Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Approximation by a generalized class of Dunkl type Szász operators based on post quantum calculus


The main purpose of this paper is to introduce a generalized class of Dunkl type Szász operators via post quantum calculus on the interval \([ \frac{1}{2},\infty )\). This type of modification allows a better estimation of the error on \([ \frac{1}{2},\infty ) \) rather than \([ 0,\infty )\). We establish Korovkin type result in weighted spaces and also study approximation properties with the help of modulus of continuity of order one, Lipschitz type maximal functions, and Peetre’s K-functional. Furthermore, we estimate the degrees of approximations of the operators by modulus of continuity of order two.

Introduction and preliminaries

The first most elegant and easiest proof of Weierstrass approximation theorem was given by S.N Bernstein by introducing positive linear operators [8] known as Bernstein operators. The q-analogue of the Bernstein operators was studied by Lupaş [17] and Phillips [33].

For all \(g\in C[0,\infty ), x\geq 0\), and \(n\in \mathbb{N}\), Szász introduced positive linear operators called Szász operators [38] which are defined by

$$ S_{n}(g;x)=\frac{1}{e(nx)}\sum_{u=0}^{\infty } \frac{(nx)^{u}}{u!}g \biggl( \frac{u}{n} \biggr). $$

Recently Szász operators have been studied via Dunkl modification such as the classical Dunkl Szász operators [37], q-Dunkl–Szász operators [14], and \((p,q)\)-Dunkl–Szász operators [7] (see also [1, 6, 32] and [9, 15, 19, 25, 27, 31, 34, 35]). The \((p,q)\)-analogue of Bernstein operators was given in [24] and the Dunkl type modification was studied in [7] (see also [2,3,4,5, 18, 20, 21, 26, 28,29,30, 36, 39]). For some recent work on statistical approxiation of positive linear operators, we refer to [12, 22, 23].

The \((p,q)\)-integer \([n]_{p,q}\) is given by \([n]_{p,q}=\frac{p^{n}-q ^{n}}{p-q}\) for \(n=0,1,2,\ldots \) ; for more details on \([n]_{p,q}\)-integers, see [16]. For the exponential function on \((p,q)\)-analogues one has \(e_{p,q}(x)=\sum_{n=0}^{\infty }p^{ \frac{n(n-1)}{2}}\frac{x^{n}}{[n]_{p,q}!}\) and \(E_{p,q}(x)=\sum_{n=0} ^{\infty }q^{\frac{n(n-1)}{2}}\frac{x^{n}}{[n]_{p,q}!}\).

The q-Hermite type polynomials on q-Dunkl were given in [10] and a recursion formula was obtained by applying a relation. For \(\vartheta >\frac{1}{2}, x\geq 0, 0< q<1\), and \(g\in C[0,\infty )\), Içöz gave a Dunkl generalization of Szász operators via q-calculus [14] as follows:

$$ D_{n,q}(f;x)=\frac{1}{e_{\vartheta,q}([n]_{q}x)}\sum_{u=0}^{\infty } \frac{([n]_{q}x)^{u}}{ \varTheta _{\vartheta,q}(u)}g \biggl( \frac{1-q^{2\vartheta \theta _{u}+u}}{1-q ^{n}} \biggr). $$

Recently, the \((p,q)\)-approximation of Szász operators on Dunkl analogue has been studied in [7] by using the following exponential function:

$$ e_{\vartheta,p,q}(x)=\sum_{u=0}^{\infty }p^{\frac{u(u-1)}{2}} \frac{x ^{u}}{\varTheta _{\vartheta,p,q}(u)} $$

for \(\vartheta >\frac{1}{2}\), \(0< q< p\leq 1\), \(x\in {}[ 0,\infty )\), and \(u\in \mathbb{N}\). The explicit formula for \(\varTheta _{\vartheta,p,q}(u)\) is given by

$$\begin{aligned} &\varTheta _{\vartheta,p,q}(u) \\ &\quad =\frac{\prod_{i=0}^{[\frac{u+1}{2}]-1}p^{2 \vartheta (-1)^{i+1}+1} ( (p^{2})^{i}p^{2\vartheta +1}-(q^{2})^{i}q ^{2\vartheta +1} ) \prod_{j=0}^{[\frac{u}{2}]-1}p^{2\vartheta (-1)^{j}+1} ( (p^{2})^{j}p^{2}-(q^{2})^{j}q^{2} ) }{(p-q)^{u}}, \end{aligned}$$

where \([\frac{u}{2}]\) denotes the greatest integer functions for \(u\in \mathbb{N}\cup \{0\}\). Also

$$ \varTheta _{\vartheta,p,q}(u+1)=\frac{p^{2\vartheta (-1)^{u+1}+1}({p^{2 \vartheta \theta _{u+1}+u+1}-q^{2\vartheta \theta _{u+1}+u+1}})}{(p-q)} \varTheta _{\vartheta,p,q}(u),\quad u\in \mathbb{N}, $$


$$ \theta _{u}= \textstyle\begin{cases} 0 & \text{if }u=2m, \text{ for } m=0,1,2,3,\ldots, \\ 1 & \text{if }u=2m+1, \text{ for } m=0,1,2,3,\ldots. \end{cases} $$

