator (or in short GPNOVI).

3.1 Special cases

  1. Case 1:

    If \(\mathcal{F}(h(m, \varsigma ), \varsigma )\equiv \theta \) (the zero map), then problem (1) is reverted into problem (1.1) which was encountered by Li in [11].

  2. Case 2:

    If \(\mathcal{F}(h(m, \varsigma ), \varsigma )\equiv \theta \) and \(\mathcal{M}(m, \varsigma ) \equiv \theta \), then problem (1) is transformed into problem (2.1) which was encountered by Li in [9].

Lemma 3.1

Allow \(\mathcal{M}\), \(\mathcal{A}\), \(\mathcal{F}\), \((\mathcal{M}+ \mathcal{A}\oplus \mathcal{F})\), g, h, and \((\mathcal{M}+\mathcal{A} \oplus \mathcal{F})\wedge \mathcal{B}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) be the comparison mappings. If \([ \mathcal{M}(m, \varsigma )+\mathcal{A}(g(m, \varsigma ), \varsigma ) \oplus \mathcal{F}(h(m, \varsigma ), \varsigma ) ]\wedge \mathcal{B}(m, \varsigma )=\theta \) (\(\theta \in \mathcal{E}\)) has an answer \(m^{\ast }\), then \(m^{\ast }\) will also be an answer to problem (1).

Proof

With the help of definitions and conditions on the mappings \(\mathcal{M}\), \(\mathcal{A}\), \(\mathcal{F}\), \((\mathcal{M}+\mathcal{A} \oplus \mathcal{F})\), g, h, and \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F})\wedge \mathcal{B}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\), the proof follows. □

4 Existence result for generalized parametric nonlinear ordered variational inequality problem with ⊕ operator

In this part of the paper, we will prove the existence of solution of generalized parametric nonlinear ordered variational inequality problem (1).

Theorem 4.1

Let \((\mathcal{E},\textit{``}\leq\textit{''})\), \((\mathcal{C},\textit{``}\leq\textit{''})\), N, and \(\varSigma \subset \mathcal{E}\) have their predefined meaning, and let \(\mathcal{M}\), \(\mathcal{A}\), \(\mathcal{F}\), \(\mathcal{B}\), g, h, \(( \mathcal{M}+\mathcal{A}\oplus \mathcal{F})\), and \((\mathcal{M}+ \mathcal{A}\oplus \mathcal{F})\wedge \mathcal{B}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) be comparison parametric mappings to each other. Suppose that M is \(\lambda _{M}\)-ordered compression, A is \(\lambda _{A}\)-ordered compression, F is \(\lambda _{F}\)-ordered compression, B is \(\lambda _{B}\)-ordered compression, g is \(\lambda _{g}\)-ordered compression, and h is \(\lambda _{h}\)-ordered compression mappings regarding the second slot Ï‚, respectively. Further, if \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F}): \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) is a B-restricted accretive map regarding the second slot Ï‚ for constants \(\alpha _{1}\) and \(\alpha _{2}\), and for any \(\tau > 0\), the given condition

$$ \tau \bigl[\lambda _{M}+(\lambda _{A} \lambda _{g}\oplus \lambda _{F}\lambda _{h}) \bigr]\vee \lambda _{B} < \frac{1-N\alpha _{2}}{N\alpha _{1}} $$
(2)

holds, then \(m^{\ast }\) is the answer to problem (1).

Proof

For any given \(\varsigma \in \varSigma \) and \(m_{1}=m_{1}(\varsigma )\) and \(m_{2}=m_{2}(\varsigma )\) in \(\mathcal{E}\), for \(\tau > 0\), let \(m_{1}(\varsigma )\propto m_{2}(\varsigma )\), then

$$\begin{aligned} \mathcal{F}\bigl(m_{i}(\varsigma ), \varsigma \bigr) &=\tau \bigl[\mathcal{M}\bigl(m _{i}(\varsigma ),\varsigma \bigr)+ \mathcal{A}\bigl(g\bigl(m_{i}(\varsigma ),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{i}(\varsigma ),\varsigma \bigr), \varsigma \bigr) \bigr] \\ &\quad {} \wedge \mathcal{B}\bigl(m_{i}(\varsigma ),\varsigma \bigr)+I \bigl(m_{i}( \varsigma ),\varsigma \bigr), \end{aligned}$$
(3)

