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Abstract
As is well known, power sums of consecutive nonnegative integers can be expressed
in terms of Bernoulli polynomials. Also, it is well known that alternating power sums
of consecutive nonnegative integers can be represented by Euler polynomials. In this
paper, we show that power sums of consecutive positive odd q-integers can be
expressed by means of type 2 q-Bernoulli polynomials. Also, we show that alternating
power sums of consecutive positive odd q-integers can be represented by virtue of
type 2 q-Euler polynomials. The type 2 q-Bernoulli polynomials and type 2 q-Euler
polynomials are introduced respectively as the bosonic p-adic q-integrals on Zp and
the fermionic p-adic q-integrals on Zp. Along the way, we will obtain Witt type
formulas and explicit expressions for those two newly introduced polynomials.
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the
algebraic closure of Qp, respectively. Let | · |p be the p-adic norm which is normalized as
|p|p = 1

p . Let q be an indeterminate such that q ∈ Cp with |1 – q|p < p– 1
p–1 , and [x]q = 1–qx

1–q .
Note that [x]–q = 1–(–q)x

1+q .
The bosonic p-adic q-integrals on Zp are defined by Kim as

∫
Zp

f (x) dμq(x) = lim
N→∞

1
[pN ]q

pN –1∑
x=0

f (x)qx (see [7]), (1.1)

where f is a uniformly differentiable function on Zp.
In [1, 2], Carlitz considered the q-Bernoulli numbers which are given by the recurrence

relation:

β0,q = 1, q(qβq + 1)n – βn,q =

⎧⎨
⎩

1, if n = 1,

0, if n > 1,
(1.2)

with the usual convention about replacing βn
q by βn,q.
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In [6, 7], Kim gave the following Witt type formula:

∫
Zp

[x]n
q dμq(x) = βn,q (n ≥ 0). (1.3)

Carlitz also defined the q-Bernoulli polynomials by

βn,q(x) =
(
qxβq + [x]q

)n =
n∑

l=0

(
n
l

)
[x]n–l

q qlxβl,q (see [1, 2]), (1.4)

where n is a nonnegative integer.
An integral representation for βn,q(x), (n ≥ 0) was given by Kim as follows:

∫
Zp

[x + y]n
q dμq(y) = βn,q(x), (n ≥ 0), (see [5, 7]). (1.5)

In [6, 8, 10], Kim introduced the modified q-Bernoulli polynomials as the p-adic q-
integral on Zp given by

Bn,q(x) =
∫
Zp

q–y[x + y]n
q dμq(y) (n ≥ 0). (1.6)

For x = 0, Bn,q = Bn,q(0) are called the modified q-Bernoulli numbers.
From (1.1), we note that

B0,q =
q – 1
log q

, (qBq + 1)n – Bn,q =

⎧⎨
⎩

1, if n = 1,

0, if n > 1,
(1.7)

with the usual convention about replacing Bn
q by Bn,q.

By (1.6), we easily get

Bn,q(x) =
n∑

l=0

(
n
l

)
[x]n–l

q qlxBl,q (n ≥ 0),

=
1

(1 – q)n

n∑
l=0

(
n
l

)
(–1)lqlx l

[l]q
(n ≥ 0) (see [6, 8, 10]).

It is well known that

0k + 1k + 2k + · · · + (n – 1)k =
1

k + 1
(
Bk+1(n) – Bk+1

)
(n ≥ 1, k ≥ 0). (1.8)

Here Bk(x) are the Bernoulli polynomials given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(see [1–17]), (1.9)

and Bn = Bn(0) are called the Bernoulli numbers.
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In [8], Kim proved that the power sums of consecutive nonnegative q-integers are given
by

[0]k
q + q[1]k

q + q2[2]k
q + · · · + qn–1[n – 1]k

q =
1

k + 1
(
Bk+1,q(n) – Bk+1,q

)
(n ≥ 1, k ≥ 0).

Now, we consider the power sums of consecutive odd positive q-integers and ask the
following question:

q[1]k
q + q3[3]k

q + q5[5]k
q + · · · + q2n–1[2n – 1]k

q =? (1.10)

In addition, we ask the following question:

[1]k
q – q[3]k

q + q2[5]k
q – · · · + (–1)n–1qn–1[2n – 1]k

q =? (1.11)

We will see that (1.10) can be expressed in terms of type 2 q-Bernoulli polynomials and
(1.11) by virtue of type 2 q-Euler polynomials. Here we note that the type 2 q-Bernoulli
polynomials are represented by bosonic p-adic q-integrals on Zp and the type 2 q-Euler
polynomials by fermionic p-adic q-integrals on Zp.

