Skip to main content

Approximation by a generalized class of Dunkl type Szász operators based on post quantum calculus


The main purpose of this paper is to introduce a generalized class of Dunkl type Szász operators via post quantum calculus on the interval \([ \frac{1}{2},\infty )\). This type of modification allows a better estimation of the error on \([ \frac{1}{2},\infty ) \) rather than \([ 0,\infty )\). We establish Korovkin type result in weighted spaces and also study approximation properties with the help of modulus of continuity of order one, Lipschitz type maximal functions, and Peetre’s K-functional. Furthermore, we estimate the degrees of approximations of the operators by modulus of continuity of order two.

Introduction and preliminaries

The first most elegant and easiest proof of Weierstrass approximation theorem was given by S.N Bernstein by introducing positive linear operators [8] known as Bernstein operators. The q-analogue of the Bernstein operators was studied by Lupaş [17] and Phillips [33].

For all \(g\in C[0,\infty ), x\geq 0\), and \(n\in \mathbb{N}\), Szász introduced positive linear operators called Szász operators [38] which are defined by

$$ S_{n}(g;x)=\frac{1}{e(nx)}\sum_{u=0}^{\infty } \frac{(nx)^{u}}{u!}g \biggl( \frac{u}{n} \biggr). $$

Recently Szász operators have been studied via Dunkl modification such as the classical Dunkl Szász operators [37], q-Dunkl–Szász operators [14], and \((p,q)\)-Dunkl–Szász operators [7] (see also [1, 6, 32] and [9, 15, 19, 25, 27, 31, 34, 35]). The \((p,q)\)-analogue of Bernstein operators was given in [24] and the Dunkl type modification was studied in [7] (see also [2,3,4,5, 18, 20, 21, 26, 28,29,30, 36, 39]). For some recent work on statistical approxiation of positive linear operators, we refer to [12, 22, 23].

The \((p,q)\)-integer \([n]_{p,q}\) is given by \([n]_{p,q}=\frac{p^{n}-q ^{n}}{p-q}\) for \(n=0,1,2,\ldots \) ; for more details on \([n]_{p,q}\)-integers, see [16]. For the exponential function on \((p,q)\)-analogues one has \(e_{p,q}(x)=\sum_{n=0}^{\infty }p^{ \frac{n(n-1)}{2}}\frac{x^{n}}{[n]_{p,q}!}\) and \(E_{p,q}(x)=\sum_{n=0} ^{\infty }q^{\frac{n(n-1)}{2}}\frac{x^{n}}{[n]_{p,q}!}\).

The q-Hermite type polynomials on q-Dunkl were given in [10] and a recursion formula was obtained by applying a relation. For \(\vartheta >\frac{1}{2}, x\geq 0, 0< q<1\), and \(g\in C[0,\infty )\), Içöz gave a Dunkl generalization of Szász operators via q-calculus [14] as follows:

$$ D_{n,q}(f;x)=\frac{1}{e_{\vartheta,q}([n]_{q}x)}\sum_{u=0}^{\infty } \frac{([n]_{q}x)^{u}}{ \varTheta _{\vartheta,q}(u)}g \biggl( \frac{1-q^{2\vartheta \theta _{u}+u}}{1-q ^{n}} \biggr). $$

Recently, the \((p,q)\)-approximation of Szász operators on Dunkl analogue has been studied in [7] by using the following exponential function:

$$ e_{\vartheta,p,q}(x)=\sum_{u=0}^{\infty }p^{\frac{u(u-1)}{2}} \frac{x ^{u}}{\varTheta _{\vartheta,p,q}(u)} $$

for \(\vartheta >\frac{1}{2}\), \(0< q< p\leq 1\), \(x\in {}[ 0,\infty )\), and \(u\in \mathbb{N}\). The explicit formula for \(\varTheta _{\vartheta,p,q}(u)\) is given by

$$\begin{aligned} &\varTheta _{\vartheta,p,q}(u) \\ &\quad =\frac{\prod_{i=0}^{[\frac{u+1}{2}]-1}p^{2 \vartheta (-1)^{i+1}+1} ( (p^{2})^{i}p^{2\vartheta +1}-(q^{2})^{i}q ^{2\vartheta +1} ) \prod_{j=0}^{[\frac{u}{2}]-1}p^{2\vartheta (-1)^{j}+1} ( (p^{2})^{j}p^{2}-(q^{2})^{j}q^{2} ) }{(p-q)^{u}}, \end{aligned}$$