where \(i=1,2\). It follows from the conditions, \(\mathcal{M}\), \(\mathcal{A}\), \(\mathcal{F}\), \(\mathcal{B}\), \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F})\), g, h, and \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F}) \wedge \mathcal{B}: \mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) are comparison parametric mappings regarding the second slot Ï‚ to each other, and \(m_{1}(\varsigma )\propto m_{2}( \varsigma )\) that \(\mathcal{F}(m_{1}(\varsigma ),\varsigma ) \propto \mathcal{F}(m_{2}(\varsigma ),\varsigma )\). Using the conditions of restricted-accretive and the ordered-compression on suitable mappings regarding the second slot Ï‚, respectively, and Proposition 2, we have

$$\begin{aligned} \theta &\leq \mathcal{F}(m_{1}, \varsigma )\oplus \mathcal{F}(m_{2}, \varsigma ) \\ &\leq \bigl[\tau \bigl(\mathcal{M}\bigl(m_{1}(\varsigma ),\varsigma \bigr)+ \mathcal{A}\bigl(g\bigl(m_{1}(\varsigma ),\varsigma \bigr), \varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{1}(\varsigma ), \varsigma \bigr),\varsigma \bigr) \bigr) \\ &\quad {} \wedge \mathcal{B}\bigl(m_{1}(\varsigma ),\varsigma \bigr)+I \bigl(m_{1}(\varsigma ), \varsigma \bigr) \bigr] \\ &\quad {} \oplus \bigl[\tau \bigl(\mathcal{M}\bigl(m_{2}(\varsigma ),\varsigma \bigr)+\mathcal{A}\bigl(g\bigl(m_{2}(\varsigma ),\varsigma \bigr), \varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{2}(\varsigma ), \varsigma \bigr),\varsigma \bigr) \bigr) \\ &\quad {} \wedge \mathcal{B}\bigl(m_{2}(\varsigma ),\varsigma \bigr)+I \bigl(m_{2}(\varsigma ), \varsigma \bigr) \bigr] \\ &\leq \alpha _{1}\tau \bigl[ \bigl( \bigl(\mathcal{M} \bigl(m_{1}(\varsigma ), \varsigma \bigr)+\mathcal{A}\bigl(g \bigl(m_{1}(\varsigma ),\varsigma \bigr),\varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m_{1}(\varsigma ),\varsigma \bigr),\varsigma \bigr) \bigr) \\ &\quad {} \wedge \mathcal{B}\bigl(m_{1}(\varsigma ),\varsigma \bigr) \bigr) \\ &\quad {} \oplus \bigl( \bigl(\mathcal{M}\bigl(m_{2}(\varsigma ),\varsigma \bigr)+ \mathcal{A}\bigl(g\bigl(m_{2}(\varsigma ),\varsigma \bigr), \varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{2}(\varsigma ), \varsigma \bigr),\varsigma \bigr) \bigr) \\ &\quad {} \wedge \mathcal{B}\bigl(m_{2}(\varsigma ),\varsigma \bigr) \bigr) \bigr] +\alpha _{2}\bigl(m_{1}(\varsigma )\oplus m_{2}(\varsigma )\bigr) \\ &\leq \tau \alpha _{1} \bigl[ \bigl(\mathcal{M}\bigl(m_{1}( \varsigma ),\varsigma \bigr)+\mathcal{A}\bigl(g\bigl(m_{1}(\varsigma ), \varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{1}( \varsigma ),\varsigma \bigr),\varsigma \bigr) \bigr) \\ &\quad {} \oplus \bigl(\mathcal{M}\bigl(m_{2}(\varsigma ),\varsigma \bigr)+ \mathcal{A}\bigl(g\bigl(m_{2}(\varsigma ),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{2}(\varsigma ),\varsigma \bigr), \varsigma \bigr) \bigr) \\ &\quad {} \vee \bigl(\mathcal{B}\bigl(m_{1}(\varsigma ),\varsigma \bigr)\oplus \mathcal{B}\bigl(m_{2}(\varsigma ),\varsigma \bigr) \bigr) \bigr] + \alpha _{2}\bigl(m _{1}(\varsigma ) \oplus m_{2}( \varsigma )\bigr) \\ &\leq \tau \alpha _{1} \bigl[ \bigl(\bigl(\mathcal{M} \bigl(m_{1}(\varsigma ),\varsigma \bigr)\oplus \mathcal{M} \bigl(m_{2}(\varsigma ),\varsigma \bigr)\bigr) \\ &\quad {}+\bigl(\mathcal{A}\bigl(g \bigl(m _{1}(\varsigma ),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{1}( \varsigma ),\varsigma \bigr),\varsigma \bigr)\bigr) \\ & \quad {}\oplus \bigl(\mathcal{A}\bigl(g\bigl(m_{2}(\varsigma ),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m_{2}(\varsigma ), \varsigma \bigr),\varsigma \bigr)\bigr) \bigr) \\ &\quad {} \vee \lambda _{B}\bigl(m_{1}(\varsigma )\oplus m_{2}(\varsigma )\bigr) \bigr]+ \alpha _{2} \bigl(m_{1}(\varsigma )\oplus m_{2}(\varsigma )\bigr) \\ &\leq \tau \alpha _{1} \bigl[ \bigl(\lambda _{M} \bigl(m_{1}(\varsigma )\oplus m _{2}(\varsigma )\bigr)+( \lambda _{A}\lambda _{g}\oplus \lambda _{F} \lambda _{h}) \bigl(m_{1}(\varsigma )\oplus m_{2}( \varsigma )\bigr) \bigr) \\ &\quad {} \vee \lambda _{B}\bigl(m_{1}(\varsigma )\oplus m_{2}(\varsigma )\bigr) \bigr]+ \alpha _{2} \bigl(m_{1}(\varsigma )\oplus m_{2}(\varsigma )\bigr) \\ &\leq \tau \alpha _{1} \bigl[\bigl(\lambda _{M}+(\lambda _{A}\lambda _{g}\oplus \lambda _{F}\lambda _{h})\bigr)\vee \lambda _{B} \bigr]\bigl(m_{1}( \varsigma )\oplus m_{2}(\varsigma )\bigr) \\ & \quad {}+\alpha _{2}\bigl(m_{1}(\varsigma )\oplus m_{2}( \varsigma )\bigr) \\ &= \bigl[\tau \alpha _{1} \bigl(\bigl(\lambda _{M}+(\lambda _{A}\lambda _{g} \oplus \lambda _{F}\lambda _{h})\bigr)\vee \lambda _{B} \bigr)+\alpha _{2} \bigr]\bigl(m _{1}(\varsigma )\oplus m_{2}(\varsigma )\bigr). \end{aligned}$$