Auxiliary results

Let \(\{\zeta _{n}(x)\}_{n\geq 1}\) be a sequence of nonnegative continuous functions on \([0,\infty )\) such that

$$ \zeta _{n}(x)= \biggl(x-\frac{1}{2[n]_{p,q}} \biggr)_{+},\quad n\in \mathbb{N}, $$


$$ \tau _{+}= \textstyle\begin{cases} \tau & \text{if }\tau \geqq 0, \\ 0 & \text{if }\tau < 0. \end{cases} $$

Moreover, suppose

$$ \mathcal{H}_{n,\vartheta }(x)=\frac{e_{\vartheta,p,q}(\frac{q}{p}[n]_{p,q}x)}{e _{\vartheta,p,q}([n]_{p,q}x)}. $$

Let \(x\in {}[ 0,\infty ), g\in C[0,\infty ), n\in \mathbb{N}, 0< q< p \leq 1\), and \(\vartheta >\frac{1}{2}\). We define the new operators by

$$ A_{n,p,q}^{\ast }(g;x)=\frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q} \zeta _{n}(x) )}\sum _{u=0}^{\infty }\frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p^{\frac{u(u-1)}{2}}g \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p ^{u-1}(p^{n}-q^{n})} \biggr). $$

If we put \(\zeta _{n}(x)=x\), then these operators are reduced to the operators studied in [7] and, in addition, if \(p=1\), then we get the operators studied in [14].

Lemma 2.1

Suppose that the operators \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) are given by (2.4). Then, for all \(x\geq \frac{1}{2[n]_{p,q}}\) and \(n\in \mathbb{N}\), one obtains

  1. (1)

    \(A_{n,p,q}^{\ast }(1;x)=1\);

  2. (2)

    \(A_{n,p,q}^{\ast }(t;x)=x-\frac{1}{2[n]_{p,q}}\);

  3. (3)

    \(x^{2}+\frac{1}{[n]_{p,q}} (q^{2\vartheta }[1-2 \vartheta ]_{p,q}\mathcal{H}_{n,\vartheta }(x) -1 )x+ \frac{1}{4[n]_{p,q} ^{2}} (1-2q^{2\vartheta }[1-2 \vartheta ]_{p,q}\mathcal{H}_{n, \vartheta }(x) ) \leq A_{n,p,q}^{\ast }(t^{2};x)\leq x^{2}+ \frac{1}{[n]_{p,q}} ( {}[ 1+2\vartheta ]_{p,q}-1 )x+\frac{1}{4[n]_{p,q} ^{2}} (1-2 [1+2\vartheta ]_{p,q} )\).

Lemma 2.2

For all \(x\geq \frac{1}{2[n]_{p,q}}\) and \(n\in \mathbb{N}\), the operators \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) satisfy

  1. (1)

    \(A_{n,p,q}^{\ast }(t-x;x)=-\frac{1}{2[n]_{p,q}} \);

  2. (2)

    \(A_{n,p,q}^{\ast }((t-x)^{2};x)\leq \frac{1}{[n]_{p,q}}[1+2 \vartheta ]_{p,q}x+\frac{1}{4[n]_{p,q}^{2}} (1-[1+2\vartheta ]_{p,q} )\).

Approximation in weighted spaces

This section deals with the approximation properties of the operators \(A_{n,p,q}^{\ast }\) in weighted spaces. We evaluate the order of approximation by using the modulus of continuity and Lipschitz class and study some direct theorems. We also obtain the approximation results by modulus of continuity of order two. We denote \(C_{B}(\mathbb{R^{+}})\) for the set of all bounded and continuous functions on \(\mathbb{R^{+}} \) equipped with the norm