2 Type 2 q-Bernoulli polynomials and numbers
From (1.1), we have

∫
Zp

q–xf (x + 1) dμq(x) =
∫
Zp

q–xf (x) dμq(x) +
q – 1
log q

f ′(0). (2.1)

By using (2.1) and induction, we get

∫
Zp

q–xf (x + n) dμq(x) =
∫
Zp

q–xf (x) dμq(x) +
q – 1
log q

n–1∑
l=0

f ′(l), (2.2)

where n is a positive integer.
In view of (1.6), we consider the generating function of the type 2 q-Bernoulli polyno-

mials given by the following p-adic q-integral on Zp:

∫
Zp

q–ye[2y+x+1]qt dμq(y) =
∞∑

n=0

bn,q(x)
tn

n!
. (2.3)

From (2.3), we have

∫
Zp

q–y[2y + x + 1]n
q dμq(y) = bn,q(x) (n ≥ 0). (2.4)

For x = 0, bn,q = bn,q(0) are called the type 2 q-Bernoulli numbers.
By (2.4), we get

bn,q =
∫
Zp

q–y[2y + 1]n
q dμq(y) =

2
(1 – q)n

n∑
l=0

(
n
l

)
(–1)lql l

[2l]q
. (2.5)



Kim et al. Journal of Inequalities and Applications        (2019) 2019:181 Page 4 of 10

By (2.5), we easily get

bn,q =
2

(1 – q)n

n∑
l=0

(
n
l

)
(–1)lql l

[2l]q

=
2n

(1 – q)n

n∑
l=1

(
n – 1
l – 1

)
(–1)lql(1 – q)

∞∑
m=0

q2lm

=
–2n

(1 – q)n–1

∞∑
m=0

q2m+1
n–1∑
l=0

(
n – 1

l

)
(–1)lq(2m+1)l

= –2n
∞∑

m=0

q2m+1[2m + 1]n–1
q . (2.6)

Theorem 2.1 For n ≥ 0, we have

bn,q =
2

(1 – q)n

n∑
l=0

(
n
l

)
(–1)lql l

[2l]q

= –2n
∞∑

m=0

q2m+1[2m + 1]n–1
q . (2.7)

By (2.7), we can derive the generating function for the type 2 q-Bernoulli numbers as
follows:

∞∑
n=0

bn,q
tn

n!
= –2t

∞∑
m=0

q2m+1e[2m+1]qt . (2.8)

From (2.4), we note that

bn,q(x) =
n∑

l=0

(
n
l

)
qlxbl,q[x]n–l

q , (2.9)

and that

(
q2bq + 1 + q

)n – bn,q = 2nq (n ≥ 0). (2.10)

From (2.4), we easily get

bn,q(x) =
2

(1 – q)n

n∑
l=0

(
n
l

)
(–1)lq(x+1)l l

[2l]q

= –2n
∞∑

m=0

q2m+1+x[2m + 1 + x]n–1
q (n ≥ 0). (2.11)
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From (2.2), we note that

bm,q(2n) – bm,q =
∫
Zp

q–x[2x + 1 + 2n]m
q dμq(x) –

∫
Zp

q–x[2x + 1]m
q dμq(x)

= 2m
n–1∑
l=0

q2l+1[2l + 1]m–1
q . (2.12)

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.2 For m ≥ 0 and n ∈N, we have

1
m + 1

(
bm+1,q(2n) – bm+1,q

)
= 2

n–1∑
l=0

q2l+1[2l + 1]m
q . (2.13)

From (2.13), we note that

n–1∑
l=0

q2l+1[2l + 1]m
q =

1
2m + 2

(m+1∑
l=0

(
m + 1

l

)
q2nlbl,q[2n]m+1–l

q – bm+1,q

)

=
1

2m + 2

( m∑
l=0

(
m + 1

l

)
q2nlbl,q[2n]m+1–l

q

+ (q – 1)
[
2n(m + 1)

]
qbm+1,q

)
. (2.14)

By (2.14), we get the following corollary.

