Skip to main content

A modified singular Trudinger–Moser inequality

Abstract

Let \(\varOmega \subset \mathbb{R}^{2}\) be a smooth bounded domain, \(W_{0}^{1,2}(\varOmega )\) be the standard Sobolev space. Assuming certain conditions on a function \(g:\mathbb{R}\rightarrow \mathbb{R}\), we derive a modified singular Trudinger–Moser inequality, which was originally established by Adimurthi and Sandeep (Nonlinear Differ. Equ. Appl. 13:585–603, 2007), namely,

$$ \sup_{u\in W_{0}^{1,2}(\varOmega ), \Vert \nabla u \Vert _{2}\leq 1} \int _{\varOmega }\bigl(1+g(u)\bigr)\frac{e ^{4\pi (1-\gamma ) u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx, $$
(1)

where \(0<\gamma <1\). Following Yang and Zhu (J. Funct. Anal. 272:3347–3374, 2017), we prove that the extremal functions for the supremum in (1) exist. The proof is based on a blow-up analysis.

1 Introduction

Let Ω be a smooth bounded domain in \(\mathbb{R}^{2}\), and \(W_{0}^{1,2}(\varOmega )\) be the completion of \(C^{\infty }_{0}(\varOmega )\) under the norm \(\|u\|_{W_{0}^{1,2}(\varOmega )}=(\int _{\varOmega }| \nabla u|^{2}\,dx)^{{1}/{2}}\). For \(1\leq p<2\), the standard Sobolev embedding theorem states that \(W_{0}^{1,p}(\varOmega )\hookrightarrow L ^{q}(\varOmega )\) for all \(1< q\leq {2p}/{(2-p)}\); while if \(p>2\), we have \(W_{0}^{1,p}(\varOmega )\hookrightarrow C^{0}(\overline{\varOmega })\). As a borderline of the Sobolev embeddings, the classical Trudinger–Moser inequality [21,22,23, 26, 33] says

$$ \sup_{u\in W_{0}^{1,2}(\varOmega ),\|\nabla u\|_{2}\leq 1} \int _{\varOmega }e ^{\alpha u^{2}}\,dx < +\infty ,\quad \forall \alpha \leq 4\pi . $$
(2)

Moreover, these integrals are still finite for any \(\alpha >4\pi \), but the supremum is infinity. Here and in the sequel, for any real number \(q\geq 1\), \(\|\cdot \|_{q}\) denotes the \(L^{q}(\varOmega )\)-norm with respect to the Lebesgue measure.

A function \(u_{0}\) is called an extremal function for the Trudinger–Moser inequality (2) if \(u_{0}\) belongs to \(W_{0}^{1,2}(\varOmega )\), \(\|\nabla u_{0}\|_{2}\leq 1\) and

$$ \int _{\varOmega }e^{\alpha u_{0}^{2}}\,dx= \sup_{u\in W_{0}^{1,2}(\varOmega ),\|\nabla u\|_{2}\leq 1} \int _{\varOmega }e ^{\alpha u^{2}}\,dx. $$

An interesting question on Trudinger–Moser inequalities is whether or not extremal functions exist. The existence of extremal functions for (2) was obtained by Carleson–Chang [5] when Ω is a unit ball, and by Struwe [24] when Ω is close to the ball in the sense of measure. Then Flucher [12] extended this result when Ω is a general bounded smooth domain in \(\mathbb{R}^{2}\). Later, Lin [16] generalized the existence result when Ω is an arbitrary dimensional domain. For recent developments, we refer the reader to Yang [28].