$$ \Vert g \Vert _{C_{B}}=\sup_{x\geq 0} \bigl\vert g(x) \bigr\vert , $$

where \(\mathbb{R^{+}}=[0,\infty )\). We suppose \(F:=\{g:x\in {}[ 0, \infty )\}\) such that \(\frac{g(x)}{1+x^{2}}\) is convergent when \(x\rightarrow \infty \). Let \(B_{\varsigma }(\mathbb{R}^{+})\) be the set of all functions satisfying \(g(x)\leq u_{g}\varsigma (x)\) with \(\varsigma (x)=1+\xi ^{2}(x)\) and \(\xi (x)\rightarrow x\) in which \(u_{g}\) is a constant depending on g (see Gadžiev [13]). Moreover, take \(C_{\varsigma }(\mathbb{R}^{+})=B_{\varsigma }( \mathbb{R}^{+})\cap C(\mathbb{R}^{+})\). Note that \(B_{\varsigma }( \mathbb{R}^{+})\) is a normed space with the norm given by

$$ \Vert g \Vert _{\varsigma }=\sup_{x\geq 0} \frac{ \vert g(x) \vert }{\varsigma (x)}. $$

Let \(C_{\varsigma }^{0}(\mathbb{R}^{+})\) be a subset of \(C_{\varsigma }(\mathbb{R}^{+})\) such that

$$ \lim_{x\rightarrow \infty }\frac{g(x)}{\varsigma (x)}=u_{g}. $$

We consider the positive sequences \(q=q_{n}\) and \(p=p_{n}\) with \(0< q_{n}<1\) and \(q_{n}< p_{n}\leq 1\) such that

$$ \lim_{n}p_{n}\rightarrow 1,\qquad \lim_{n}q_{n}\rightarrow 1 \quad\text{and}\quad \lim _{n}p_{n}^{n}\rightarrow c, \qquad\lim _{n}q_{n}^{n}\rightarrow d, $$

where \(0< c,d\leq 1\).

Theorem 3.1

Let the sequences of positive numbers \(p_{n}\) and \(q_{n}\) be such that \(0< q_{n}< p_{n}\leq 1\). Then, for all \(f\in C[0,\infty )\cap F\), the operators \(A_{n,p_{n},q_{n}}^{\ast }(\cdot;\cdot)\) are uniformly convergent on each compact subset of \([0,\infty )\).


In the light of Korovkin’s theorem, we prove the uniform convergence of a sequence of \(A_{n,p_{n},q_{n}}^{\ast }\) on \([0,1]\) as \(n\rightarrow \infty \) by

$$ A_{n,p_{n},q_{n}}^{\ast }\bigl(t^{i};x\bigr)\rightarrow x^{i},\quad i=0,1,2. $$

Clearly, from (3.1) and \(\frac{1}{[n]_{p_{n},q_{n}}}\rightarrow 0\) \((n\rightarrow \infty )\), we have

$$ \lim_{n \to \infty }A_{n,p_{n},q_{n}}^{\ast }(t;x)=x, \qquad\lim _{n \to \infty }A_{n,p_{n},q_{n}}^{\ast }\bigl(t^{2};x \bigr)=x^{2}. $$


Theorem 3.2

Let \(A_{n,p_{n},q_{n}}^{\ast }:C_{\varsigma }(\mathbb{R}^{+})\rightarrow B_{\varsigma }(\mathbb{R}^{+})\). Then, for all \(g\in C_{\varsigma } ^{0}(\mathbb{R}^{+})\),

$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl(g(t);x\bigr)-g(x) \bigr\Vert _{\varsigma }=0 $$

if and only if

$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl(\xi ^{u}(t);x\bigr)- \xi ^{u}(x) \bigr\Vert _{\varsigma }=0,\quad u=0,1,2. $$


Consider \(\xi (x)=x\), \(\varsigma =1+\xi ^{2}(x)\) and

$$\begin{aligned} & \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl( t^{\ell };x \bigr) -x^{\ell } \bigr\Vert _{\varsigma } \\ &\quad =\sup_{x\geqq 0}\frac{ \vert A_{n,p_{n},q_{n}}^{\ast }(t^{\ell };x)-x ^{\ell } \vert }{1+x^{2}}. \end{aligned}$$

From Korovkin’s theorem, easily we obtain \(\lim_{n\rightarrow \infty } \vert \vert A_{n,p_{n},q_{n}}^{\ast } ( t^{\ell };x ) -x^{\ell } \vert \vert _{\varsigma }=0\) for \(\ell =0,1,2\). Hence, for any \(g\in C_{\varsigma }^{0}(\mathbb{R} ^{+})\), we get

$$ \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl( g(t);x \bigr) -g(x) \bigr\Vert _{\varsigma }=0. $$


Theorem 3.3

For every \(g \in C_{\varsigma }^{0}(\mathbb{R}^{+})\), we have

$$ \lim_{n\to \infty } \bigl\Vert A_{n,p_{n},q_{n}}^{\ast }(g;x)-g \bigr\Vert _{\varsigma }=0. $$


