Skip to main content

A note on type 2 q-Bernoulli and type 2 q-Euler polynomials

Abstract

As is well known, power sums of consecutive nonnegative integers can be expressed in terms of Bernoulli polynomials. Also, it is well known that alternating power sums of consecutive nonnegative integers can be represented by Euler polynomials. In this paper, we show that power sums of consecutive positive odd q-integers can be expressed by means of type 2 q-Bernoulli polynomials. Also, we show that alternating power sums of consecutive positive odd q-integers can be represented by virtue of type 2 q-Euler polynomials. The type 2 q-Bernoulli polynomials and type 2 q-Euler polynomials are introduced respectively as the bosonic p-adic q-integrals on \(\mathbb{Z}_{p}\) and the fermionic p-adic q-integrals on \(\mathbb{Z}_{p}\). Along the way, we will obtain Witt type formulas and explicit expressions for those two newly introduced polynomials.

1 Introduction

Let p be a fixed odd prime number. Throughout this paper, \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\), and \(\mathbb{C}_{p}\) will denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \(\mathbb{Q}_{p}\), respectively. Let \(|\cdot |_{p}\) be the p-adic norm which is normalized as \(|p|_{p}=\frac{1}{p}\). Let q be an indeterminate such that \(q \in {\mathbb{C}}_{p}\) with \(|1-q|_{p} < p^{-\frac{1}{p-1}}\), and \([x]_{q} = \frac{1-q^{x}}{1-q}\). Note that \([x]_{-q} = \frac{1-(-q)^{x}}{1+q}\).

The bosonic p-adic q-integrals on \(\mathbb{Z}_{p}\) are defined by Kim as

$$ \int _{\mathbb{Z}_{p}} f(x)\,d\mu _{q}(x)= \lim _{N\rightarrow \infty } \frac{1}{[p ^{N}]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x} \quad (\text{see [7]}), $$
(1.1)

where f is a uniformly differentiable function on \(\mathbb{Z}_{p}\).

In [1, 2], Carlitz considered the q-Bernoulli numbers which are given by the recurrence relation:

$$ \begin{aligned} \beta _{0,q}=1, \quad q(q\beta _{q}+1)^{n}-\beta _{n,q} = \textstyle\begin{cases} 1, & \text{if } n=1, \\ 0, & \text{if } n>1, \end{cases}\displaystyle \end{aligned} $$
(1.2)

with the usual convention about replacing \(\beta _{q}^{n}\) by \(\beta _{n,q}\).

In [6, 7], Kim gave the following Witt type formula:

$$ \int _{\mathbb{Z}_{p}} [x]_{q}^{n} \,d\mu _{q}(x) = \beta _{n,q} \quad (n \geq 0). $$
(1.3)

Carlitz also defined the q-Bernoulli polynomials by

$$ \beta _{n,q}(x) = \bigl(q^{x} \beta _{q} + [x]_{q}\bigr)^{n} = \sum _{l=0}^{n} \binom{n}{l}[x]_{q}^{n-l} q^{lx} \beta _{l,q} \quad (\text{see [1, 2]}), $$
(1.4)

where n is a nonnegative integer.

An integral representation for \(\beta _{n,q}(x)\), \((n \geq 0)\) was given by Kim as follows:

$$ \int _{\mathbb{Z}_{p}} [x+y]_{q}^{n} \,d\mu _{q}(y) = \beta _{n,q}(x), \quad (n \geq 0), \ (\text{see [5, 7]}). $$
(1.5)

In [6, 8, 10], Kim introduced the modified q-Bernoulli polynomials as the p-adic q-integral on \(\mathbb{Z}_{p}\) given by

$$ B_{n,q}(x) = \int _{\mathbb{Z}_{p}} q^{-y} [x+y]_{q}^{n} \,d \mu _{q}(y) \quad (n \geq 0). $$
(1.6)

For \(x=0\), \(B_{n,q} = B_{n,q}(0)\) are called the modified q-Bernoulli numbers.

From (1.1), we note that

$$ \begin{aligned} B_{0,q}=\frac{q-1}{\log q}, \quad (q B_{q}+1)^{n} - B_{n,q} = \textstyle\begin{cases} 1, & \text{if } n=1, \\ 0, & \text{if } n>1, \end{cases}\displaystyle \end{aligned} $$
(1.7)

with the usual convention about replacing \(B_{q}^{n}\) by \(B_{n,q}\).