Using Definition 2.2 and Lemma 2.1, we obtain

$$ \bigl\Vert \mathcal{F}\bigl(m_{1}(\varsigma ), \varsigma \bigr)-\mathcal{F}\bigl(m_{2}(\varsigma ),\varsigma \bigr) \bigr\Vert \leq N \varPsi \bigl\Vert m_{1}(\varsigma )-m_{2}( \varsigma ) \bigr\Vert , $$
(4)

where \(\varPsi = [\tau \alpha _{1} ((\lambda _{M}+(\lambda _{A}\lambda _{g}\oplus \lambda _{F}\lambda _{h}))\vee \lambda _{B} )+\alpha _{2} ]\). It follows from condition (2) that \(0 < N \varPsi < 1\), we realize that \(\mathcal{F}(m(\varsigma ),\varsigma )\) is a contraction mapping, then \(\exists m^{\ast } \in \mathcal{E}\), which is invariant under \(\mathcal{F}(m(\varsigma ),\varsigma )\), and \(m^{\ast }\) is the answer of problem (1), i.e., \(m^{\ast }\) is the solution of the GPNOVI with ⊕ operator

$$ \bigl[\mathcal{M}(m, \varsigma )+\mathcal{A}\bigl(g(m,\varsigma ),\varsigma \bigr)\oplus \mathcal{F}\bigl(h(m,\varsigma ),\varsigma \bigr) \bigr]\wedge \mathcal{B}(m, \varsigma )=\theta $$

for any parametric \(\varsigma \in \varSigma \). By Lemma 3.1, then the generalized parametric nonlinear ordered variational inequality (1), there exists a solution \(m^{\ast }\). □

5 Sensitivity analysis for GPNOVI with ⊕ operator

In this part of the article, we will prove sensitivity analysis for generalized parametric nonlinear ordered variational inequality problem (1).