We prove this theorem in the light of Theorem 3.2. Take \(f(t)=t ^{\ell } \) for \(\ell =0,1,2\) in Lemma 2.1. Then Korovkin’s theorem allows for every \(g(t)\in C_{\varsigma }^{0}(\mathbb{R}^{+})\) if it satisfies \(A_{n,p_{n},q_{n}}^{\ast }(t^{\ell };x)\rightarrow x^{ \ell }\) uniformly. Then, for \(\ell =0\), Lemma 2.1 gives \(A_{n,p_{n},q_{n}}^{\ast }(1;x)=1\), which implies that

$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}} ^{\ast } ( 1;x ) -1 \bigr\Vert _{\varsigma }=0. $$

If \(\ell =1\)

$$\begin{aligned} & \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } ( t;x ) -x \bigr\Vert _{\varsigma } \\ & \quad=\sup_{x\geq 0}\frac{ \vert A_{n,p_{n},q_{n}}^{\ast }(t;x)-x \vert }{1+x ^{2}} \\ &\quad =\sup_{x\geq 0}\frac{ \vert -\frac{1}{2[n]_{p_{n},q_{n}}} \vert }{1+x ^{2}} \\ & \quad\leq \frac{1}{2[n]_{p_{n},q_{n}}}\sup_{x\geq 0}\frac{1}{1+x^{2}}, \end{aligned}$$


$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}} ^{\ast } ( t;x ) -x \bigr\Vert _{\varsigma }=0. $$

Similarly, for \(\ell =2\), we have

$$\begin{aligned} & \bigl\Vert A_{n,p_{n},q_{n}}^{\ast } \bigl( t^{2};x \bigr) -x^{2} \bigr\Vert _{\varsigma } \\ & \quad=\sup_{x\geq 0}\frac{ \vert A_{n,p_{n},q_{n}}^{\ast } ( t ^{2};x ) -x^{2} \vert }{1+x^{2}} \\ & \quad\leq \frac{1}{[n]_{p,q}} \bigl( [1+2\vartheta ]_{p,q}-1 \bigr) \sup_{x\geq 0}\frac{x}{1+x^{2}}+\frac{1}{4[n]_{p,q}^{2}} \bigl( 1-2[1+2 \vartheta ]_{p,q} \bigr) \sup_{x\geqq 0} \frac{1}{1+x^{2}}. \end{aligned}$$


$$ \lim_{n\rightarrow \infty } \bigl\Vert A_{n,p_{n},q_{n}} ^{\ast } \bigl( t^{2};x \bigr) -x^{2} \bigr\Vert _{ \varsigma }=0. $$

This completes the proof. □

Rate of convergence

Here, we compute the rate of convergence of our new operators (2.4) with the help of modulus of continuity and Lipschitz type maximal functions.

Let \(g\in C[0,\infty ]\). The modulus of continuity of g is given by

$$ \omega _{\varrho }(g;\delta )=\sup_{ \vert y-x \vert \leq \delta } \bigl\vert g(y)-g(x) \bigr\vert , \quad x,y\in {}[ 0,\varrho ) $$

for any \(\delta >0\). It is known that \(\lim_{\delta \rightarrow 0+} \omega _{\varrho }(g;\delta )=0\), and one has

$$ \bigl\vert g(y)-g(x) \bigr\vert \leq \biggl( \frac{ \vert y-x \vert }{\delta }+1 \biggr) \omega _{\varrho }(g;\delta ). $$

Theorem 4.1

Let \(\omega _{\varrho }(g;\delta )\) be defined on the interval \([0,\varrho +1]\subset {}[ 0,\infty )\) with \(\varrho >0\). Then, for every \(g\in C_{\varsigma }^{u}\) on \([0,\infty )\), we have

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq \biggl\{ 1+\sqrt{[1+2 \vartheta ]_{p,q} \biggl( x-\frac{1}{4[n]_{p,q}} \biggr) + \frac{1}{4[n]_{p,q}}} \biggr\} \omega \biggl( g;\frac{1}{ \sqrt{[n]_{p,q}}} \biggr). $$