where \([\frac{u}{2}]\) denotes the greatest integer functions for \(u\in \mathbb{N}\cup \{0\}\). Also

$$ \varTheta _{\vartheta,p,q}(u+1)=\frac{p^{2\vartheta (-1)^{u+1}+1}({p^{2 \vartheta \theta _{u+1}+u+1}-q^{2\vartheta \theta _{u+1}+u+1}})}{(p-q)} \varTheta _{\vartheta,p,q}(u),\quad u\in \mathbb{N}, $$


$$ \theta _{u}= \textstyle\begin{cases} 0 & \text{if }u=2m, \text{ for } m=0,1,2,3,\ldots, \\ 1 & \text{if }u=2m+1, \text{ for } m=0,1,2,3,\ldots. \end{cases} $$

Auxiliary results

Let \(\{\zeta _{n}(x)\}_{n\geq 1}\) be a sequence of nonnegative continuous functions on \([0,\infty )\) such that

$$ \zeta _{n}(x)= \biggl(x-\frac{1}{2[n]_{p,q}} \biggr)_{+},\quad n\in \mathbb{N}, $$


$$ \tau _{+}= \textstyle\begin{cases} \tau & \text{if }\tau \geqq 0, \\ 0 & \text{if }\tau < 0. \end{cases} $$

Moreover, suppose

$$ \mathcal{H}_{n,\vartheta }(x)=\frac{e_{\vartheta,p,q}(\frac{q}{p}[n]_{p,q}x)}{e _{\vartheta,p,q}([n]_{p,q}x)}. $$

Let \(x\in {}[ 0,\infty ), g\in C[0,\infty ), n\in \mathbb{N}, 0< q< p \leq 1\), and \(\vartheta >\frac{1}{2}\). We define the new operators by

$$ A_{n,p,q}^{\ast }(g;x)=\frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q} \zeta _{n}(x) )}\sum _{u=0}^{\infty }\frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p^{\frac{u(u-1)}{2}}g \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p ^{u-1}(p^{n}-q^{n})} \biggr). $$

If we put \(\zeta _{n}(x)=x\), then these operators are reduced to the operators studied in [7] and, in addition, if \(p=1\), then we get the operators studied in [14].

Lemma 2.1

Suppose that the operators \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) are given by (2.4). Then, for all \(x\geq \frac{1}{2[n]_{p,q}}\) and \(n\in \mathbb{N}\), one obtains

  1. (1)

    \(A_{n,p,q}^{\ast }(1;x)=1\);

  2. (2)

    \(A_{n,p,q}^{\ast }(t;x)=x-\frac{1}{2[n]_{p,q}}\);

  3. (3)

    \(x^{2}+\frac{1}{[n]_{p,q}} (q^{2\vartheta }[1-2 \vartheta ]_{p,q}\mathcal{H}_{n,\vartheta }(x) -1 )x+ \frac{1}{4[n]_{p,q} ^{2}} (1-2q^{2\vartheta }[1-2 \vartheta ]_{p,q}\mathcal{H}_{n, \vartheta }(x) ) \leq A_{n,p,q}^{\ast }(t^{2};x)\leq x^{2}+ \frac{1}{[n]_{p,q}} ( {}[ 1+2\vartheta ]_{p,q}-1 )x+\frac{1}{4[n]_{p,q} ^{2}} (1-2 [1+2\vartheta ]_{p,q} )\).

Lemma 2.2

For all \(x\geq \frac{1}{2[n]_{p,q}}\) and \(n\in \mathbb{N}\), the operators \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) satisfy

  1. (1)

    \(A_{n,p,q}^{\ast }(t-x;x)=-\frac{1}{2[n]_{p,q}} \);

  2. (2)

    \(A_{n,p,q}^{\ast }((t-x)^{2};x)\leq \frac{1}{[n]_{p,q}}[1+2 \vartheta ]_{p,q}x+\frac{1}{4[n]_{p,q}^{2}} (1-[1+2\vartheta ]_{p,q} )\).