Corollary 2.3 For n ∈N and m ≥ 0, we have

n–1∑
l=0

q2l+1[2l + 1]m
q =

1
2m + 2

m∑
l=0

(
m + 1

l

)
q2nl[2n]m+1–l

q bl,q

+
(q – 1)[2n(m + 1)]qbm+1,q

2m + 2
. (2.15)

Example Here we check formula (2.15) for m = 1. First, we observe that

[2n + 1]2
q – 1 =

n–1∑
l=0

(
[2l + 3]2

q – [2l + 1]2
q
)

=
n–1∑
l=0

(
[2l + 1]q + q2l+1[2]q – [2l + 1]q

)

× (
[2l + 1]q + q2l+1[2]q + [2l + 1]q

)

= 2[2]q

n–1∑
l=0

q2l+1[2l + 1]q +
[2]2

qq2[4n]q

[4]q
. (2.16)
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By (2.16), we get

n–1∑
l=0

q2l+1[2l + 1]q =
1

2[2]q

(
[2n + 1]2

q – 1 – [2]2
qq2 [4n]q

[4]q

)

=
1

2(q + 1)

{(
1 – q2n+1

1 – q

)2

– 1 – q2(q + 1)2 1 – q4n

1 – q4

}

=
q(1 – q2n)

(1 – q)(1 – q2)
–

q2(1 – q4n)
(1 – q)(1 – q4)

. (2.17)

We now show that (2.17) agrees with the result in (2.15). For this, we first note the fol-
lowing from (2.7):

b0,q =
q – 1
log q

, b1,q = –
1

log q
–

2q
1 – q2 ,

b2,q =
2

1 – q

(
–

1
2 log q

–
2q

1 – q2 +
2q2

1 – q4

)
.

Then, from (2.15), we have

n–1∑
l=0

q2l+1[2l + 1]q =
1
4
(
[2n]2

qb0,q + 2q2n[2n]qb1,q + (q – 1)[4n]qb2,q
)

=
1
4

{(
1 – q2n

1 – q

)2 q – 1
log q

+ 2q2n 1 – q2n

1 – q

(
–

1
log q

–
2q

1 – q2

)

+ (q – 1)
1 – q4n

1 – q
2

1 – q

(
–

1
2 log q

–
2q

1 – q2 +
2q2

1 – q4

)}

=
q(1 – q2n)

(1 – q)(1 – q2)
–

q2(1 – q4n)
(1 – q)(1 – q4)

.

3 Type 2 q-Euler polynomials and numbers
It is known that the fermionic p-adic q-integrals on Zp are defined by Kim as

I–q(f ) =
∫
Zp

f (x) dμ–q(x) = lim
N→∞

1
[pN ]–q

pN –1∑
x=0

f (x)(–q)x (see [11, 14, 17]), (3.1)

where [x]–q = 1–(–q)x

1+q .
From (3.1), we note that

qI–q(f1) = q
∫
Zp

f (x + 1) dμ–q(x) = lim
N→∞

q
[pN ]–q

pN –1∑
x=0

f (x + 1)(–q)x

= – lim
N→∞

1
[pN ]–q

pN∑
x=1

f (x)(–q)x = –I–q(f ) + [2]qf (0). (3.2)

By (3.2), we get

qI–q(f1) = –I–q(f ) + [2]qf (0) (3.3)



Kim et al. Journal of Inequalities and Applications        (2019) 2019:181 Page 7 of 10

and

qnI–q(fn) = (–1)nI–q(f ) + [2]q

n–1∑
l=0

(–1)n–1–lqlf (l), (3.4)

where fn(x) = f (x + n), with n ∈N.
As is known, Carlitz considered q-Euler numbers given by the recurrence relation

E0,q = 1, q(qEq + 1)n + En,q =

⎧⎨
⎩

[2]q, if n = 0,

0, if n > 0,
(3.5)

with the usual convention about replacing El
q by El,q (see [1, 2]).

In [11], Kim obtained the Witt type formula for Carlitz’s q-Euler numbers which is rep-
resented by the fermionic p-adic q-integrals on Zp

∫
Zp

[x]n
q dμ–q(x) = En,q (n ≥ 0). (3.6)

From (3.6), we note that

En,q =
[2]q

(1 – q)n

n∑
l=0

(
n
l

)
(–1)l 1

1 + ql+1 = [2]q

∞∑
m=0

(–1)mqm[m]n
q . (3.7)

By (3.7), we readily see that the generating function for Carlitz’s q-Euler numbers is given
by

Fq(t) =
∞∑

n=0

En,q
tn

n!
= [2]q

∞∑
m=0

(–1)mqme[m]qt . (3.8)

It is known that

qnEm,q(n) + Em,q = [2]q

n–1∑
l=0

(–1)lql[l]m
q (see [1, 2]), (3.9)

where n ∈ N with n ≡ 1(mod 2). Note that equation (3.9) is an alternating sum of powers
of consecutive positive q-integers.