To prove this theorem, we use the Cauchy–Schwarz inequality and apply (4.1) and (4.2). Thus, we have

$$\begin{aligned} &\bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \\ &\quad\leq \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\vert g \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})} \biggr) -g(x) \biggr\vert \\ &\quad\leq \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\{ 1+\frac{1}{\delta } \biggl\vert \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})} \biggr) -x \biggr\vert \biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad= \Biggl\{ 1+\frac{1}{\delta } \Biggl( \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum _{u=0}^{\infty }\frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})}-x \biggr\vert \Biggr) \Biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad\leq \Biggl\{ 1+\frac{1}{\delta } \Biggl( \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum _{u=0}^{\infty }\frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl( \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})}-x \biggr) ^{2} \Biggr) ^{ \frac{1}{2}} \Biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad= \biggl\{ 1+\frac{1}{\delta } \bigl( A_{n,p,q}^{\ast }(t-x)^{2};x \bigr) ^{\frac{1}{2}} \biggr\} \omega _{\varrho }(g;\delta ) \\ &\quad\leq \biggl\{ 1+\frac{1}{\delta }\sqrt{\frac{1}{[n]_{p,q}}[1+2 \vartheta ]_{p,q}x+\frac{1}{4[n]_{p,q}^{2}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) } \biggr\} \omega _{\varrho }(g;\delta ), \end{aligned}$$

if we choose \(\delta =\sqrt{\frac{1}{[n]_{p,q}}}\), then we get our result. □

We now give the rate of convergence of \(A_{n,p,q}^{\ast }\) in terms of the elements of the usual Lipschitz class \(\mathrm{Lip}_{K}(\mu )\).

Let \(g\in C[0,\infty )\), \(K>0\), and \(0<\mu \leq 1\). The Lipschitz class \(\mathrm{Lip}_{K}(\mu )\) is given by

$$ \mathrm{Lip}_{K}(\mu )= \bigl\{ g: \bigl\vert g(\varphi _{1})-f(\varphi _{2}) \bigr\vert \leq K \vert \varphi _{1}-\varphi _{2} \vert ^{\mu } \bigl(\varphi _{1}, \varphi _{2}\in {}[ 0,\infty)\bigr) \bigr\} . $$

Theorem 4.2

Let \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) be the operator defined in (2.4). Then, for each \(g\in \mathrm{Lip}_{K}(\mu )\) with \(K>0\), \(0<\mu \leq 1\) and satisfying (4.3), we have

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-f(x) \bigr\vert \leq K \biggl( \frac{1}{[n]_{p,q}}[1+2\vartheta ]_{p,q}x+ \frac{1}{4[n]_{p,q}^{2}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) \biggr) ^{\frac{\mu }{2}}. $$


We apply Hölder’s inequality.

$$\begin{aligned} \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert &\leq \bigl\vert A_{n,p,q}^{\ast }\bigl(g(t)-g(x);x\bigr) \bigr\vert \\ &\leq A_{n,p,q}^{\ast } \bigl( \bigl\vert g(t)-g(x) \bigr\vert ;x \bigr) \\ &\leq KA_{n,p,q}^{\ast } \bigl( \vert t-x \vert ^{\mu };x \bigr). \end{aligned}$$


$$\begin{aligned} &\bigl\vert A_{n,p,q}^{\ast }(g;x)-f(x) \bigr\vert \\ &\quad\leq K \frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}}{\varTheta _{\vartheta,p,q}(u)}p ^{\frac{u(u-1)}{2}} \\ &\qquad{}\times \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p ^{u-1}(p^{n}-q^{n})}-x \biggr\vert ^{\mu } \\ &\quad\leq K\frac{1}{e_{\vartheta,p,q} ({}[ n]_{p,q}\zeta _{n}(x) )}\sum_{u=0}^{\infty } \biggl( \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}p^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \biggr) ^{\frac{2-\mu }{2}} \\ &\qquad{}\times \biggl( \frac{ ({}[ n]_{p,q}\zeta _{n}(x) )^{u}p ^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \biggr) ^{\frac{ \mu }{2}} \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{u-1}(p^{n}-q^{n})}-x \biggr\vert ^{\mu } \\ &\quad\leq K \Biggl( \frac{1}{ ( e_{\vartheta,p,q} ({}[ n]_{p,q} \zeta _{n}(x) ) ) }\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q} \zeta _{n}(x) )^{u}p^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \Biggr) ^{\frac{2-\mu }{2}} \\ &\qquad{}\times \Biggl( \frac{1}{ ( e_{\vartheta,p,q} ({}[ n]_{p,q} \zeta _{n}(x) ) ) }\sum_{u=0}^{\infty } \frac{ ({}[ n]_{p,q} \zeta _{n}(x) )^{u}p^{\frac{u(u-1)}{2}}}{\varTheta _{\vartheta,p,q}(u)} \\ &\qquad{}\times \biggl\vert \frac{p^{2\vartheta \theta _{u}+u}-q^{2\vartheta \theta _{u}+u}}{p^{m-1}(p^{n}-q^{n})}-x \biggr\vert ^{2} \Biggr) ^{\frac{\mu }{2}} \\ &\quad\leq K \bigl( A_{n,p,q}^{\ast }(t-x)^{2};x \bigr) ^{\frac{\mu }{2}}, \end{aligned}$$