Approximation in weighted spaces

This section deals with the approximation properties of the operators \(A_{n,p,q}^{\ast }\) in weighted spaces. We evaluate the order of approximation by using the modulus of continuity and Lipschitz class and study some direct theorems. We also obtain the approximation results by modulus of continuity of order two. We denote \(C_{B}(\mathbb{R^{+}})\) for the set of all bounded and continuous functions on \(\mathbb{R^{+}} \) equipped with the norm

$$ \Vert g \Vert _{C_{B}}=\sup_{x\geq 0} \bigl\vert g(x) \bigr\vert , $$

where \(\mathbb{R^{+}}=[0,\infty )\). We suppose \(F:=\{g:x\in {}[ 0, \infty )\}\) such that \(\frac{g(x)}{1+x^{2}}\) is convergent when \(x\rightarrow \infty \). Let \(B_{\varsigma }(\mathbb{R}^{+})\) be the set of all functions satisfying \(g(x)\leq u_{g}\varsigma (x)\) with \(\varsigma (x)=1+\xi ^{2}(x)\) and \(\xi (x)\rightarrow x\) in which \(u_{g}\) is a constant depending on g (see Gadžiev [13]). Moreover, take \(C_{\varsigma }(\mathbb{R}^{+})=B_{\varsigma }( \mathbb{R}^{+})\cap C(\mathbb{R}^{+})\). Note that \(B_{\varsigma }( \mathbb{R}^{+})\) is a normed space with the norm given by

$$ \Vert g \Vert _{\varsigma }=\sup_{x\geq 0} \frac{ \vert g(x) \vert }{\varsigma (x)}. $$

Let \(C_{\varsigma }^{0}(\mathbb{R}^{+})\) be a subset of \(C_{\varsigma }(\mathbb{R}^{+})\) such that

$$ \lim_{x\rightarrow \infty }\frac{g(x)}{\varsigma (x)}=u_{g}. $$

We consider the positive sequences \(q=q_{n}\) and \(p=p_{n}\) with \(0< q_{n}<1\) and \(q_{n}< p_{n}\leq 1\) such that

$$ \lim_{n}p_{n}\rightarrow 1,\qquad \lim_{n}q_{n}\rightarrow 1 \quad\text{and}\quad \lim _{n}p_{n}^{n}\rightarrow c, \qquad\lim _{n}q_{n}^{n}\rightarrow d, $$

where \(0< c,d\leq 1\).

Theorem 3.1

Let the sequences of positive numbers \(p_{n}\) and \(q_{n}\) be such that \(0< q_{n}< p_{n}\leq 1\). Then, for all \(f\in C[0,\infty )\cap F\), the operators \(A_{n,p_{n},q_{n}}^{\ast }(\cdot;\cdot)\) are uniformly convergent on each compact subset of \([0,\infty )\).


In the light of Korovkin’s theorem, we prove the uniform convergence of a sequence of \(A_{n,p_{n},q_{n}}^{\ast }\) on \([0,1]\) as \(n\rightarrow \infty \) by

$$ A_{n,p_{n},q_{n}}^{\ast }\bigl(t^{i};x\bigr)\rightarrow x^{i},\quad i=0,1,2. $$

Clearly, from (3.1) and \(\frac{1}{[n]_{p_{n},q_{n}}}\rightarrow 0\) \((n\rightarrow \infty )\), we have

$$ \lim_{n \to \infty }A_{n,p_{n},q_{n}}^{\ast }(t;x)=x, \qquad\lim _{n \to \infty }A_{n,p_{n},q_{n}}^{\ast }\bigl(t^{2};x \bigr)=x^{2}. $$


Theorem 3.2

Let \(A_{n,p_{n},q_{n}}^{\ast }:C_{\varsigma }(\mathbb{R}^{+})\rightarrow B_{\varsigma }(\mathbb{R}^{+})\). Then, for all \(g\in C_{\varsigma } ^{0}(\mathbb{R}^{+})\),

$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl(g(t);x\bigr)-g(x) \bigr\Vert _{\varsigma }=0 $$

if and only if

$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl(\xi ^{u}(t);x\bigr)- \xi ^{u}(x) \bigr\Vert _{\varsigma }=0,\quad u=0,1,2. $$


Consider \(\xi (x)=x\), \(\varsigma =1+\xi ^{2}(x)\) and

$$\begin{aligned} & \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl( t^{\ell };x \bigr) -x^{\ell } \bigr\Vert _{\varsigma } \\ &\quad =\sup_{x\geqq 0}\frac{ \vert A_{n,p_{n},q_{n}}^{\ast }(t^{\ell };x)-x ^{\ell } \vert }{1+x^{2}}. \end{aligned}$$