By (1.6), we easily get

$$ \begin{aligned} B_{n,q}(x) & = \sum _{l=0}^{n} \binom{n}{l}[x]_{q}^{n-l} q^{lx} B_{l,q} \quad (n \geq 0), \\ & = \frac{1}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q^{lx} \frac{l}{[l]_{q}} \quad (n \geq 0) \ (\text{see [6, 8, 10]}). \end{aligned} $$

It is well known that

$$ 0^{k} + 1^{k} + 2^{k} + \cdots +(n-1)^{k} = \frac{1}{k+1} \bigl(B_{k+1}(n) - B_{k+1} \bigr) \quad (n \geq 1, k \geq 0). $$
(1.8)

Here \(B_{k}(x)\) are the Bernoulli polynomials given by

$$ \frac{t}{e^{t}-1} e^{xt} = \sum _{n=0}^{\infty }B_{n}(x) \frac{t^{n}}{n!} \quad (\text{see [1--17]}), $$
(1.9)

and \(B_{n} = B_{n}(0)\) are called the Bernoulli numbers.

In [8], Kim proved that the power sums of consecutive nonnegative q-integers are given by

$$ [0]_{q}^{k} + q [1]_{q}^{k} + q^{2} [2]_{q}^{k} + \cdots + q^{n-1} [n-1]_{q} ^{k} = \frac{1}{k+1} \bigl(B_{k+1,q}(n) - B_{k+1,q} \bigr) \quad (n \geq 1, k \geq 0). $$

Now, we consider the power sums of consecutive odd positive q-integers and ask the following question:

$$ q [1]_{q}^{k} + q^{3} [3]_{q}^{k} + q^{5} [5]_{q}^{k} +\cdots + q^{2n-1} [2n-1]_{q}^{k} = ? $$
(1.10)

In addition, we ask the following question:

$$ [1]_{q}^{k} -q [3]_{q}^{k} +q^{2} [5]_{q}^{k} -\cdots + (-1)^{n-1} q ^{n-1} [2n-1]_{q}^{k} = ? $$
(1.11)

We will see that (1.10) can be expressed in terms of type 2 q-Bernoulli polynomials and (1.11) by virtue of type 2 q-Euler polynomials. Here we note that the type 2 q-Bernoulli polynomials are represented by bosonic p-adic q-integrals on \(\mathbb{Z}_{p}\) and the type 2 q-Euler polynomials by fermionic p-adic q-integrals on \(\mathbb{Z}_{p}\).

2 Type 2 q-Bernoulli polynomials and numbers

From (1.1), we have

$$ \int _{\mathbb{Z}_{p}} q^{-x} f(x+1) \,d\mu _{q}(x) = \int _{\mathbb{Z} _{p}} q^{-x}f(x) \,d\mu _{q}(x) + \frac{q-1}{\log q} f'(0). $$
(2.1)

By using (2.1) and induction, we get

$$ \int _{\mathbb{Z}_{p}} q^{-x} f(x+n) \,d\mu _{q}(x) = \int _{\mathbb{Z} _{p}} q^{-x}f(x) \,d\mu _{q}(x) + \frac{q-1}{\log q} \sum_{l=0}^{n-1} f'(l), $$
(2.2)

where n is a positive integer.

In view of (1.6), we consider the generating function of the type 2 q-Bernoulli polynomials given by the following p-adic q-integral on \(\mathbb{Z}_{p}\):

$$ \int _{\mathbb{Z}_{p}} q^{-y} e^{[2y+x+1]_{q} t} \,d\mu _{q}(y) = \sum_{n=0}^{\infty }b_{n,q}(x) \frac{t^{n}}{n!}. $$
(2.3)

From (2.3), we have

$$ \int _{\mathbb{Z}_{p}} q^{-y} [2y+x+1]_{q}^{n} \,d\mu _{q}(y) = b_{n,q}(x) \quad (n \geq 0). $$
(2.4)

For \(x=0\), \(b_{n,q} = b_{n,q}(0)\) are called the type 2 q-Bernoulli numbers.