which proves the theorem. □

We consider the following space:

$$ C_{B}^{2}\bigl(\mathbb{R}^{+}\bigr)=\bigl\{ g\in C_{B}\bigl(\mathbb{R}^{+}\bigr):g^{\prime },g ^{\prime \prime }\in C_{B}\bigl(\mathbb{R}^{+}\bigr) \bigr\} , $$

which is equipped with the norm

$$ \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}= \Vert g \Vert _{C_{B}(\mathbb{R}^{+})}+ \bigl\Vert g^{\prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}+ \bigl\Vert g^{\prime \prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}, $$


$$ \Vert g \Vert _{C_{B}(\mathbb{R}^{+})}=\sup_{x\in \mathbb{R} ^{+}} \bigl\vert g(x) \bigr\vert . $$

Theorem 4.3

Let us consider the operators \(A_{n,p,q}^{\ast }(\cdot;\cdot)\) given in (2.4). Then, for any \(g \in C_{B}^{2}(\mathbb{R}^{+})\), we have

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq \frac{1+[1+2\vartheta ]_{p,q}}{2[n]_{p,q}} x \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})} +\frac{1}{[n]_{p,q}^{2}} \bigl(1-[1+2 \vartheta ]_{p,q} \bigr) \frac{ \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}}{8}. $$


Suppose that \(g\in C_{B}^{2}(\mathbb{R}^{+})\). It follows from Taylor series expansion that

$$ g(t)=g(x)+g^{\prime }(x) (t-x)+g^{\prime \prime }(\varphi ) \frac{(t-x)^{2}}{2},\quad \varphi \in (x,t). $$

Since the operator \(A_{n,p,q}^{\ast }\) is linear, by operating \(A_{n,p,q}^{\ast }\) on both sides of the last equality, we have

$$ A_{n,p,q}^{\ast }(g,x)-g(x)=g^{\prime }(x)A_{n,p,q}^{\ast } \bigl( (t-x);x \bigr) +\frac{g^{\prime \prime }(\varphi )}{2}A_{n,p,q}^{ \ast } \bigl( (t-x)^{2};x \bigr), $$

which yields

$$\begin{aligned} \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq {}& \biggl( \frac{1}{[n]_{p,q}}[1+2\vartheta ]_{p,q}x+ \frac{1}{4[n]_{p,q}^{2}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) \biggr) \frac{ \Vert g ^{\prime \prime } \Vert _{C_{B}(\mathbb{R}^{+})}}{2} \\ &{}+\frac{1}{2[n]_{p,q}} \bigl\Vert g^{\prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}. \end{aligned}$$

From (4.5), we have

$$ \bigl\Vert g^{\prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}\leq \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})} \quad\text{and}\quad \bigl\Vert g^{\prime \prime } \bigr\Vert _{C_{B}(\mathbb{R}^{+})}\leq \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}. $$


$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq \frac{1}{8[n]_{p,q}} \biggl(4+4[1+2 \vartheta ]_{p,q}x+ \frac{1}{[n]_{p,q}} \bigl( 1-[1+2\vartheta ]_{p,q} \bigr) \biggr) \Vert g \Vert _{C_{B}^{2}(\mathbb{R}^{+})}, $$

which completes the proof. □

Peetre’s K-functional is defined by

$$ K_{2}(g;\delta )=\inf_{C_{B}^{2}(\mathbb{R}^{+})} \bigl\{ \bigl( \Vert g-f \Vert _{C_{B}(\mathbb{R}^{+})} +\delta \bigl\Vert f \bigr\Vert _{C_{B}^{2}(\mathbb{R}^{+})} \bigr):f\in \mathcal{W} ^{2} \bigr\} , $$


$$ \mathcal{W}^{2}= \bigl\{ f\in C_{B} \bigl(\mathbb{R}^{+}\bigr):f^{\prime },f^{ \prime \prime }\in C_{B}\bigl(\mathbb{R}^{+}\bigr) \bigr\} . $$

Then there exists a constant \(M>0\) such that

$$ K_{2}(g;\delta )\leq M \omega _{2}\bigl(g;\delta ^{\frac{1}{2}}\bigr)\quad (\delta >0), $$

where \(\omega _{2}(g;\delta ^{\frac{1}{2}})\) (second order modulus of continuity) is given by

$$ \omega _{2}\bigl(g;\delta ^{\frac{1}{2}}\bigr)= \sup_{0< h< \delta ^{\frac{1}{2}}} \sup_{x\in \mathbb{R}^{+}} \bigl\vert g(x+2h)-2g(x+h)+g(x) \bigr\vert . $$