Using a rearrangement argument and a change of variables, Adimurthi–Sandeep [2] generalized the Trudinger–Moser inequality (1) to a singular version as follows:

$$\begin{aligned} \sup_{u\in W_{0}^{1,2}(\varOmega ), \Vert \nabla u \Vert _{2}\leq 1} \int _{\varOmega }\frac{e ^{4\pi (1-\gamma ) u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx< \infty . \end{aligned}$$
(3)

This inequality is also sharp in the sense that all integrals are still finite when \(\alpha >1-\gamma \), but the supremum is infinity. Clearly, if \(\gamma =0\), (3) reduces to (1). Following the lines of Flucher [12], in Csato and Roy [9], they adopt the concentration–compactness alternative by Lions [17] and deduced that the existence of extremals for such singular functionals. Later, (3) was extend to the entire \(\mathbb{R}^{N}\) by Adimurthi and Yang [4]. Meanwhile, Souza and do Ó modified the singular to another version in \(\mathbb{R}^{N}\) in [10]. When Ω is the unit ball \(\mathbb{B}\), (3) was improved by Yuan and Zhu [32]. Similarly, an analog is also be proved by Yuan and Huang by using the method of symmetrization in [31]. Such singular Trudinger–Moser inequalities play an important role in the study of partial differential equations and conformal geometry; see [2, 4, 10, 14, 27] and [6] for details.

Recently, using a method of energy estimates in [19], Mancini–Martinazzi [20] reproved Carleson–Chang’s result. For applications of this method, we refer the reader to Yang [29]. Using the same idea, they proved that the supremum

$$ \sup_{u\in W_{0}^{1,2}(\mathbb{B}),\|\nabla u\|_{2}\leq 1} \int _{\mathbb{B}}\bigl(1+g(u)\bigr)e^{4\pi u^{2}}\,dx $$
(4)

can be achieved for certain smooth function \(g:\mathbb{R}\rightarrow \mathbb{R}\), where \(\mathbb{B}\) is a unit ball. On the other hand, in Yang and Zhu [30], one studied the following singular form:

$$ \sup_{u\in W_{0}^{1,2}(\varOmega ), \Vert \nabla u \Vert _{1,\alpha }\leq 1} \int _{\varOmega }\frac{e^{\beta u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx, $$
(5)

and they verified there exists some function \(u_{0}\) to achieve this supremum for any \(\beta <4\pi (1-\gamma )\), where

$$ \Vert u \Vert _{1,\alpha }= \biggl( \int _{\varOmega } \vert \nabla u \vert ^{2}\,dx-\alpha \int _{\varOmega }u^{2}\,dx \biggr)^{1/2}, $$

and α satisfies

$$ \alpha < \inf_{u\in W_{0}^{1,2}(\varOmega ),u\not \equiv 0} \frac{ \Vert \nabla u \Vert _{2}^{2}}{ \Vert u \Vert _{2}^{2}}. $$

Motivated by the above results, in this paper, we make a combination of (4) and (5) under the case \(\alpha =0\) to discuss a new version of the singular Trudinger–Moser inequality. We are aim to prove two main results: One is to explain the new supremum is finite; the other is to discuss the existence of extremals for such functionals. In our proof, unlike the previous energy estimate procedure in [19, 20, 29], we mainly employ the method of blow-up analysis as in [11, 14, 15, 18] to prove the supremum in the following (9) can be achieved. Based on Mancini–Martinazzi [20] (see pages 3 and 4), we assume the function g in (9) satisfies

$$ \begin{aligned} &g\in C^{1}(\mathbb{R}), \qquad \inf_{\mathbb{R}}g>-1, \qquad g(-t)=g(t), \\ &\lim_{|t|\rightarrow \infty }t^{2}g(t)=0, \qquad g^{\prime }(t)>0\quad (\forall t>0). \end{aligned} $$
(6)

In the proof, we derive

$$ -\Delta u_{\varepsilon } =\frac{1}{\lambda _{\varepsilon }}\biggl(1+g(u_{ \varepsilon })+ \frac{g'(u_{\varepsilon })}{8\pi (1-\gamma -\varepsilon )u_{\varepsilon }}\biggr) u_{\varepsilon } e ^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}=\frac{1}{\lambda _{\varepsilon }} \bigl(1+h(u _{\varepsilon }) \bigr) u_{\varepsilon } e ^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}} $$

for some \(\lambda _{\varepsilon }\in \mathbb{R}\), where we set

$$ h(t):=g(t)+\frac{g'(t)}{8\pi (1-\gamma -\varepsilon )t},\quad t\in \mathbb{R} \setminus \{0\}. $$
(7)