By (2.4), we get

$$ b_{n,q}= \int _{\mathbb{Z}_{p}} q^{-y} [2y+1]_{q}^{n} \,d\mu _{q}(y)= \frac{2}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q^{l} \frac{l}{[2l]_{q}}. $$
(2.5)

By (2.5), we easily get

$$ \begin{aligned}[b] b_{n,q} & = \frac{2}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q ^{l} \frac{l}{[2l]_{q}} \\ & = \frac{2n}{(1-q)^{n}} \sum_{l=1}^{n} \binom{n-1}{l-1} (-1)^{l} q ^{l} (1-q) \sum _{m=0}^{\infty }q^{2lm} \\ & = \frac{-2n}{(1-q)^{n-1}} \sum_{m=0}^{\infty }q^{2m+1} \sum_{l=0} ^{n-1} \binom{n-1}{l} (-1)^{l} q^{(2m+1)l} \\ & = -2n \sum_{m=0}^{\infty }q^{2m+1} [2m+1]_{q}^{n-1}. \end{aligned} $$
(2.6)

Theorem 2.1

For \(n \geq 0\), we have

$$ \begin{aligned}[b] b_{n,q} & = \frac{2}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q ^{l} \frac{l}{[2l]_{q}} \\ & = -2n \sum_{m=0}^{\infty }q^{2m+1} [2m+1]_{q}^{n-1}. \end{aligned} $$
(2.7)

By (2.7), we can derive the generating function for the type 2 q-Bernoulli numbers as follows:

$$ \sum_{n=0}^{\infty }b_{n,q} \frac{t^{n}}{n!} = -2t \sum_{m=0}^{\infty }q^{2m+1} e^{[2m+1]_{q} t}. $$
(2.8)

From (2.4), we note that

$$ b_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} q^{lx} b_{l,q} [x]_{q}^{n-l}, $$
(2.9)

and that

$$ \bigl(q^{2} b_{q} +1 +q \bigr)^{n} - b_{n,q} = 2nq \quad (n \geq 0). $$
(2.10)

From (2.4), we easily get

$$ \begin{aligned}[b] b_{n,q}(x) & = \frac{2}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q^{(x+1)l} \frac{l}{[2l]_{q}} \\ & = -2n \sum_{m=0}^{\infty }q^{2m+1+x} [2m+1+x]_{q}^{n-1} \quad (n \geq 0). \end{aligned} $$
(2.11)

From (2.2), we note that

$$ \begin{aligned}[b] b_{m,q}(2n) - b_{m,q} & = \int _{\mathbb{Z}_{p}} q^{-x} [2x+1+2n]_{q} ^{m} \,d\mu _{q}(x) - \int _{\mathbb{Z}_{p}} q^{-x} [2x+1]_{q}^{m} \,d\mu _{q}(x) \\ & = 2m \sum_{l=0}^{n-1} q^{2l+1} [2l+1]_{q}^{m-1}. \end{aligned} $$
(2.12)

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.2

For \(m \geq 0\) and \(n \in \mathbb{N}\), we have

$$ \frac{1}{m+1} \bigl(b_{m+1,q}(2n) - b_{m+1,q} \bigr) = 2 \sum_{l=0} ^{n-1} q^{2l+1} [2l+1]_{q}^{m}. $$
(2.13)

From (2.13), we note that

$$ \begin{aligned}[b] \sum_{l=0}^{n-1} q^{2l+1} [2l+1]_{q}^{m} = {}& \frac{1}{2m+2} \Biggl( \sum_{l=0}^{m+1} \binom{m+1}{l} q^{2nl} b_{l,q} [2n]_{q}^{m+1-l} - b _{m+1,q} \Biggr) \\ ={}& \frac{1}{2m+2} \Biggl(\sum_{l=0}^{m} \binom{m+1}{l} q^{2nl} b_{l,q} [2n]_{q}^{m+1-l} \\ & {}+ (q-1) \bigl[2n(m+1)\bigr]_{q} b_{m+1,q} \Biggr). \end{aligned} $$
(2.14)

By (2.14), we get the following corollary.