Theorem 4.4

For every \(g\in C_{B}(\mathbb{R}^{+})\), there exists a positive constant M such that

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq 2M \bigl\{ \omega _{2} \bigl( g;\sqrt{\varLambda _{n}(x)} \bigr) +\min \bigl( 1,\varLambda _{n}(x) \bigr) \Vert g \Vert _{C_{B}(\mathbb{R}^{+})} \bigr\} . $$


We prove this by using Theorem (4.3)

$$\begin{aligned} &\bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \\ &\quad\leq \bigl\vert A_{n,p,q}^{\ast }(g-f;x) \bigr\vert + \bigl\vert A_{n,p,q}^{\ast }(f;x)-f(x) \bigr\vert \\ &\qquad{}+ \bigl\vert g(x)-f(x) \bigr\vert \\ &\quad\leq \frac{1+[1+2\vartheta ]_{p,q}}{2[n]_{p,q}} x \Vert f \Vert _{C_{B}^{2}(\mathbb{R}^{+})} \\ &\qquad{} +\frac{1}{[n]_{p,q}^{2}} \bigl(1-[1+2\vartheta ]_{p,q} \bigr) \frac{ \Vert f \Vert _{C_{B}^{2}(\mathbb{R}^{+})}}{8}+ 2 \Vert g-f \Vert _{C_{B}(\mathbb{R}^{+})} \\ &\quad \leq 2 {\biggl\{ } \biggl(\frac{1}{4[n]_{p,q}} \bigl(1+[1+2\vartheta ]_{p,q} \bigr)x \\ &\qquad{} +\frac{1}{16[n]_{p,q}^{2}} \bigl(1-[1+2\vartheta ]_{p,q} \bigr) \biggr) \Vert f \Vert _{C_{B}^{2}(\mathbb{R}^{+})}+ \Vert g-f \Vert _{C_{B}(\mathbb{R}^{+})} {\biggr\} }. \end{aligned}$$

Considering the infimum over all \(f\in C_{B}^{2}(\mathbb{R}^{+})\) and using (4.7), we obtain

$$ \bigl\vert A_{n,p,q}^{\ast }(g;x)-g(x) \bigr\vert \leq 2K_{2} \bigl( g;\varLambda _{n}(x) \bigr), $$


$$ \varLambda _{n}(x)=\frac{1}{4[n]_{p,q}} \bigl(1+[1+2\vartheta ]_{p,q} \bigr)x+\frac{1}{16[n]_{p,q}^{2}} \bigl(1-[1+2\vartheta ]_{p,q} \bigr). $$

Now, for an absolute constant \(M>0\) in [11], we use the relation

$$ K_{2}(g;\delta )\leq M\bigl\{ \omega _{2}(g;\sqrt{ \delta })+\min (1,\delta ) \Vert g \Vert \bigr\} , $$

which proves our theorem. □


  1. 1.

    Acar, T.: \((p,q)\)-generalization of Szász–Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016)

  2. 2.

    Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016)

  3. 3.

    Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of (p, q)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018)

  4. 4.

    Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein-Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 655–662 (2018)

  5. 5.

    Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018)

  6. 6.

    Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 116–128 (2018)

  7. 7.

    Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, 287 (2018)

  8. 8.

    Bernstein, S.N.: Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow 2(13), 1–2 (1912)

  9. 9.

    Bodur, M., Yilmaz, O.G., Aral, A.: Approximation by Baskakov–Szász–Stancu operators preserving exponential functions. Constr. Math. Anal. 1(1), 1–8 (2018)

  10. 10.

    Cheikh, B., Gaied, Y., Zaghouani, M.: A q-Dunkl-classical q-Hermite type polynomials. Georgian Math. J. 21(2), 125–137 (2014)

  11. 11.

    Ciupa, A.: A class of integral Favard–Szász type operators. Stud. Univ. Babeş–Bolyai, Math. 40(1), 39–47 (1995)

  12. 12.

    Edely, O.H.H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23(11), 1382–1387 (2010)

  13. 13.

    Gadžiev, A.: A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR 218, 1001–1004 (1974)

  14. 14.

    Içöz, G., Çekim, B.: Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015, 284 (2015)

  15. 15.

    Içöz, G., Çekim, B.: Stancu type generalization of Dunkl analogue of Szász–Kantrovich operators. Math. Methods Appl. Sci. 39(7), 1803–1810 (2016)

  16. 16.