We further assume

$$ \inf_{(0,+\infty )}h(t)>-1, \qquad \sup _{(0,+\infty )}h(t)< +\infty , \quad \text{and} \quad \lim _{t\rightarrow \infty }t^{2} h(t)=0. $$
(8)

Comparing the conditions on the function g in Mancini–Martinazzi [20], one can see some differences. In this note, we assume \(g^{\prime }(t)>0\) (\(\forall t>0\)), which is used in the Lemma 4. Moreover, the assumptions in (6) and (8) implies that \(\lim_{|t|\rightarrow \infty } g(t)=0\) in [20]. Our main conclusion can be stated as the following two theorems, respectively.

Theorem 1

Let Ω be a smooth bounded domain in \(\mathbb{R}^{2}\) and \(W_{0}^{1,2}(\varOmega )\) be the usual Sobolev space. Let \(0<\gamma <1\) be fixed. Suppose \(g\in C^{1}(\mathbb{R})\) satisfies the hypotheses in (6) and (8). Then the supremum

$$ \varLambda _{4\pi (1-\gamma )}:= \sup_{u\in W_{0}^{1,2}(\varOmega ), \Vert \nabla u \Vert _{2}\leq 1} \int _{\varOmega }\bigl(1+g(u)\bigr)\frac{e ^{4\pi (1-\gamma ) u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx< \infty . $$
(9)

Theorem 2

Let Ω be a smooth bounded domain in \(\mathbb{R}^{2}\) and \(W_{0}^{1,2}(\varOmega )\) be the usual Sobolev space. Let \(0<\gamma <1\) be fixed. Suppose \(g\in C^{1}(\mathbb{R})\) satisfies the hypotheses in (6) and (8). Then, for any \(\beta \leq 4\pi (1-\gamma )\), the supremum

$$ \sup_{u\in W_{0}^{1,2}(\varOmega ), \Vert \nabla u \Vert _{2}\leq 1} \int _{\varOmega }\bigl(1+g(u)\bigr)\frac{e ^{\beta u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx $$

can be attained by some function \(u_{0}\in W_{0}^{1,2}(\varOmega )\cap C _{\mathrm{loc}}^{1}(\overline{\varOmega }\setminus \{0\})\cap C^{0}(\overline{ \varOmega })\).

In order to prove the critical singular Trudinger–Moser inequality, we firstly discuss the existence of extremal functions for a subcritical one, which is based on a direct method variation. We derive a different Euler–Lagrange equation on which the analysis is performed. The essential problem is the presence of the function g. To meet the necessary of our proof, we assume g satisfies certain conditions. Then following Yang and Zhu [30], we define maximizing sequences of functions by using a more delicate scaling. The existence of singular term \(|x|^{-2\gamma }\) with \(0<\gamma <1\) causes exact asymptotic behavior of certain maximizing sequence near the blow-up point. Unlike in [28], we employ two different classification theorems of Chen and Li [7, 8] to get the desired bubble. And our method in dealing with the bubble is also different from Yang–Zhu [30] because of the function g. We refer to Adimurthi and Druet [1], Carleson–Chang [5], Li [15], Struwe [24], Adimurthi and Struwe [3], Iula and Mancini [13], Yang [28], Lu and Yang [18], respectively.

2 Proof of Theorem 1

We divide the proof into several steps as follows.

2.1 Existence of maximizers for \(\varLambda _{4\pi (1-\gamma -\varepsilon )}\) and the Euler–Lagrange equation

In this subsection, we shall prove that maximizers for the subcritical singular Trudinger–Moser functionals exist.