Now, we consider an alternating sum of powers of consecutive positive odd q-integers
which are given by

n–1∑
l=0

(–1)lql[2l + 1]m
q = [1]m

q – q[3]m
q + q2[5]m

q – · · · + (–1)n–1qn–1[2n – 1]m
q . (3.10)

Let us define the type 2 q-Euler polynomials which are given by

∫
Zp

[2y + x + 1]m
q dμ–q(y) = Em,q(x) (m ≥ 0). (3.11)

When x = 0, En,q = En,q(0), (n ≥ 0) are called the type 2 q-Euler numbers.
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From (3.11), we note that

Em,q(x) =
[2]q

(1 – q)m

m∑
l=0

(
m
l

)
(–1)lql(1+x) 1

1 + q2l+1

= [2]q

∞∑
k=0

(–1)kqk[2k + 1 + x]m
q (m ≥ 0). (3.12)

By (3.12), we get the following generating function for the q-Euler polynomials:

∞∑
m=0

Em,q(x)
tm

m!
= [2]q

∞∑
k=0

(–1)kqke[2k+1+x]qt . (3.13)

Theorem 3.1 For m ≥ 0, we have

Em,q(x) =
[2]q

(1 – q)m

m∑
l=0

(
m
l

)
(–1)lql(1+x) 1

1 + q2l+1

= [2]q

∞∑
k=0

(–1)kqk[2k + 1 + x]m
q . (3.14)

From (3.11), we have

En,q(x) =
∫
Zp

[2y + 1 + x]n
q dμ–q(y)

=
n∑

l=0

(
n
l

)
[x]n–l

q qlx
∫
Zp

[2y + 1]l
q dμ–q(y)

=
n∑

l=0

(
n
l

)
[x]n–l

q qlxEl,q (n ≥ 0). (3.15)

Also, by (3.3), we get

qEm,q(2) + Em,q = [2]q (n ≥ 0). (3.16)

Therefore, by (3.15) and (3.16), we obtain the following theorem.

Theorem 3.2 For m ≥ 0, we have

Em,q(x) =
m∑

l=0

(
m
l

)
[x]m–l

q qlxEl,q. (3.17)

In particular,

qEm,q(2) = [2]q – Em,q (m ≥ 0). (3.18)
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Let n be a positive integer with n ≡ 1(mod 2). From (3.4), we have

qn
∫
Zp

[2y + 2n + 1]m
q dμ–q(y) +

∫
Zp

[2y + 1]m
q dμ–q(y)

= [2]q

n–1∑
l=0

(–1)lql[2l + 1]m
q . (3.19)

By (3.11) and (3.19), we get

qnEm,q(2n) + Em,q = [2]q

n–1∑
l=0

(–1)lql[2l + 1]m
q . (3.20)

Therefore, by (3.20), we obtain the following theorem.

Theorem 3.3 For n ∈ N with n ≡ 1(mod 2) and m ≥ 0, we have

qnEm,q(2n) + Em,q = [2]q

n–1∑
l=0

(–1)lql[2l + 1]m
q . (3.21)

4 Conclusions
In an introductory calculus class, the following formulas are proved by mathematical in-
duction and used in Riemann sum evaluations of some definite integrals:

n∑
k=0

k = 1 + 2 + · · · + n =
n(n + 1)

2
=

(
n + 1

2

)
,

n∑
k=0

k2 = 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
,

n∑
k=0

k3 = 13 + 23 + · · · + n3 =
(

n + 1
2

)2

=
(

n(n + 1)
2

)2

.

The problem of finding formulas for power sums of consecutive nonnegative integers has
captivated mathematicians for many centuries. Even since generalized formulas for the
power sums, Sk(n) =

∑n
l=0 lk , were established, the various representations and number-

theoretic properties have been studied by Faulhaber. In this paper, we studied the q-
analogues of Faulhaber’s well-known formula expressing the power sums in terms of
Bernoulli polynomials. Indeed, we showed that power sums of consecutive positive odd
q-integers can be expressed by means of type 2 q-Bernoulli polynomials. Also, we showed
that alternating power sums of consecutive positive odd q-integers can be represented by
virtue of type 2 q-Euler polynomials. The type 2 q-Bernoulli polynomials and type 2 q-
Euler polynomials were introduced respectively as the bosonic p-adic q-integrals on Zp

and the fermionic p-adic q-integrals on Zp. Along the way, we also obtained Witt type
formulas and explicit expressions for those two newly introduced polynomials.
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