    Jagannathan, R., Rao, K.S.: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In: Proceedings of the International Conference on Number Theory and Mathematical Physics, pp. 20–21 (2005)

  17. 17.

    Lupaş, A.: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus (Cluj-Napoca), pp. 85–92 (1987) Preprint, 87-9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026)

  18. 18.

    Maurya, R., Sharma, H., Gupta, C.: Approximation properties of Kantorovich type modifications of \((p,q)\)-Meyer–König–Zeller operators. Constr. Math. Anal. 1(1), 58–72 (2018)

  19. 19.

    Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szasz–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 135–151 (2018)

  20. 20.

    Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40(18), 7749–7759 (2017)

  21. 21.

    Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018)

  22. 22.

    Mohiuddine, S.A., Alamri, B.A.S.: Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 1955–1973 (2019)

  23. 23.

    Mohiuddine, S.A., Asiri, A., Hazarika, B.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst. 48(5), 492–506 (2019)

  24. 24.

    Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)

  25. 25.

    Mursaleen, M., Nasiruzzaman, M.: Dunkl generalization of Kantorovich type Szasz–Mirakjan operators via q-calculus. Asian-Eur. J. Math. 10(4), 1750077 (2017)

  26. 26.

    Mursaleen, M., Nasiruzzaman, M.: Approximation of modified Jakimovski–Leviatan-beta type operators. Constr. Math. Anal. 1(2), 88–98 (2018)

  27. 27.

    Mursaleen, M., Nasiruzzaman, M., Alotaibi, A.: On modified Dunkl generalization of Szasz operators via q-calculus. J. Inequal. Appl. 2017, 38 (2017)

  28. 28.

    Mursaleen, M., Nasiruzzaman, M., Ashirbayev, N., Abzhapbarov, A.: Higher order generalization of Bernstein type operators defined by \((p,q) \)-integers. J. Comput. Anal. Appl. 25(5), 817–829 (2018)

  29. 29.

    Mursaleen, M., Nasiruzzaman, M., Khan, A., Ansari, K.J.: Some approximation results on Bleimann–Butzer–Hahn operators defined by \((p,q)\)-integers. Filomat 30(3), 639–648 (2016)

  30. 30.

    Mursaleen, M., Nasiruzzaman, M., Nurgali, A.: Some approximation results on Bernstein–Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, 249 (2015)

  31. 31.

    Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: A Dunkl-type generalization of Szász–Kantorovich operators via post-quantum calculus. Symmetry 11, 232 (2019)

  32. 32.

    Nasiruzzaman, M., Rao, N., Wazir, S., Kumar, R.: Approximation on parametric extension of Baskakov Durrmeyer operators on weighted spaces. J. Inequal. Appl. 2019, 103 (2019)

  33. 33.

    Phillips, G.M.: Bernstein polynomials based on the q-integers, The heritage of P.L. Chebyshev, A festschrift in honor of the 70th-birthday of professor T.J. Rivlin. Ann. Numer. Math. 4, 511–518 (1997)

  34. 34.

    Rao, N., Wafi, A., Acu, A.M.: q-Szász–Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 13(3), 915–934 (2019)

  35. 35.

    Srivastava, H.M., Mursaleen, M., Alotaibi, A., Nasiruzzaman, M., Al-Abied, A.: Some approximation results involving the q-Szasz–Mirakjan–Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 40(15), 5437–5452 (2017)

  36. 36.

    Srivastava, H.M., Özger, F., Mohiuddine, S.A.: Construction of Stancu type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11(3), 316 (2019)

  37. 37.

    Sucu, S.: Dunkl analogue of Szász operators. Appl. Math. Comput. 244, 42–48 (2014)

  38. 38.

    Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45, 239–245 (1950)

  39. 39.

    Tok, M.A., Kara, E.E., Altundag, S.: On the αβ-statistical convergence of the modified discrete operators. Adv. Differ. Equ. 2018, 252 (2018)

Download references


Not applicable.

Availability of data and materials

Not applicable.


Not applicable.

Author information




The author read and approved the final manuscript.

Corresponding author

Correspondence to Abdullah Alotaibi.

Ethics declarations

Competing interests

The author declares he has no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, A. Approximation by a generalized class of Dunkl type Szász operators based on post quantum calculus. J Inequal Appl 2019, 241 (2019).

Download citation


  • 41A25
  • 41A36
  • 33C45


  • \((p,q)\)-integers
  • Dunkl analogue
  • Dunkl generalization of exponential function
  • Szász operator
  • Lipschitz type maximal functions
  • Peetre’s K-functional
  • Modulus of continuity