Corollary 2.3

For \(n \in \mathbb{N}\) and \(m \geq 0\), we have

$$ \begin{aligned}[b] \sum_{l=0}^{n-1} q^{2l+1} [2l+1]_{q}^{m} ={}& \frac{1}{2m+2} \sum _{l=0} ^{m} \binom{m+1}{l} q^{2nl} [2n]_{q}^{m+1-l} b_{l,q} \\ & {} + \frac{(q-1) [2n(m+1)]_{q} b_{m+1,q}}{2m+2}. \end{aligned} $$
(2.15)

Example

Here we check formula (2.15) for \(m=1\). First, we observe that

$$ \begin{aligned}[b] [2n+1] _{q}^{2} - 1 & = \sum_{l=0}^{n-1} \bigl([2l+3]_{q}^{2} - [2l+1]_{q} ^{2} \bigr) \\ &= \sum_{l=0}^{n-1} \bigl([2l+1]_{q} +q^{2l+1}[2]_{q} - [2l+1]_{q} \bigr) \\ & \quad \times \bigl([2l+1]_{q} +q^{2l+1}[2]_{q} + [2l+1]_{q} \bigr) \\ & = 2[2]_{q} \sum_{l=0}^{n-1} q^{2l+1} [2l+1]_{q} + \frac{[2]_{q} ^{2} q^{2} [4n]_{q} }{[4]_{q}}. \end{aligned} $$
(2.16)

By (2.16), we get

$$ \begin{aligned}[b] \sum_{l=0}^{n-1} q^{2l+1} [2l+1]_{q} &= \frac{1}{2[2]_{q}} \biggl([2n+1]_{q} ^{2} - 1 - [2]_{q}^{2}q^{2} \frac{[4n]_{q}}{[4]_{q}} \biggr) \\ &=\frac{1}{2(q+1)} \biggl\{ \biggl(\frac{1-q^{2n+1}}{1-q} \biggr)^{2}-1-q ^{2}(q+1)^{2}\frac{1-q^{4n}}{1-q^{4}} \biggr\} \\ &=\frac{q(1-q^{2n})}{(1-q)(1-q^{2})}-\frac{q^{2}(1-q^{4n})}{(1-q)(1-q ^{4})}. \end{aligned} $$
(2.17)

We now show that (2.17) agrees with the result in (2.15). For this, we first note the following from (2.7):

$$ \begin{aligned} &b_{0,q}=\frac{q-1}{\log q}, \qquad b_{1,q}=-\frac{1}{\log q}-\frac{2q}{1-q^{2}}, \\ & b_{2,q}=\frac{2}{1-q} \biggl(-\frac{1}{2 \log q}- \frac{2q}{1-q^{2}}+\frac{2q ^{2}}{1-q^{4}} \biggr). \end{aligned} $$

Then, from (2.15), we have

$$ \begin{aligned}\sum_{l=0}^{n-1} q^{2l+1} [2l+1]_{q}={}& \frac{1}{4} \bigl([2n]_{q}^{2}b _{0,q} +2q^{2n}[2n]_{q}b_{1,q} +(q-1)[4n]_{q}b_{2,q} \bigr) \\ ={}&\frac{1}{4} \biggl\{ \biggl(\frac{1-q^{2n}}{1-q} \biggr)^{2} \frac{q-1}{ \log q}+2q^{2n}\frac{1-q^{2n}}{1-q} \biggl(-\frac{1}{\log q}- \frac{2q}{1-q ^{2}} \biggr) \\ & {}+(q-1)\frac{1-q^{4n}}{1-q} \frac{2}{1-q} \biggl(-\frac{1}{2 \log q}-\frac{2q}{1-q^{2}}+ \frac{2q^{2}}{1-q^{4}} \biggr) \biggr\} \\ ={}&\frac{q(1-q^{2n})}{(1-q)(1-q^{2})}-\frac{q^{2}(1-q^{4n})}{(1-q)(1-q^{4})}. \end{aligned} $$

3 Type 2 q-Euler polynomials and numbers

It is known that the fermionic p-adic q-integrals on \(\mathbb{Z} _{p}\) are defined by Kim as

$$ I_{-q} (f) = \int _{\mathbb{Z}_{p}} f(x) \,d\mu _{-q}(x)= \lim _{N\rightarrow \infty } \frac{1}{[p^{N}]_{-q}} \sum_{x=0}^{p^{N}-1} f(x) (-q)^{x} \quad (\text{see [11, 14, 17]}), $$
(3.1)

where \([x]_{-q} = \frac{1-(-q)^{x}}{1+q}\).

