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Abstract
The main purpose of this paper is to introduce a generalized class of Dunkl type Szász
operators via post quantum calculus on the interval [ 12 ,∞). This type of modification
allows a better estimation of the error on [ 12 ,∞) rather than [0,∞). We establish
Korovkin type result in weighted spaces and also study approximation properties
with the help of modulus of continuity of order one, Lipschitz type maximal
functions, and Peetre’s K-functional. Furthermore, we estimate the degrees of
approximations of the operators by modulus of continuity of order two.
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1 Introduction and preliminaries
The first most elegant and easiest proof of Weierstrass approximation theorem was given
by S.N Bernstein by introducing positive linear operators [8] known as Bernstein oper-
ators. The q-analogue of the Bernstein operators was studied by Lupaş [17] and Phillips
[33].

For all g ∈ C[0,∞), x ≥ 0, and n ∈ N, Szász introduced positive linear operators called
Szász operators [38] which are defined by

Sn(g; x) =
1

e(nx)

∞∑

u=0

(nx)u

u!
g
(

u
n

)
. (1.1)

Recently Szász operators have been studied via Dunkl modification such as the classical
Dunkl Szász operators [37], q-Dunkl–Szász operators [14], and (p, q)-Dunkl–Szász opera-
tors [7] (see also [1, 6, 32] and [9, 15, 19, 25, 27, 31, 34, 35]). The (p, q)-analogue of Bernstein
operators was given in [24] and the Dunkl type modification was studied in [7] (see also
[2–5, 18, 20, 21, 26, 28–30, 36, 39]). For some recent work on statistical approxiation of
positive linear operators, we refer to [12, 22, 23].
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The (p, q)-integer [n]p,q is given by [n]p,q = pn–qn

p–q for n = 0, 1, 2, . . . ; for more details on
[n]p,q-integers, see [16]. For the exponential function on (p, q)-analogues one has ep,q(x) =∑∞

n=0 p
n(n–1)

2 xn

[n]p,q ! and Ep,q(x) =
∑∞

n=0 q
n(n–1)

2 xn

[n]p,q ! .
The q-Hermite type polynomials on q-Dunkl were given in [10] and a recursion formula

was obtained by applying a relation. For ϑ > 1
2 , x ≥ 0, 0 < q < 1, and g ∈ C[0,∞), Içöz gave

a Dunkl generalization of Szász operators via q-calculus [14] as follows:

Dn,q(f ; x) =
1

eϑ ,q([n]qx)

∞∑

u=0

([n]qx)u

Θϑ ,q(u)
g
(

1 – q2ϑθu+u

1 – qn

)
. (1.2)

Recently, the (p, q)-approximation of Szász operators on Dunkl analogue has been stud-
ied in [7] by using the following exponential function:

eϑ ,p,q(x) =
∞∑

u=0

p
u(u–1)

2
xu

Θϑ ,p,q(u)
(1.3)

for ϑ > 1
2 , 0 < q < p ≤ 1, x ∈ [0,∞), and u ∈ N. The explicit formula for Θϑ ,p,q(u) is given

by

Θϑ ,p,q(u)

=
∏[ u+1

2 ]–1
i=0 p2ϑ(–1)i+1+1((p2)ip2ϑ+1 – (q2)iq2ϑ+1)

∏[ u
2 ]–1

j=0 p2ϑ(–1)j+1((p2)jp2 – (q2)jq2)
(p – q)u , (1.4)

where [ u
2 ] denotes the greatest integer functions for u ∈N∪ {0}. Also

Θϑ ,p,q(u + 1) =
p2ϑ(–1)u+1+1(p2ϑθu+1+u+1 – q2ϑθu+1+u+1)

(p – q)
Θϑ ,p,q(u), u ∈ N, (1.5)

and

θu =

⎧
⎨

⎩
0 if u = 2m, for m = 0, 1, 2, 3, . . . ,

1 if u = 2m + 1, for m = 0, 1, 2, 3, . . . .

2 Auxiliary results
Let {ζn(x)}n≥1 be a sequence of nonnegative continuous functions on [0,∞) such that

ζn(x) =
(

x –
1

2[n]p,q

)

+
, n ∈N, (2.1)

where

τ+ =

⎧
⎨

⎩
τ if τ � 0,

0 if τ < 0.
(2.2)

Moreover, suppose

Hn,ϑ (x) =
eϑ ,p,q( q

p [n]p,qx)
eϑ ,p,q([n]p,qx)

. (2.3)
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Let x ∈ [0,∞), g ∈ C[0,∞), n ∈ N, 0 < q < p ≤ 1, and ϑ > 1
2 . We define the new operators

by

A∗
n,p,q(g; x) =

1
eϑ ,p,q([n]p,qζn(x))

∞∑

u=0

([n]p,qζn(x))u

Θϑ ,p,q(u)
p

u(u–1)
2 g

(
p2ϑθu+u – q2ϑθu+u

pu–1(pn – qn)

)
. (2.4)

If we put ζn(x) = x, then these operators are reduced to the operators studied in [7] and, in
addition, if p = 1, then we get the operators studied in [14].