From Korovkin’s theorem, easily we obtain \(\lim_{n\rightarrow \infty } \vert \vert A_{n,p_{n},q_{n}}^{\ast } ( t^{\ell };x ) -x^{\ell } \vert \vert _{\varsigma }=0\) for \(\ell =0,1,2\). Hence, for any \(g\in C_{\varsigma }^{0}(\mathbb{R} ^{+})\), we get

$$ \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl( g(t);x \bigr) -g(x) \bigr\Vert _{\varsigma }=0. $$


Theorem 3.3

For every \(g \in C_{\varsigma }^{0}(\mathbb{R}^{+})\), we have

$$ \lim_{n\to \infty } \bigl\Vert A_{n,p_{n},q_{n}}^{\ast }(g;x)-g \bigr\Vert _{\varsigma }=0. $$


We prove this theorem in the light of Theorem 3.2. Take \(f(t)=t ^{\ell } \) for \(\ell =0,1,2\) in Lemma 2.1. Then Korovkin’s theorem allows for every \(g(t)\in C_{\varsigma }^{0}(\mathbb{R}^{+})\) if it satisfies \(A_{n,p_{n},q_{n}}^{\ast }(t^{\ell };x)\rightarrow x^{ \ell }\) uniformly. Then, for \(\ell =0\), Lemma 2.1 gives \(A_{n,p_{n},q_{n}}^{\ast }(1;x)=1\), which implies that

$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}} ^{\ast } ( 1;x ) -1 \bigr\Vert _{\varsigma }=0. $$

If \(\ell =1\)

$$\begin{aligned} & \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } ( t;x ) -x \bigr\Vert _{\varsigma } \\ & \quad=\sup_{x\geq 0}\frac{ \vert A_{n,p_{n},q_{n}}^{\ast }(t;x)-x \vert }{1+x ^{2}} \\ &\quad =\sup_{x\geq 0}\frac{ \vert -\frac{1}{2[n]_{p_{n},q_{n}}} \vert }{1+x ^{2}} \\ & \quad\leq \frac{1}{2[n]_{p_{n},q_{n}}}\sup_{x\geq 0}\frac{1}{1+x^{2}}, \end{aligned}$$


$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}} ^{\ast } ( t;x ) -x \bigr\Vert _{\varsigma }=0. $$

Similarly, for \(\ell =2\), we have

$$\begin{aligned} & \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl( t^{2};x \bigr) -x^{2} \bigr\Vert _{\varsigma } \\ & \quad=\sup_{x\geq 0}\frac{ \vert A_{n,p_{n},q_{n}}^{\ast } ( t ^{2};x ) -x^{2} \vert }{1+x^{2}} \\ & \quad\leq \frac{1}{[n]_{p,q}} \bigl( [1+2\vartheta ]_{p,q}-1 \bigr) \sup_{x\geq 0}\frac{x}{1+x^{2}}+\frac{1}{4[n]_{p,q}^{2}} \bigl( 1-2[1+2 \vartheta ]_{p,q} \bigr) \sup_{x\geqq 0} \frac{1}{1+x^{2}}. \end{aligned}$$


$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}} ^{\ast } \bigl( t^{2};x \bigr) -x^{2} \bigr\Vert _{ \varsigma }=0. $$

This completes the proof. □

Rate of convergence

Here, we compute the rate of convergence of our new operators (2.4) with the help of modulus of continuity and Lipschitz type maximal functions.

Let \(g\in C[0,\infty ]\). The modulus of continuity of g is given by

$$ \omega _{\varrho }(g;\delta )=\sup_{ \vert y-x \vert \leq \delta } \bigl\vert g(y)-g(x) \bigr\vert , \quad x,y\in {}[ 0,\varrho ) $$

for any \(\delta >0\). It is known that \(\lim_{\delta \rightarrow 0+} \omega _{\varrho }(g;\delta )=0\), and one has

$$ \bigl\vert g(y)-g(x) \bigr\vert \leq \biggl( \frac{ \vert y-x \vert }{\delta }+1 \biggr) \omega _{\varrho }(g;\delta ). $$

Theorem 4.1

Let \(\omega _{\varrho }(g;\delta )\) be defined on the interval \([0,\varrho +1]\subset {}[ 0,\infty )\) with \(\varrho >0\). Then, for every \(g\in C_{\varsigma }^{u}\) on \([0,\infty )\), we have

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq \biggl\{ 1+\sqrt{[1+2 \vartheta ]_{p,q} \biggl( x-\frac{1}{4[n]_{p,q}} \biggr) + \frac{1}{4[n]_{p,q}}} \biggr\} \omega \biggl( g;\frac{1}{ \sqrt{[n]_{p,q}}} \biggr). $$