From (3.1), we note that

$$ \begin{aligned}[b] q I_{-q} (f_{1}) & = q \int _{\mathbb{Z}_{p}} f(x+1) \,d\mu _{-q}(x)= \lim _{N\rightarrow \infty } \frac{q}{[p^{N}]_{-q}} \sum_{x=0}^{p^{N}-1} f(x+1) (-q)^{x} \\ & = -\lim_{N\rightarrow \infty } \frac{1}{[p^{N}]_{-q}} \sum _{x=1} ^{p^{N}} f(x) (-q)^{x} = - I_{-q}(f) + [2]_{q} f(0). \end{aligned} $$
(3.2)

By (3.2), we get

$$ q I_{-q} (f_{1}) = - I_{-q}(f) + [2]_{q} f(0) $$
(3.3)

and

$$ q^{n} I_{-q} (f_{n}) = (-1)^{n} I_{-q}(f) + [2]_{q} \sum _{l=0}^{n-1} (-1)^{n-1-l} q^{l} f(l), $$
(3.4)

where \(f_{n}(x) = f(x+n)\), with \(n \in \mathbb{N}\).

As is known, Carlitz considered q-Euler numbers given by the recurrence relation

$$ \begin{aligned} E_{0,q}=1, \quad q(q E_{q}+1)^{n} + E_{n,q} = \textstyle\begin{cases} [2]_{q}, & \text{if } n=0, \\ 0, & \text{if } n>0, \end{cases}\displaystyle \end{aligned} $$
(3.5)

with the usual convention about replacing \(E_{q}^{l}\) by \(E_{l,q}\) (see [1, 2]).

In [11], Kim obtained the Witt type formula for Carlitz’s q-Euler numbers which is represented by the fermionic p-adic q-integrals on \(\mathbb{Z}_{p}\)

$$ \int _{\mathbb{Z}_{p}} [x]_{q}^{n} \,d\mu _{-q}(x) = E_{n,q} \quad (n \geq 0). $$
(3.6)

From (3.6), we note that

$$ E_{n,q} = \frac{[2]_{q}}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \frac{1}{1+q^{l+1}} = [2]_{q} \sum_{m=0}^{\infty }(-1)^{m} q^{m} [m]_{q}^{n}. $$
(3.7)

By (3.7), we readily see that the generating function for Carlitz’s q-Euler numbers is given by

$$ F_{q}(t) = \sum_{n=0}^{\infty } E_{n,q} \frac{t^{n}}{n!} = [2]_{q} \sum _{m=0}^{\infty }(-1)^{m} q^{m} e^{[m]_{q} t}. $$
(3.8)

It is known that

$$ q^{n} E_{m,q}(n) + E_{m,q} = [2]_{q} \sum_{l=0} ^{n-1} (-1)^{l} q^{l} [l]_{q}^{m} \quad (\text{see [1, 2]}), $$
(3.9)

where \(n \in \mathbb{N}\) with \(n \equiv 1(\mathrm{mod}~2)\). Note that equation (3.9) is an alternating sum of powers of consecutive positive q-integers.

Now, we consider an alternating sum of powers of consecutive positive odd q-integers which are given by

$$ \sum_{l=0}^{n-1} (-1)^{l} q^{l} [2l+1]_{q}^{m} = [1]_{q}^{m} - q[3]_{q} ^{m} + q^{2} [5]_{q}^{m} - \cdots + (-1)^{n-1} q^{n-1} [2n-1]_{q}^{m}. $$
(3.10)

Let us define the type 2 q-Euler polynomials which are given by

$$ \int _{\mathbb{Z}_{p}} [2y+x+1]_{q}^{m} \,d\mu _{-q}(y) = \mathcal{E}_{m,q}(x) \quad (m \geq 0). $$
(3.11)

When \(x=0\), \(\mathcal{E}_{n,q} = \mathcal{E}_{n,q}(0)\), \((n \geq 0)\) are called the type 2 q-Euler numbers.