Theorem 5.1

Suppose \((\mathcal{E},\textit{``}\leq\textit{''})\), \((\mathcal{C}, \textit{``}\leq\textit{''})\), N, and \(\varSigma \subset \mathcal{E}\) have their predefined meanings. Let \(\mathcal{M}(\cdot , \varsigma )\), \(\mathcal{A}(\cdot , \varsigma )\), \(\mathcal{F}(\cdot , \varsigma )\), \(\mathcal{B}(\cdot , \varsigma )\), \(g( \cdot , \varsigma )\), and \(h(\cdot , \varsigma ): \mathcal{E}\times \varSigma : \rightarrow \mathcal{E}\) be the parametric mapping continuous regarding the slot \(\varsigma \in \varSigma \), \(\mathcal{M}\), \(\mathcal{A}\), \(\mathcal{F}\), \(\mathcal{B}\), \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F})\), g, h, and \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F})\wedge \mathcal{B}\) be comparison mappings to each other. Suppose \(\mathcal{M}\) is \(\lambda _{M}\)-ordered compression, \(\mathcal{A}\) is \(\lambda _{A}\)-ordered compression, \(\mathcal{F}\) is \(\lambda _{F}\)-ordered compression, \(\mathcal{B}\) is \(\lambda _{B}\)-ordered compression, g is \(\lambda _{g}\)-ordered compression, and h is \(\lambda _{h}\)-ordered compression mappings regarding second slot Ï‚, respectively. Further, if \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F}):\mathcal{E}\times \varSigma \rightarrow \mathcal{E}\) is a B-restricted accretive mapping regarding the second slot Ï‚, with constants \(\alpha _{1}\) and \(\alpha _{2}\) and for any \(\tau > 0\),

$$ \tau \bigl[\lambda _{M}+(\lambda _{A} \lambda _{g}\oplus \lambda _{F}\lambda _{h}) \bigr]\vee \lambda _{B} < \frac{1-\alpha _{2}}{\alpha _{1}} $$
(5)

holds, then the answer \(m(\varsigma )\) of problem (1) is continuous in Σ.

Proof

For given \(\varsigma , \bar{\varsigma } \in \varSigma \), let \(m(\varsigma )\) and \(m(\bar{\varsigma })\) be two solutions of problem (1), then for any \(\tau > 0\), we have

$$\begin{aligned}& \begin{aligned} &\begin{aligned} m(\varsigma ) &= \mathcal{F}\bigl(m(\varsigma ),\varsigma \bigr) \\ &=\tau \bigl[\mathcal{M}\bigl(m(\varsigma ),\varsigma \bigr)+\mathcal{A}\bigl(g \bigl(m( \varsigma ),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F}\bigl(h \bigl(m(\varsigma ), \varsigma \bigr),\varsigma \bigr) \bigr] \\ &\quad {} \wedge \mathcal{B}\bigl(m(\varsigma ),\varsigma \bigr)+ I\bigl(m(\varsigma ), \varsigma \bigr), \end{aligned} \\ &\begin{aligned} m(\bar{\varsigma }) &= \mathcal{F}\bigl(m(\bar{\varsigma }),\bar{\varsigma } \bigr) \\ &=\tau \bigl[\mathcal{M}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr)+ \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{\varsigma }\bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{\varsigma } \bigr),\bar{ \varsigma }\bigr) \bigr] \\ &\quad {} \wedge \mathcal{B}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr)+ I\bigl(m( \bar{ \varsigma }),\bar{\varsigma }\bigr). \end{aligned} \end{aligned} \end{aligned}$$
(6)