Lemma 2.1 Suppose that the operators A∗
n,p,q(·; ·) are given by (2.4). Then, for all x ≥ 1

2[n]p,q
and n ∈N, one obtains

(1) A∗
n,p,q(1; x) = 1;

(2) A∗
n,p,q(t; x) = x – 1

2[n]p,q
;

(3) x2 + 1
[n]p,q

(q2ϑ [1 – 2ϑ]p,qHn,ϑ (x) – 1)x + 1
4[n]2

p,q
(1 – 2q2ϑ [1 – 2ϑ]p,qHn,ϑ (x)) ≤

A∗
n,p,q(t2; x) ≤ x2 + 1

[n]p,q
([1 + 2ϑ]p,q – 1)x + 1

4[n]2
p,q

(1 – 2[1 + 2ϑ]p,q).

Lemma 2.2 For all x ≥ 1
2[n]p,q

and n ∈N, the operators A∗
n,p,q(·; ·) satisfy

(1) A∗
n,p,q(t – x; x) = – 1

2[n]p,q
;

(2) A∗
n,p,q((t – x)2; x) ≤ 1

[n]p,q
[1 + 2ϑ]p,qx + 1

4[n]2
p,q

(1 – [1 + 2ϑ]p,q).

3 Approximation in weighted spaces
This section deals with the approximation properties of the operators A∗

n,p,q in weighted
spaces. We evaluate the order of approximation by using the modulus of continuity and
Lipschitz class and study some direct theorems. We also obtain the approximation results
by modulus of continuity of order two. We denote CB(R+) for the set of all bounded and
continuous functions on R

+ equipped with the norm

‖g‖CB = sup
x≥0

∣∣g(x)
∣∣,

where R
+ = [0,∞). We suppose F := {g : x ∈ [0,∞)} such that g(x)

1+x2 is convergent when
x → ∞. Let Bς (R+) be the set of all functions satisfying g(x) ≤ ugς (x) with ς (x) = 1 + ξ 2(x)
and ξ (x) → x in which ug is a constant depending on g (see Gadžiev [13]). Moreover, take
Cς (R+) = Bς (R+) ∩ C(R+). Note that Bς (R+) is a normed space with the norm given by

‖g‖ς = sup
x≥0

|g(x)|
ς (x)

.

Let C0
ς (R+) be a subset of Cς (R+) such that

lim
x→∞

g(x)
ς (x)

= ug .

We consider the positive sequences q = qn and p = pn with 0 < qn < 1 and qn < pn ≤ 1 such
that

lim
n

pn → 1, lim
n

qn → 1 and lim
n

pn
n → c, lim

n
qn

n → d, (3.1)

where 0 < c, d ≤ 1.
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Theorem 3.1 Let the sequences of positive numbers pn and qn be such that 0 < qn < pn ≤ 1.
Then, for all f ∈ C[0,∞) ∩ F , the operators A∗

n,pn ,qn (·; ·) are uniformly convergent on each
compact subset of [0,∞).

Proof In the light of Korovkin’s theorem, we prove the uniform convergence of a sequence
of A∗

n,pn ,qn on [0, 1] as n → ∞ by

A∗
n,pn ,qn

(
ti; x

) → xi, i = 0, 1, 2.

Clearly, from (3.1) and 1
[n]pn ,qn

→ 0 (n → ∞), we have

lim
n→∞ A∗

n,pn ,qn (t; x) = x, lim
n→∞ A∗

n,pn ,qn

(
t2; x

)
= x2. �

Theorem 3.2 Let A∗
n,pn ,qn : Cς (R+) → Bς (R+). Then, for all g ∈ C0

ς (R+),

lim
n→∞

∥∥A∗
n,pn ,qn

(
g(t); x

)
– g(x)

∥∥
ς

= 0

if and only if

lim
n→∞

∥∥A∗
n,pn ,qn

(
ξu(t); x

)
– ξu(x)

∥∥
ς

= 0, u = 0, 1, 2.