From (3.11), we note that

$$ \begin{aligned}[b] \mathcal{E}_{m,q} (x) & = \frac{[2]_{q}}{(1-q)^{m}} \sum_{l=0}^{m} \binom{m}{l} (-1)^{l} q^{l(1+x)} \frac{1}{1+q^{2l+1}} \\ & = [2]_{q} \sum_{k=0}^{\infty }(-1)^{k} q^{k} [2k+1+x]_{q}^{m} \quad (m \geq 0). \end{aligned} $$
(3.12)

By (3.12), we get the following generating function for the q-Euler polynomials:

$$ \sum_{m=0}^{\infty } \mathcal{E}_{m,q}(x) \frac{t^{m}}{m!} = [2]_{q} \sum _{k=0}^{\infty }(-1)^{k} q^{k} e^{[2k+1+x]_{q} t}. $$
(3.13)

Theorem 3.1

For \(m \geq 0\), we have

$$ \begin{aligned}[b] \mathcal{E}_{m,q}(x) & = \frac{[2]_{q}}{(1-q)^{m}} \sum_{l=0}^{m} \binom{m}{l} (-1)^{l} q^{l(1+x)} \frac{1}{1+q^{2l+1}} \\ & = [2]_{q} \sum_{k=0}^{\infty }(-1)^{k} q^{k} [2k+1+x]_{q}^{m}. \end{aligned} $$
(3.14)

From (3.11), we have

$$ \begin{aligned}[b] \mathcal{E}_{n,q}(x) & = \int _{\mathbb{Z}_{p}} [2y+1+x]_{q}^{n} \,d\mu _{-q}(y) \\ & = \sum_{l=0}^{n} \binom{n}{l} [x]_{q}^{n-l} q^{lx} \int _{\mathbb{Z}_{p}} [2y+1]_{q}^{l} \,d\mu _{-q}(y) \\ & = \sum_{l=0}^{n} \binom{n}{l} [x]_{q}^{n-l} q^{lx} \mathcal{E}_{l,q} \quad (n \geq 0). \end{aligned} $$
(3.15)

Also, by (3.3), we get

$$ q \mathcal{E}_{m,q}(2) + \mathcal{E}_{m,q} = [2]_{q} \quad (n \geq 0). $$
(3.16)

Therefore, by (3.15) and (3.16), we obtain the following theorem.

Theorem 3.2

For \(m \geq 0\), we have

$$ \mathcal{E}_{m,q}(x) = \sum _{l=0}^{m} \binom{m}{l} [x]_{q}^{m-l} q ^{lx} \mathcal{E}_{l,q}. $$
(3.17)

In particular,

$$ q \mathcal{E}_{m,q}(2)= [2]_{q} - \mathcal{E}_{m,q} \quad (m \geq 0). $$
(3.18)

Let n be a positive integer with \(n \equiv 1(\mathrm{mod}~2)\). From (3.4), we have

$$ \begin{aligned}[b] & q^{n} \int _{\mathbb{Z}_{p}} [2y+2n+1]_{q}^{m} \,d\mu _{-q}(y) + \int _{\mathbb{Z}_{p}} [2y+1]_{q}^{m} \,d\mu _{-q}(y) \\ &\quad = [2]_{q} \sum_{l=0}^{n-1} (-1)^{l} q^{l} [2l+1]_{q}^{m}. \end{aligned} $$
(3.19)

By (3.11) and (3.19), we get

$$ q^{n} \mathcal{E}_{m,q}(2n) + \mathcal{E}_{m,q} = [2]_{q} \sum_{l=0} ^{n-1} (-1)^{l} q^{l} [2l+1]_{q}^{m}. $$
(3.20)

Therefore, by (3.20), we obtain the following theorem.

Theorem 3.3

For \(n \in \mathbb{N}\) with \(n \equiv 1(\mathrm{mod}~2)\) and \(m \geq 0\), we have

$$ q^{n} \mathcal{E}_{m,q}(2n) + \mathcal{E}_{m,q} = [2]_{q} \sum_{l=0} ^{n-1} (-1)^{l} q^{l} [2l+1]_{q}^{m}. $$
(3.21)

4 Conclusions

In an introductory calculus class, the following formulas are proved by mathematical induction and used in Riemann sum evaluations of some definite integrals:

$$ \begin{aligned} &\sum_{k=0}^{n} k = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} = \binom{n+1}{2}, \\ &\sum_{k=0}^{n} k^{2} = 1^{2} + 2^{2} + \cdots + n^{2} = \frac{n(n+1)(2n+1)}{6}, \\ &\sum_{k=0}^{n} k^{3} = 1^{3} + 2^{3} + \cdots + n^{3} = \binom{n+1}{2}^{2} = \biggl(\frac{n(n+1)}{2} \biggr)^{2}. \end{aligned} $$