As per conditions that \(\mathcal{M}\), \(\mathcal{A}\), \(\mathcal{B}\), \(( \mathcal{M}+\mathcal{A}\oplus \mathcal{F})\), g, h, and \((\mathcal{M}+ \mathcal{A}\oplus \mathcal{F})\wedge \mathcal{B}\) are comparison mappings regarding the second slot Ï‚ with each other, respectively, and Lemma 2.2, we obtain

$$\begin{aligned} \theta &= m(\varsigma )\oplus m(\bar{\varsigma }) \\ &= \mathcal{F}\bigl(m(\varsigma ),\varsigma \bigr)\oplus \mathcal{F}\bigl(m( \bar{ \varsigma }),\bar{\varsigma }\bigr) \\ &\leq \mathcal{F}\bigl(m(\varsigma ),\varsigma \bigr)\oplus \theta \oplus \mathcal{F}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr) \\ &=\bigl[\mathcal{F}\bigl(m(\varsigma ),\varsigma \bigr)\oplus \mathcal{F} \bigl(m(\bar{ \varsigma }),\varsigma \bigr)\bigr]\oplus \bigl[\mathcal{F}\bigl(m( \bar{\varsigma }), \varsigma \bigr)\oplus \mathcal{F}\bigl(m(\bar{\varsigma }), \bar{\varsigma }\bigr)\bigr]. \end{aligned}$$
(7)

Further, since \((\mathcal{M}+\mathcal{A}\oplus \mathcal{F})\) is a B-restricted-accretive mapping with constants \(\alpha _{1}\), \(\alpha _{2}\), \(\mathcal{M}\) is \(\lambda _{M}\)-ordered compression, \(\mathcal{A}\) is \(\lambda _{A}\)-ordered compression, \(\mathcal{F}\) is \(\lambda _{F}\)-ordered compression, \(\mathcal{B}\) is \(\lambda _{B}\)-ordered compression, g is \(\lambda _{g}\)-ordered compression, h is \(\lambda _{h}\)-ordered compression, regarding the slot Ï‚, respectively, so by Theorem 4.1, we obtain

$$\begin{aligned}& \mathcal{F}\bigl(m(\varsigma ),\varsigma \bigr)\oplus \mathcal{F}\bigl(m(\bar{ \varsigma }),\varsigma \bigr) \\& \quad \leq \bigl[\tau \bigl(\mathcal{M}\bigl(m(\varsigma ),\varsigma \bigr)+\mathcal{A}\bigl(g\bigl(m(\varsigma ),\varsigma \bigr), \varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m(\varsigma ),\varsigma \bigr), \varsigma \bigr) \bigr) \\& \qquad {}\wedge \mathcal{B}\bigl(m(\varsigma ),\varsigma \bigr)+I\bigl(m(\varsigma ), \varsigma \bigr) \bigr]\oplus \bigl[\tau \bigl(\mathcal{M}\bigl(m(\bar{\varsigma }),\varsigma \bigr)+ \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr) \\& \qquad {} \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr) \bigr) \wedge \mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr) + I\bigl(m(\bar{ \varsigma }),\varsigma \bigr) \bigr] \\& \quad \leq \alpha _{1} \bigl[ \bigl(\tau \bigl[\mathcal{M} \bigl(m(\varsigma ),\varsigma \bigr)+\mathcal{A}\bigl(g\bigl(m(\varsigma ), \varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m(\varsigma ), \varsigma \bigr),\varsigma \bigr) \bigr]\wedge \mathcal{B}\bigl(m(\varsigma ), \varsigma \bigr) \bigr) \\& \qquad {}\times \bigl\{ \tau \bigl[\mathcal{M}\bigl(m(\bar{\varsigma }),\varsigma \bigr)+ \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr) \bigr]\wedge \mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr) \bigr\} \bigr] \\& \qquad {}+\alpha _{2}\bigl(m( \varsigma )\oplus m(\bar{\varsigma })\bigr) \\& \quad \leq \varPsi \bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr), \end{aligned}$$
(8)

where \(\varPsi =\alpha _{1} [\tau (\lambda _{M}+(\lambda _{A}\lambda _{g} \oplus \lambda _{F}\lambda _{h})) \vee \lambda _{B} ]+\alpha _{2} < 1\) for condition (5), and