Proof Consider ξ (x) = x, ς = 1 + ξ 2(x) and

∥∥A∗
n,pn ,qn

(
t	; x

)
– x	

∥∥
ς

= sup
x�0

|A∗
n,pn ,qn (t	; x) – x	|

1 + x2 .

From Korovkin’s theorem, easily we obtain limn→∞ ||A∗
n,pn ,qn (t	; x) – x	||ς = 0 for 	 = 0, 1, 2.

Hence, for any g ∈ C0
ς (R+), we get

∥∥A∗
n,pn ,qn

(
g(t); x

)
– g(x)

∥∥
ς

= 0. �

Theorem 3.3 For every g ∈ C0
ς (R+), we have

lim
n→∞

∥∥A∗
n,pn ,qn (g; x) – g

∥∥
ς

= 0.

Proof We prove this theorem in the light of Theorem 3.2. Take f (t) = t	 for 	 = 0, 1, 2
in Lemma 2.1. Then Korovkin’s theorem allows for every g(t) ∈ C0

ς (R+) if it satisfies
A∗

n,pn ,qn (t	; x) → x	 uniformly. Then, for 	 = 0, Lemma 2.1 gives A∗
n,pn ,qn (1; x) = 1, which

implies that

lim
n→∞

∥∥A∗
n,pn ,qn (1; x) – 1

∥∥
ς

= 0. (3.2)

If 	 = 1

∥∥A∗
n,pn ,qn (t; x) – x

∥∥
ς
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= sup
x≥0

|A∗
n,pn ,qn (t; x) – x|

1 + x2

= sup
x≥0

| – 1
2[n]pn ,qn

|
1 + x2

≤ 1
2[n]pn ,qn

sup
x≥0

1
1 + x2 ,

then

lim
n→∞

∥∥A∗
n,pn ,qn (t; x) – x

∥∥
ς

= 0. (3.3)

Similarly, for 	 = 2, we have

∥∥A∗
n,pn ,qn

(
t2; x

)
– x2∥∥

ς

= sup
x≥0

|A∗
n,pn ,qn (t2; x) – x2|

1 + x2

≤ 1
[n]p,q

(
[1 + 2ϑ]p,q – 1

)
sup
x≥0

x
1 + x2 +

1
4[n]2

p,q

(
1 – 2[1 + 2ϑ]p,q

)
sup
x�0

1
1 + x2 .

Hence,

lim
n→∞

∥∥A∗
n,pn ,qn

(
t2; x

)
– x2∥∥

ς
= 0. (3.4)

This completes the proof. �

4 Rate of convergence
Here, we compute the rate of convergence of our new operators (2.4) with the help of
modulus of continuity and Lipschitz type maximal functions.

Let g ∈ C[0,∞]. The modulus of continuity of g is given by

ω�(g; δ) = sup
|y–x|≤δ

∣∣g(y) – g(x)
∣∣, x, y ∈ [0,�) (4.1)

for any δ > 0. It is known that limδ→0+ ω�(g; δ) = 0, and one has

∣∣g(y) – g(x)
∣∣ ≤

( |y – x|
δ

+ 1
)

ω�(g; δ). (4.2)

Theorem 4.1 Let ω�(g; δ) be defined on the interval [0,� + 1] ⊂ [0,∞) with � > 0. Then,
for every g ∈ Cu

ς on [0,∞), we have

∣∣A∗
n,p,q(g; x) – g(x)

∣∣ ≤
{

1 +

√

[1 + 2ϑ]p,q

(
x –

1
4[n]p,q

)
+

1
4[n]p,q

}
ω

(
g;

1√
[n]p,q

)
.

Proof To prove this theorem, we use the Cauchy–Schwarz inequality and apply (4.1) and
(4.2). Thus, we have

∣∣A∗
n,p,q(g; x) – g(x)

∣∣
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≤ 1
eϑ ,p,q([n]p,qζn(x))

∞∑

u=0

([n]p,qζn(x))u

Θϑ ,p,q(u)
p

u(u–1)
2

×
∣∣∣∣g

(
p2ϑθu+u – q2ϑθu+u

pu–1(pn – qn)

)
– g(x)

∣∣∣∣

≤ 1
eϑ ,p,q([n]p,qζn(x))

∞∑

u=0

([n]p,qζn(x))u

Θϑ ,p,q(u)
p

u(u–1)
2

×
{

1 +
1
δ

∣∣∣∣

(
p2ϑθu+u – q2ϑθu+u

pu–1(pn – qn)

)
– x

∣∣∣∣

}
ω�(g; δ)

=

{
1 +

1
δ

(
1

eϑ ,p,q([n]p,qζn(x))