To prove this theorem, we use the Cauchy–Schwarz inequality and apply (4.1) and (4.2). Thus, we have

$$\begin{aligned} &\bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \\ &\quad\leq \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\vert g \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})} \biggr) -g(x) \biggr\vert \\ &\quad\leq \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\{ 1+\frac{1}{\delta } \biggl\vert \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})} \biggr) -x \biggr\vert \biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad= \Biggl\{ 1+\frac{1}{\delta } \Biggl( \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum _{u=0}^{\infty }\frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})}-x \biggr\vert \Biggr) \Biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad\leq \Biggl\{ 1+\frac{1}{\delta } \Biggl( \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum _{u=0}^{\infty }\frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})}-x \biggr) ^{2} \Biggr) ^{ \frac{1}{2}} \Biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad= \biggl\{ 1+\frac{1}{\delta } \bigl( A_{n,p,q}^{\ast }(t-x)^{2};x \bigr) ^{\frac{1}{2}} \biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad\leq \biggl\{ 1+\frac{1}{\delta }\sqrt{\frac{1}{[n]_{p,q}}[1+2 \vartheta ]_{p,q}x+\frac{1}{4[n]_{p,q}^{2}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) } \biggr\} \omega _{\varrho }(g;\delta ), \end{aligned}$$

if we choose \(\delta =\sqrt{\frac{1}{[n]_{p,q}}}\), then we get our result. □

We now give the rate of convergence of \(A_{n,p,q}^{\ast }\) in terms of the elements of the usual Lipschitz class \(\mathrm{Lip}_{K}(\mu )\).

Let \(g\in C[0,\infty )\), \(K>0\), and \(0<\mu \leq 1\). The Lipschitz class \(\mathrm{Lip}_{K}(\mu )\) is given by

$$ \mathrm{Lip}_{K}(\mu )= \bigl\{ g: \bigl\vert g(\varphi _{1})-f(\varphi _{2}) \bigr\vert \leq K \vert \varphi _{1}-\varphi _{2} \vert ^{\mu } \bigl(\varphi _{1}, \varphi _{2}\in {}[ 0,\infty)\bigr) \bigr\} . $$

Theorem 4.2

Let \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) be the operator defined in (2.4). Then, for each \(g\in \mathrm{Lip}_{K}(\mu )\) with \(K>0\), \(0<\mu \leq 1\) and satisfying (4.3), we have

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-f(x) \bigr\vert \leq K \biggl( \frac{1}{[n]_{p,q}}[1+2\vartheta ]_{p,q}x+ \frac{1}{4[n]_{p,q}^{2}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) \biggr) ^{\frac{\mu }{2}}. $$


We apply Hölder’s inequality.

$$\begin{aligned} \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert &\leq \bigl\vert A_{n,p,q}^{\ast }\bigl(g(t)-g(x);x\bigr) \bigr\vert \\ &\leq A_{n,p,q}^{\ast } \bigl( \bigl\vert g(t)-g(x) \bigr\vert ;x \bigr) \\ &\leq KA_{n,p,q}^{\ast } \bigl( \vert t-x \vert ^{\mu };x \bigr). \end{aligned}$$


$$\begin{aligned} &\bigl\vert A_{n,p,q}^{\ast }(g;x)-f(x) \bigr\vert \\ &\quad\leq K \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p ^{u-1}(p^{n}-q^{n})}-x \biggr\vert ^{\mu } \\ &\quad\leq K\frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \biggl( \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}p^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \biggr) ^{\frac{2-\mu }{2}} \\ &\qquad{}\times \biggl( \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}p ^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \biggr) ^{\frac{ \mu }{2}} \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})}-x \biggr\vert ^{\mu } \\ &\quad\leq K \Biggl( \frac{1}{ ( e_{\vartheta,p,q} ({}[ n]_{p,q} \zeta _{n}(x) ) ) }\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q} \zeta _{n}(x) )^{u}p^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \Biggr) ^{\frac{2-\mu }{2}} \\ &\qquad{}\times \Biggl( \frac{1}{ ( e_{\vartheta,p,q} ({}[ n]_{p,q} \zeta _{n}(x) ) ) }\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q} \zeta _{n}(x) )^{u}p^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \\ &\qquad{}\times \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{m-1}(p^{n}-q^{n})}-x \biggr\vert ^{2} \Biggr) ^{\frac{\mu }{2}} \\ &\quad\leq K \bigl( A_{n,p,q}^{\ast }(t-x)^{2};x \bigr) ^{\frac{\mu }{2}}, \end{aligned}$$