$$\begin{aligned}& \mathcal{F}\bigl(m(\bar{\varsigma }),\varsigma \bigr)\oplus \mathcal{F}\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr) \\& \quad \leq \bigl[\tau \bigl(\mathcal{M}\bigl(m(\bar{ \varsigma }),\varsigma \bigr)+\mathcal{A}\bigl(g \bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{F} \bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr), \varsigma \bigr) \bigr) \\& \qquad {}\wedge \mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr)+I\bigl(m(\bar{ \varsigma }),\varsigma \bigr) \bigr] \\& \qquad {}\oplus \bigl[\tau \bigl(\mathcal{M}\bigl(m(\bar{\varsigma }),\bar{\varsigma } \bigr)+\mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr)\oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr) \bigr) \\& \qquad {} \wedge \mathcal{B}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr)+I\bigl(m( \bar{ \varsigma }),\bar{\varsigma }\bigr) \bigr] \\& \quad \leq \alpha _{1} \bigl[ \bigl(\tau \bigl[\mathcal{M}\bigl(m(\bar{ \varsigma }), \varsigma \bigr)+\mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }), \varsigma \bigr),\varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr)\bigr] \\& \qquad {} \wedge \mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr) \bigr) \\& \qquad {} \oplus \bigl(\tau \bigl[\mathcal{M}\bigl(m(\bar{\varsigma }),\bar{\varsigma } \bigr)+ \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{ \varsigma }\bigr),\bar{ \varsigma }\bigr)\bigr] \\& \qquad {} \wedge \mathcal{B}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr) \bigr) \bigr]+ \alpha _{2}\bigl(m(\bar{\varsigma })\oplus m(\bar{\varsigma }) \bigr) \\& \quad \leq \alpha _{1} \bigl[\tau \bigl(\bigl[\mathcal{M}\bigl(m(\bar{ \varsigma }), \varsigma \bigr)+\mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }), \varsigma \bigr),\varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr)\bigr] \\& \qquad {} \oplus \bigl[\mathcal{M}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr)+ \mathcal{A}\bigl(g\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr),\bar{\varsigma }\bigr)\oplus \mathcal{F}\bigl(h\bigl(m(\bar{ \varsigma }),\bar{\varsigma } \bigr),\bar{\varsigma }\bigr)\bigr] \bigr) \bigr] \\& \qquad {} \vee \bigl[\mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr) \oplus \mathcal{B}\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr)\bigr] \\& \quad \leq \alpha _{1} \bigl[\tau \bigl(\bigl[\mathcal{M}\bigl(m(\bar{ \varsigma }), \varsigma \bigr)\oplus \mathcal{M}\bigl(m(\bar{\varsigma }),\bar{ \varsigma }\bigr)\bigr]+\bigl[ \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }), \varsigma \bigr),\varsigma \bigr) \\& \qquad {} \oplus \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr), \bar{ \varsigma }\bigr)\bigr]\oplus \bigl[\mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr), \varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr)\bigr] \bigr) \bigr] \\& \qquad {} \vee \bigl[\mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr) \oplus \mathcal{B}\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr)\bigr]. \end{aligned}$$
(9)