The problem of finding formulas for power sums of consecutive nonnegative integers has captivated mathematicians for many centuries. Even since generalized formulas for the power sums, \(S_{k} (n) = \sum_{l=0}^{n} l^{k}\), were established, the various representations and number-theoretic properties have been studied by Faulhaber. In this paper, we studied the q-analogues of Faulhaber’s well-known formula expressing the power sums in terms of Bernoulli polynomials. Indeed, we showed that power sums of consecutive positive odd q-integers can be expressed by means of type 2 q-Bernoulli polynomials. Also, we showed that alternating power sums of consecutive positive odd q-integers can be represented by virtue of type 2 q-Euler polynomials. The type 2 q-Bernoulli polynomials and type 2 q-Euler polynomials were introduced respectively as the bosonic p-adic q-integrals on \(\mathbb{Z}_{p}\) and the fermionic p-adic q-integrals on \(\mathbb{Z}_{p}\). Along the way, we also obtained Witt type formulas and explicit expressions for those two newly introduced polynomials.

References

  1. Carlitz, L.: q-Bernoulli numbers and polynomials. Duke Math. J. 15, 987–1000 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlitz, L.: q-Bernoulli and Eulerian numbers. Transl. Am. Math. Soc. 76, 332–350 (1954)

    MathSciNet  MATH  Google Scholar 

  3. Jang, G.-W., Kim, T.: A note on type 2 degenerate Euler and Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 29(1), 147–159 (2019)

    Google Scholar 

  4. Jeong, J.-H., Jin, J.-H., Park, J.-W., Rim, S.-H.: On the twisted weak q-Euler numbers and polynomials with weight 0. Proc. Jangjeon Math. Soc. 16(2), 157–163 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Kim, D.S., Kim, T.: A note on type 2 Changhee and Daehee polynomials. Rev. de la Real Acad. De Cien. Exac. Fis. Nat. Series A. Mate., 1–9 (2019). https://doi.org/10.1007/s13398-019-00656-x

    Article  MathSciNet  Google Scholar 

  6. Kim, T.: On explicit formulas of p-adic q-integral L-functions. Kyushu J. Math. 48(1), 73–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, T.: q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288–299 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Kim, T.: Sums of powers of consecutive q-integers. Adv. Stud. Contemp. Math. (Kyungshang) 9(1), 15–18 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Kim, T.: Analytic continuation of multiple q-zeta functions and their values at negative integers. Russ. J. Math. Phys. 11(1), 71–76 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Kim, T.: A note on exploring the sums of powers of consecutive q-integers. Adv. Stud. Contemp. Math. (Kyungshang) 11(1), 137–140 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Kim, T.: q-Euler numbers and polynomials associated with p-adic q-integrals. J. Nonlinear Math. Phys. 14(1), 15–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, T., Rim, S.-H., Simsek, Y.: A note on the alternating sums of powers of consecutive q-integers. Adv. Stud. Contemp. Math. (Kyungshang) 13(2), 159–164 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Ozden, H., Cangul, I.N., Simsek, Y.: Multivariate interpolation functions of higher-order q-Euler numbers and their applications. Abstr. Appl. Anal. 2008, Article ID 390857 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rim, S.-H., Kim, T., Ryoo, C.S.: On the alternating sums of powers of consecutive q-integers. Bull. Korean Math. Soc. 43(3), 611–617 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rim, S.-H., Park, J.-W., Kwon, J., Pyo, S.-S.: On the modified q-Euler polynomials with weight. Adv. Differ. Equ. 2013, 356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ryoo, C.S., Kim, T.: Exploring the q-analogues of the sums of powers of consecutive integers with mathematica. Adv. Stud. Contemp. Math. (Kyungshang) 18(1), 69–77 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Simsek, Y.: Complete sum of products of \((h,q)\)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 16(11), 1331–1348 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2017R1E1A1A03070882).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Corresponding author

Correspondence to Jongkyum Kwon.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.S., Kim, T., Kim, H.Y. et al. A note on type 2 q-Bernoulli and type 2 q-Euler polynomials. J Inequal Appl 2019, 181 (2019). https://doi.org/10.1186/s13660-019-2131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2131-6

MSC

Keywords