which proves the theorem. □

We consider the following space:

$$ C_{B}^{2}\bigl(\mathbb{R}^{+}\bigr)=\bigl\{ g\in C_{B}\bigl(\mathbb{R}^{+}\bigr):g^{\prime },g ^{\prime \prime }\in C_{B}\bigl(\mathbb{R}^{+}\bigr) \bigr\} , $$

which is equipped with the norm

$$ \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}= \Vert g \Vert _{C_{B}(\mathbb{R}^{+})}+ \bigl\Vert g^{\prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}+ \bigl\Vert g^{\prime \prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}, $$


$$ \Vert g \Vert _{C_{B}(\mathbb{R}^{+})}=\sup_{x\in \mathbb{R} ^{+}} \bigl\vert g(x) \bigr\vert . $$

Theorem 4.3

Let us consider the operators \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) given in (2.4). Then, for any \(g \in C_{B}^{2}(\mathbb{R}^{+})\), we have

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq \frac{1+[1+2\vartheta ]_{p,q}}{2[n]_{p,q}} x \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})} +\frac{1}{[n]_{p,q}^{2}} \bigl(1-[1+2 \vartheta ]_{p,q} \bigr) \frac{ \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}}{8}. $$


Suppose that \(g\in C_{B}^{2}(\mathbb{R}^{+})\). It follows from Taylor series expansion that

$$ g(t)=g(x)+g^{\prime }(x) (t-x)+g^{\prime \prime }(\varphi ) \frac{(t-x)^{2}}{2},\quad \varphi \in (x,t). $$

Since the operator \(A_{n,p,q}^{\ast }\) is linear, by operating \(A_{n,p,q}^{\ast }\) on both sides of the last equality, we have

$$ A_{n,p,q}^{\ast }(g,x)-g(x)=g^{\prime }(x)A_{n,p,q}^{\ast } \bigl( (t-x);x \bigr) +\frac{g^{\prime \prime }(\varphi )}{2}A_{n,p,q}^{ \ast } \bigl( (t-x)^{2};x \bigr), $$

which yields

$$\begin{aligned} \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq {}& \biggl( \frac{1}{[n]_{p,q}}[1+2\vartheta ]_{p,q}x+ \frac{1}{4[n]_{p,q}^{2}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) \biggr) \frac{ \Vert g ^{\prime \prime } \Vert _{C_{B}(\mathbb{R}^{+})}}{2} \\ &{}+\frac{1}{2[n]_{p,q}} \bigl\Vert g^{\prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}. \end{aligned}$$

From (4.5), we have

$$ \bigl\Vert g^{\prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}\leq \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})} \quad\text{and}\quad \bigl\Vert g^{\prime \prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}\leq \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}. $$


$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq \frac{1}{8[n]_{p,q}} \biggl(4+4[1+2 \vartheta ]_{p,q}x+ \frac{1}{[n]_{p,q}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) \biggr) \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}, $$

which completes the proof. □

Peetre’s K-functional is defined by

$$ K_{2}(g;\delta )=\inf_{C_{B}^{2}(\mathbb{R}^{+})} \bigl\{ \bigl( \Vert g-f \Vert _{C_{B}(\mathbb{R}^{+})} +\delta \bigl\Vert f \bigr\Vert _{C_{B}^{2}(\mathbb{R}^{+})} \bigr):f\in \mathcal{W} ^{2} \bigr\} , $$


$$ \mathcal{W}^{2}= \bigl\{ f\in C_{B} \bigl(\mathbb{R}^{+}\bigr):f^{\prime },f^{ \prime \prime }\in C_{B}\bigl(\mathbb{R}^{+}\bigr) \bigr\} . $$

Then there exists a constant \(M>0\) such that

$$ K_{2}(g;\delta )\leq M \omega _{2}\bigl(g;\delta ^{\frac{1}{2}}\bigr)\quad (\delta >0), $$

where \(\omega _{2}(g;\delta ^{\frac{1}{2}})\) (second order modulus of continuity) is given by

$$ \omega _{2}\bigl(g;\delta ^{\frac{1}{2}}\bigr)= \sup_{0< h< \delta ^{\frac{1}{2}}} \sup_{x\in \mathbb{R}^{+}} \bigl\vert g(x+2h)-2g(x+h)+g(x) \bigr\vert . $$