Combining equations (7), (8), and (9), and by making use of Lemma 2.2, we obtain

$$\begin{aligned}& \begin{aligned} m(\varsigma )\oplus m(\bar{\varsigma }) &\leq \bigl[\varPsi \bigl(m(\varsigma ) \oplus m(\bar{\varsigma })\bigr)\bigr]\oplus \alpha _{1} \bigl[\tau \bigl(\bigl( \mathcal{M}\bigl(m(\bar{\varsigma }),\varsigma \bigr)\oplus \mathcal{M}\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr)\bigr) \\ &\quad {}+\bigl(\mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr), \bar{\varsigma }\bigr)\bigr) \\ &\quad {}\oplus \bigl(\mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr), \varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr)\bigr) \bigr) \\ &\quad {}\vee \bigl(\mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr)\oplus \mathcal{B}\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr)\bigr) \bigr], \end{aligned} \\& \begin{aligned} (1\oplus \varPsi ) \bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) &\leq \alpha _{1} \bigl[\tau \bigl(\bigl(\mathcal{M}\bigl(m(\bar{\varsigma }), \varsigma \bigr)\oplus \mathcal{M}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr) \bigr) \\ &\quad {}+\bigl(\mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr), \bar{\varsigma }\bigr)\bigr) \\ &\quad {}\oplus \bigl(\mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr), \varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr)\bigr) \bigr) \\ &\quad {}\vee \bigl(\mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr)\oplus \mathcal{B}\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr)\bigr) \bigr], \end{aligned} \\& \bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq \biggl( \frac{\alpha _{1}}{1 \oplus \varPsi } \biggr) \bigl[\tau \bigl(\bigl(\mathcal{M}\bigl(m(\bar{\varsigma }), \varsigma \bigr)\oplus \mathcal{M}\bigl(m(\bar{\varsigma }),\bar{\varsigma } \bigr)\bigr) \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq{}}+\bigl(\mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr), \bar{\varsigma }\bigr)\bigr) \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq{}}\oplus \bigl(\mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\varsigma \bigr), \varsigma \bigr) \oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr)\bigr) \bigr) \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq{}}\vee \bigl(\mathcal{B}\bigl(m(\bar{\varsigma }),\varsigma \bigr)\oplus \mathcal{B}\bigl(m(\bar{ \varsigma }),\bar{\varsigma }\bigr)\bigr) \bigr] \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr)}\leq \biggl(\frac{\alpha _{1}}{1\oplus \varPsi } \biggr) \bigl[\tau (\bigl( \mathcal{M}\bigl(m( \bar{\varsigma }),\varsigma \bigr)\oplus \mathcal{M}\bigl(m(\bar{ \varsigma }), \bar{\varsigma }\bigr)\bigr) \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq{}}+\bigl(\mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\varsigma \bigr),\varsigma \bigr)\oplus \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr), \varsigma \bigr)\oplus \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\varsigma \bigr) \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq{}}\oplus \mathcal{A}\bigl(g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr), \bar{ \varsigma }\bigr)\bigr) \oplus \bigl(\mathcal{F}\bigl(h\bigl(m(\bar{ \varsigma }),\varsigma \bigr), \varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m( \bar{\varsigma }),\bar{\varsigma }\bigr), \varsigma \bigr) \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq{}}\oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr), \varsigma \bigr)\oplus \mathcal{F}\bigl(h\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr),\bar{ \varsigma }\bigr)\bigr) \big) \\& \hphantom{\bigl(m(\varsigma )\oplus m(\bar{\varsigma })\bigr) \leq{}}\vee \bigl(\mathcal{B}\bigl(m(\bar{ \varsigma }),\varsigma \bigr) \oplus \mathcal{B}\bigl(m(\bar{\varsigma }),\bar{ \varsigma }\bigr)\bigr) \bigr]. \end{aligned}$$
(10)

Using the continuity of the parametric mappings regarding the second slot \(\varsigma \in \varSigma \), we have

$$\begin{aligned}& \lim_{\varsigma \rightarrow \bar{\varsigma }} \bigl\Vert g\bigl(m(\bar{\varsigma }), \varsigma \bigr)-g\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr) \bigr\Vert = 0, \\& \lim_{\varsigma \rightarrow \bar{\varsigma }} \bigl\Vert h\bigl(m(\bar{\varsigma }), \varsigma \bigr)-h\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr) \bigr\Vert =0, \\& \lim_{\varsigma \rightarrow \bar{\varsigma }} \bigl\Vert \mathcal{B}\bigl(m(\bar{ \varsigma }), \varsigma \bigr)-\mathcal{B}\bigl(m(\bar{\varsigma }),\bar{\varsigma }\bigr) \bigr\Vert =0, \\& \lim_{\varsigma \rightarrow \bar{\varsigma }} \bigl\Vert \mathcal{A}\bigl(g\bigl(m(\bar{ \varsigma }),\varsigma \bigr),\varsigma \bigr)-\mathcal{A}\bigl(g\bigl(m(\bar{ \varsigma }), \varsigma \bigr),\bar{\varsigma }\bigr) \bigr\Vert =0, \\& \lim_{\varsigma \rightarrow \bar{\varsigma }} \bigl\Vert \mathcal{F}(\cdot , \varsigma )- \mathcal{F}(\cdot , \bar{\varsigma }) \bigr\Vert =0, \\& \lim_{\varsigma \rightarrow \bar{\varsigma }} \bigl\Vert \mathcal{M}(\cdot , \varsigma )- \mathcal{M}(\cdot , \bar{\varsigma }) \bigr\Vert =0. \end{aligned}$$