∞∑

u=0

([n]p,qζn(x))u

Θϑ ,p,q(u)
p

u(u–1)
2

×
∣∣∣∣
p2ϑθu+u – q2ϑθu+u

pu–1(pn – qn)
– x

∣∣∣∣

)}
ω�(g; δ)

≤
{

1 +
1
δ

(
1

eϑ ,p,q([n]p,qζn(x))

∞∑

u=0

([n]p,qζn(x))u

Θϑ ,p,q(u)
p

u(u–1)
2

×
(

p2ϑθu+u – q2ϑθu+u

pu–1(pn – qn)
– x

)2
) 1

2
}

ω�(g; δ)

=
{

1 +
1
δ

(
A∗

n,p,q(t – x)2; x
) 1

2

}
ω�(g; δ)

≤
{

1 +
1
δ

√
1

[n]p,q
[1 + 2ϑ]p,qx +

1
4[n]2

p,q

(
1 – [1 + 2ϑ]p,q

)}
ω�(g; δ),

if we choose δ =
√

1
[n]p,q

, then we get our result. �

We now give the rate of convergence of A∗
n,p,q in terms of the elements of the usual Lip-

schitz class LipK (μ).
Let g ∈ C[0,∞), K > 0, and 0 < μ ≤ 1. The Lipschitz class LipK (μ) is given by

LipK (μ) =
{

g :
∣∣g(ϕ1) – f (ϕ2)

∣∣ ≤ K |ϕ1 – ϕ2|μ
(
ϕ1,ϕ2 ∈ [0,∞)

)}
. (4.3)

Theorem 4.2 Let A∗
n,p,q(·; ·) be the operator defined in (2.4). Then, for each g ∈ LipK (μ)

with K > 0, 0 < μ ≤ 1 and satisfying (4.3), we have

∣∣A∗
n,p,q(g; x) – f (x)

∣∣ ≤ K
(

1
[n]p,q

[1 + 2ϑ]p,qx +
1

4[n]2
p,q

(
1 – [1 + 2ϑ]p,q

))
μ
2

.

Proof We apply Hölder’s inequality.

∣∣A∗
n,p,q(g; x) – g(x)

∣∣ ≤ ∣∣A∗
n,p,q

(
g(t) – g(x); x

)∣∣

≤ A∗
n,p,q

(∣∣g(t) – g(x)
∣∣; x

)

≤ KA∗
n,p,q

(|t – x|μ; x
)
.
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Therefore

∣∣A∗
n,p,q(g; x) – f (x)

∣∣

≤ K
1

eϑ ,p,q([n]p,qζn(x))

∞∑

u=0

([n]p,qζn(x))u

Θϑ ,p,q(u)
p

u(u–1)
2

×
∣∣∣∣
p2ϑθu+u – q2ϑθu+u

pu–1(pn – qn)
– x

∣∣∣∣
μ

≤ K
1

eϑ ,p,q([n]p,qζn(x))

∞∑

u=0

(
([n]p,qζn(x))up

u(u–1)
2

Θϑ ,p,q(u)

) 2–μ
2

×
(

([n]p,qζn(x))up
u(u–1)

2

Θϑ ,p,q(u)

)μ
2
∣∣∣∣
p2ϑθu+u – q2ϑθu+u

pu–1(pn – qn)
– x

∣∣∣∣
μ

≤ K

(
1

(eϑ ,p,q([n]p,qζn(x)))

∞∑

u=0

([n]p,qζn(x))up
u(u–1)

2

Θϑ ,p,q(u)

) 2–μ
2

×
(

1
(eϑ ,p,q([n]p,qζn(x)))

∞∑

u=0

([n]p,qζn(x))up
u(u–1)

2

Θϑ ,p,q(u)

×
∣∣∣∣
p2ϑθu+u – q2ϑθu+u

pm–1(pn – qn)
– x

∣∣∣∣
2
)μ

2

≤ K
(
A∗

n,p,q(t – x)2; x
)μ

2 ,

which proves the theorem. �

We consider the following space:

C2
B
(
R

+)
=

{
g ∈ CB

(
R

+)
: g ′, g ′′ ∈ CB

(
R

+)}
, (4.4)

which is equipped with the norm

‖g‖C2
B(R+) = ‖g‖CB(R+) +

∥∥g ′∥∥
CB(R+) +

∥∥g ′′∥∥
CB(R+), (4.5)

also

‖g‖CB(R+) = sup
x∈R+

∣∣g(x)
∣∣. (4.6)

Theorem 4.3 Let us consider the operators A∗
n,p,q(·; ·) given in (2.4). Then, for any g ∈

C2
B(R+), we have

∣∣A∗
n,p,q(g; x) – g(x)

∣∣ ≤ 1 + [1 + 2ϑ]p,q

2[n]p,q
x‖g‖C2

B(R+) +
1

[n]2
p,q

(
1 – [1 + 2ϑ]p,q

)‖g‖C2
B(R+)

8
.