Theorem 4.4

For every \(g\in C_{B}(\mathbb{R}^{+})\), there exists a positive constant M such that

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq 2M \bigl\{ \omega _{2} \bigl( g;\sqrt{\varLambda _{n}(x)} \bigr) +\min \bigl( 1,\varLambda _{n}(x) \bigr) \Vert g \Vert _{C_{B}(\mathbb{R}^{+})} \bigr\} . $$


We prove this by using Theorem (4.3)

$$\begin{aligned} &\bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \\ &\quad\leq \bigl\vert A_{n,p,q}^{\ast }(g-f;x) \bigr\vert + \bigl\vert A_{n,p,q}^{\ast }(f;x)-f(x) \bigr\vert \\ &\qquad{}+ \bigl\vert g(x)-f(x) \bigr\vert \\ &\quad\leq \frac{1+[1+2\vartheta ]_{p,q}}{2[n]_{p,q}} x \Vert f \Vert _{C_{B}^{2}(\mathbb{R}^{+})} \\ &\qquad{} +\frac{1}{[n]_{p,q}^{2}} \bigl(1-[1+2\vartheta ]_{p,q} \bigr) \frac{ \Vert f \Vert _{C_{B}^{2}(\mathbb{R}^{+})}}{8}+ 2 \Vert g-f \Vert _{C_{B}(\mathbb{R}^{+})} \\ &\quad \leq 2 {\biggl\{ } \biggl(\frac{1}{4[n]_{p,q}} \bigl(1+[1+2\vartheta ]_{p,q} \bigr)x \\ &\qquad{} +\frac{1}{16[n]_{p,q}^{2}} \bigl(1-[1+2\vartheta ]_{p,q} \bigr) \biggr) \Vert f \Vert _{C_{B}^{2}(\mathbb{R}^{+})}+ \Vert g-f \Vert _{C_{B}(\mathbb{R}^{+})} {\biggr\} }. \end{aligned}$$

Considering the infimum over all \(f\in C_{B}^{2}(\mathbb{R}^{+})\) and using (4.7), we obtain

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq 2K_{2} \bigl( g;\varLambda _{n}(x) \bigr), $$


$$ \varLambda _{n}(x)=\frac{1}{4[n]_{p,q}} \bigl(1+[1+2\vartheta ]_{p,q} \bigr)x+\frac{1}{16[n]_{p,q}^{2}} \bigl(1-[1+2\vartheta ]_{p,q} \bigr). $$

Now, for an absolute constant \(M>0\) in [11], we use the relation

$$ K_{2}(g;\delta )\leq M\bigl\{ \omega _{2}(g;\sqrt{ \delta })+\min (1,\delta ) \Vert g \Vert \bigr\} , $$

which proves our theorem. □


  1. Acar, T.: \((p,q)\)-generalization of Szász–Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  2. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  3. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of (p, q)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  4. Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein-Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 655–662 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  5. Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  6. Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 116–128 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, 287 (2018)

    Article  Google Scholar 

  8. Bernstein, S.N.: Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow 2(13), 1–2 (1912)

    MATH  Google Scholar 

  9. Bodur, M., Yilmaz, O.G., Aral, A.: Approximation by Baskakov–Szász–Stancu operators preserving exponential functions. Constr. Math. Anal. 1(1), 1–8 (2018)

    Google Scholar 

  10. Cheikh, B., Gaied, Y., Zaghouani, M.: A q-Dunkl-classical q-Hermite type polynomials. Georgian Math. J. 21(2), 125–137 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Ciupa, A.: A class of integral Favard–Szász type operators. Stud. Univ. Babeş–Bolyai, Math. 40(1), 39–47 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Edely, O.H.H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23(11), 1382–1387 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  13. Gadžiev, A.: A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR 218, 1001–1004 (1974)

    MathSciNet  Google Scholar 

  14. Içöz, G., Çekim, B.: Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015, 284 (2015)

    MATH  Article  Google Scholar 

  15. Içöz, G., Çekim, B.: Stancu type generalization of Dunkl analogue of Szász–Kantrovich operators. Math. Methods Appl. Sci. 39(7), 1803–1810 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  16. Jagannathan, R., Rao, K.S.: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In: Proceedings of the International Conference on Number Theory and Mathematical Physics, pp. 20–21 (2005)