From Proposition 3, we have

$$ \lim_{\varsigma \rightarrow \bar{\varsigma }}\bigl(m(\varsigma )\oplus m(\bar{ \varsigma }) \bigr)=\theta $$

and

$$ \lim_{\varsigma \rightarrow \bar{\varsigma }} \bigl\Vert m(\varsigma )-m(\bar{ \varsigma }) \bigr\Vert =0. $$
(11)

It ensures that the answer \(m(\varsigma )\) of problem (1) is continuous at \(\varsigma =\bar{\varsigma }\). □

References

  1. Adly, S., Bourdin, L.: Sensitivity analysis of variational inequalities via twice epi-differentiability and proto-differentiability of the proximity operator, 1–30 (2018). arXiv:1707.08512

  2. Agrawal, R.P., Cho, J.J., Huang, N.J.: Sensitivity analysis for strongly nonlinear quasi variational inclusions. Appl. Math. Lett. 13, 19–24 (2000)

    Article  MathSciNet  Google Scholar 

  3. Amman, H.: On the number of solutions of nonlinear equations in ordered Banach space. J. Funct. Anal. 11, 346–384 (1972)

    Article  MathSciNet  Google Scholar 

  4. Baiocchi, C., Capelo, C.: Variational and Quasi Variational Inequalities. Wiley, London (1984)

    MATH  Google Scholar 

  5. Bounkhel, M., Tadji, L., Hamdi, A.: Iterative schemes to solve nonconvex variational problems. J. Inequal. Pure Appl. Math. 4, 1–14 (2003)

    MathSciNet  Google Scholar 

  6. Calrke, F.H., Ledyaev, Y.S., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, Berlin (1998)

    Google Scholar 

  7. Dafermos, S.: Sensitivity analysis in variational inequalities. Math. Oper. Res. 13, 421–434 (1998)

    Article  MathSciNet  Google Scholar 

  8. Du, Y.H.: Fixed points of increasing operators in ordered Banach spaces and applications. Appl. Anal. 38, 1–20 (1990)

    Article  MathSciNet  Google Scholar 

  9. Li, H.G.: Approximation solution for general nonlinear ordered variational inequalities and ordered equations in ordered Banach space. Nonlinear Anal. Forum 13(2), 205–214 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Li, H.G.: Approximation solution for a new class of general nonlinear ordered variational inequalities and ordered equations in ordered Banach space. Nonlinear Anal. Forum 14, 89–97 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Li, H.G.: Sensitivity analysis for general nonlinear ordered parametric variational inequality with restricted-accretive mapping in ordered Banach space. Nonlinear Funct. Anal. Appl. 17(1), 109–118 (2012)

    MATH  Google Scholar 

  12. Li, H.G., Pan, X.B.: Sensitivity analysis for general nonlinear parametric set-valued variational inclusions in Banach spaces. J. Southwest Univ. Natur. Sci. Ed. 32(2), 29–33 (2012)

    Google Scholar 

  13. Noor, M.A.: Sensitivity analysis for quasi variational inequalities. J. Optim. Theory Appl. 95, 399–407 (1997)

    Article  MathSciNet  Google Scholar 

  14. Petrot, N., Tangkhawiwetkul, J.: Sensitivity analysis for the quasi variational inequality problems on uniformly prox regular sets. Thai J. Math. 16(2), 427–442 (2018)

    MathSciNet  Google Scholar 

  15. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Book  Google Scholar 

  16. Verma, R.U.: Sensitivity analysis for relaxed cocoercive nonlinear quasivariational inclusions. J. Appl. Math. Stoch. Anal. 2006, Article ID 52041 (2006)

    Article  MathSciNet  Google Scholar 

  17. Yen, N.D.: Holder continuity of solutions to a parametric variational inequality. Appl. Math. Optim. 31, 245–255 (1995)

    Article  MathSciNet  Google Scholar 

  18. Yen, N.D., Lee, G.M.: Solution sensitivity of a class of variational inequalities. J. Math. Anal. Appl. 215, 46–55 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, K.S., Sarfaraz, M., Morsy, A. et al. Sensitivity analysis for a new class of generalized parametric nonlinear ordered variational inequality problems in ordered Banach spaces. J Inequal Appl 2019, 249 (2019). https://doi.org/10.1186/s13660-019-2200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2200-x

MSC

Keywords