Proof Suppose that g ∈ C2
B(R+). It follows from Taylor series expansion that

g(t) = g(x) + g ′(x)(t – x) + g ′′(ϕ)
(t – x)2

2
, ϕ ∈ (x, t).



Alotaibi Journal of Inequalities and Applications        (2019) 2019:241 Page 8 of 10

Since the operator A∗
n,p,q is linear, by operating A∗

n,p,q on both sides of the last equality, we
have

A∗
n,p,q(g, x) – g(x) = g ′(x)A∗

n,p,q
(
(t – x); x

)
+

g ′′(ϕ)
2

A∗
n,p,q

(
(t – x)2; x

)
,

which yields

∣∣A∗
n,p,q(g; x) – g(x)

∣∣ ≤
(

1
[n]p,q

[1 + 2ϑ]p,qx +
1

4[n]2
p,q

(
1 – [1 + 2ϑ]p,q

))‖g ′′‖CB(R+)

2

+
1

2[n]p,q

∥∥g ′∥∥
CB(R+).

From (4.5), we have

∥∥g ′∥∥
CB(R+) ≤ ‖g‖C2

B(R+) and
∥∥g ′′∥∥

CB(R+) ≤ ‖g‖C2
B(R+).

Consequently,

∣∣A∗
n,p,q(g; x) – g(x)

∣∣ ≤ 1
8[n]p,q

(
4 + 4[1 + 2ϑ]p,qx +

1
[n]p,q

(
1 – [1 + 2ϑ]p,q

))‖g‖C2
B(R+),

which completes the proof. �

Peetre’s K-functional is defined by

K2(g; δ) = inf
C2

B(R+)

{(‖g – f ‖CB(R+) + δ
∥∥f

∥∥
C2

B(R+)

)
: f ∈W2}, (4.7)

where

W2 =
{

f ∈ CB
(
R

+)
: f ′, f ′′ ∈ CB

(
R

+)}
. (4.8)

Then there exists a constant M > 0 such that

K2(g; δ) ≤ Mω2
(
g; δ

1
2
)

(δ > 0),

where ω2(g; δ 1
2 ) (second order modulus of continuity) is given by

ω2
(
g; δ

1
2
)

= sup
0<h<δ

1
2

sup
x∈R+

∣∣g(x + 2h) – 2g(x + h) + g(x)
∣∣. (4.9)

Theorem 4.4 For every g ∈ CB(R+), there exists a positive constant M such that

∣∣A∗
n,p,q(g; x) – g(x)

∣∣ ≤ 2M
{
ω2

(
g;

√
Λn(x)

)
+ min

(
1,Λn(x)

)‖g‖CB(R+)
}

.

Proof We prove this by using Theorem (4.3)

∣∣A∗
n,p,q(g; x) – g(x)

∣∣
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≤ ∣∣A∗
n,p,q(g – f ; x)

∣∣ +
∣∣A∗

n,p,q(f ; x) – f (x)
∣∣

+
∣∣g(x) – f (x)

∣∣

≤ 1 + [1 + 2ϑ]p,q

2[n]p,q
x‖f ‖C2

B(R+)

+
1

[n]2
p,q

(
1 – [1 + 2ϑ]p,q

)‖f ‖C2
B(R+)

8
+ 2‖g – f ‖CB(R+)

≤ 2
{(

1
4[n]p,q

(
1 + [1 + 2ϑ]p,q

)
x

+
1

16[n]2
p,q

(
1 – [1 + 2ϑ]p,q

))‖f ‖C2
B(R+) + ‖g – f ‖CB(R+)

}
.

Considering the infimum over all f ∈ C2
B(R+) and using (4.7), we obtain

∣∣A∗
n,p,q(g; x) – g(x)

∣∣ ≤ 2K2
(
g;Λn(x)

)
,

where

Λn(x) =
1

4[n]p,q

(
1 + [1 + 2ϑ]p,q

)
x +

1
16[n]2

p,q

(
1 – [1 + 2ϑ]p,q

)
.

Now, for an absolute constant M > 0 in [11], we use the relation

K2(g; δ) ≤ M
{
ω2(g;

√
δ) + min(1, δ)‖g‖},

which proves our theorem. �
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