    Google Scholar 

  17. Lupaş, A.: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus (Cluj-Napoca), pp. 85–92 (1987) Preprint, 87-9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026)

    Google Scholar 

  18. Maurya, R., Sharma, H., Gupta, C.: Approximation properties of Kantorovich type modifications of \((p,q)\)-Meyer–König–Zeller operators. Constr. Math. Anal. 1(1), 58–72 (2018)

    Google Scholar 

  19. Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szasz–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 135–151 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  20. Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40(18), 7749–7759 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  21. Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  22. Mohiuddine, S.A., Alamri, B.A.S.: Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 1955–1973 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  23. Mohiuddine, S.A., Asiri, A., Hazarika, B.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst. 48(5), 492–506 (2019)

    MathSciNet  Article  Google Scholar 

  24. Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mursaleen, M., Nasiruzzaman, M.: Dunkl generalization of Kantorovich type Szasz–Mirakjan operators via q-calculus. Asian-Eur. J. Math. 10(4), 1750077 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  26. Mursaleen, M., Nasiruzzaman, M.: Approximation of modified Jakimovski–Leviatan-beta type operators. Constr. Math. Anal. 1(2), 88–98 (2018)

    Google Scholar 

  27. Mursaleen, M., Nasiruzzaman, M., Alotaibi, A.: On modified Dunkl generalization of Szasz operators via q-calculus. J. Inequal. Appl. 2017, 38 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  28. Mursaleen, M., Nasiruzzaman, M., Ashirbayev, N., Abzhapbarov, A.: Higher order generalization of Bernstein type operators defined by \((p,q) \)-integers. J. Comput. Anal. Appl. 25(5), 817–829 (2018)

    MathSciNet  Google Scholar 

  29. Mursaleen, M., Nasiruzzaman, M., Khan, A., Ansari, K.J.: Some approximation results on Bleimann–Butzer–Hahn operators defined by \((p,q)\)-integers. Filomat 30(3), 639–648 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  30. Mursaleen, M., Nasiruzzaman, M., Nurgali, A.: Some approximation results on Bernstein–Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, 249 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  31. Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: A Dunkl-type generalization of Szász–Kantorovich operators via post-quantum calculus. Symmetry 11, 232 (2019)

    MATH  Article  Google Scholar 

  32. Nasiruzzaman, M., Rao, N., Wazir, S., Kumar, R.: Approximation on parametric extension of Baskakov Durrmeyer operators on weighted spaces. J. Inequal. Appl. 2019, 103 (2019)

    MathSciNet  Article  Google Scholar 

  33. Phillips, G.M.: Bernstein polynomials based on the q-integers, The heritage of P.L. Chebyshev, A festschrift in honor of the 70th-birthday of professor T.J. Rivlin. Ann. Numer. Math. 4, 511–518 (1997)

    MathSciNet  Google Scholar 

  34. Rao, N., Wafi, A., Acu, A.M.: q-Szász–Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 13(3), 915–934 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  35. Srivastava, H.M., Mursaleen, M., Alotaibi, A., Nasiruzzaman, M., Al-Abied, A.: Some approximation results involving the q-Szasz–Mirakjan–Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 40(15), 5437–5452 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  36. Srivastava, H.M., Özger, F., Mohiuddine, S.A.: Construction of Stancu type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11(3), 316 (2019)

    MATH  Article  Google Scholar 

  37. Sucu, S.: Dunkl analogue of Szász operators. Appl. Math. Comput. 244, 42–48 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45, 239–245 (1950)

    MathSciNet  Article  Google Scholar 

  39. Tok, M.A., Kara, E.E., Altundag, S.: On the αβ-statistical convergence of the modified discrete operators. Adv. Differ. Equ. 2018, 252 (2018)

    MathSciNet  Article  Google Scholar 

Download references


Not applicable.

Availability of data and materials

Not applicable.


Not applicable.

Author information

Authors and Affiliations



The author read and approved the final manuscript.

Corresponding author

Correspondence to Abdullah Alotaibi.

Ethics declarations

Competing interests

The author declares he has no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, A. Approximation by a generalized class of Dunkl type Szász operators based on post quantum calculus. J Inequal Appl 2019, 241 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • 41A25
  • 41A36
  • 33C45


  • \((p,q)\)-integers
  • Dunkl analogue
  • Dunkl generalization of exponential function
  • Szász operator
  • Lipschitz type maximal functions
  • Peetre’s K-functional
  • Modulus of continuity