Proposition 3

For any \(0<\varepsilon <1-\beta \), there exists some \(u_{\varepsilon }\in W_{0}^{1,2}(\varOmega )\cap C_{\mathrm{loc}}^{1}(\overline{\varOmega }\setminus \{0\})\cap C^{0}(\overline{\varOmega })\) satisfying \(\|\nabla u\|_{2}=1\) and

$$ \int _{\varOmega }\bigl(1+g(u_{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }} \,dx= \varLambda _{4\pi (1-\gamma -\varepsilon )}:= \sup_{\substack{u\in W_{0}^{1,2}(\varOmega ), \\ \Vert \nabla u \Vert _{2}\leq 1}} \int _{\varOmega }\bigl(1+g(u)\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx. $$
(10)

Proof

This is based on a direct method of variation. For any \(0<\beta <1\), let \(0<\varepsilon <1-\gamma \) be fixed. We take a sequence of functions \(u_{j}\in W_{0}^{1,2}(\varOmega )\) satisfying \(\|\nabla u_{j}\|_{2}\leq 1 \) and, as \(j\rightarrow \infty \),

$$ \lim_{j\rightarrow \infty } \int _{\varOmega }\bigl(1+g(u_{j})\bigr) \frac{e^{4 \pi (1-\gamma -\varepsilon ) u_{j}^{2}}}{ \vert x \vert ^{2\gamma }}\,dx = \varLambda _{4\pi (1-\gamma -\varepsilon )}. $$
(11)

Since \(u_{j}\) is bounded in \(W_{0}^{1,2}(\varOmega )\), there exists some \(u_{\varepsilon }\in W_{0}^{1,2}(\varOmega )\) such that up to a subsequence, assuming

$$ \begin{aligned}[b] &u_{j}\rightharpoonup u_{\varepsilon } \quad \text{weakly in } W_{0}^{1,2}(\varOmega ), \\ &u_{j}\rightarrow u_{\varepsilon }\quad \text{strongly in } L^{p}( \varOmega ), \forall p\geq 1, \\ &u_{j}\rightarrow u_{\varepsilon }\quad \text{a.e. in } \varOmega . \end{aligned} $$

Since

$$ 0\leq \int _{\varOmega } \vert \nabla u_{\varepsilon } \vert ^{2}\,dx \leq \limsup_{j\rightarrow \infty } \biggl( \int _{\varOmega } \vert \nabla u_{\varepsilon } \vert ^{2}\,dx \biggr)^{\frac{1}{2}} \biggl( \int _{\varOmega } \vert \nabla u_{j} \vert ^{2}\,dx \biggr)^{\frac{1}{2}}, $$

we have \(0\leq \|\nabla u_{\varepsilon }\|_{2}\leq 1\). Note that

$$ \begin{aligned}[b] \int _{\varOmega } \bigl\vert \nabla (u_{\varepsilon }-u_{j}) \bigr\vert ^{2}\,dx &= \int _{\varOmega } \vert \nabla u_{\varepsilon } \vert ^{2}\,dx- \int _{\varOmega } \vert \nabla u_{j} \vert ^{2}+o _{j}(1) \\ &\leq 1- \int _{\varOmega } \vert \nabla u_{\varepsilon } \vert ^{2}+o_{j}(1). \end{aligned} $$
(12)

Following Hölder’s inequality, for any \(1< p\leq \frac{1}{\gamma }\), \(\delta >0\), \(w>1\) and \(w'=w/(w-1)\), we have

$$ \begin{aligned}[b] \int _{\varOmega }\bigl(1+g(u_{j})\bigr)^{p} \frac{1}{ \vert x \vert ^{2\gamma p}}e^{4\pi (1- \gamma -\varepsilon )p u_{j}^{2}}\,dx &\leq C \biggl( \int _{\varOmega }\frac{1}{ \vert x \vert ^{2 \gamma p}}e^{4\pi (1-\gamma -\varepsilon )p(1+\delta )w(u_{j}-u_{ \varepsilon })^{2}}\,dx \biggr)^{\frac{1}{w}} \\ &\quad {}\times \biggl( \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma p}}e^{4\pi (1- \gamma -\varepsilon )p(1+\frac{1}{4\delta })w'u_{\varepsilon }^{2} }\,dx \biggr)^{\frac{1}{w'}}. \end{aligned} $$
(13)

When p, \(1+\delta \) and s are sufficiently close to 1, we have

$$ (1-\gamma -\varepsilon )p(1+\delta )w+\gamma w p< 1. $$
(14)

Combining (12), (13) and (14), we have by the singular Trudinger–Moser inequality (3)

$$ \bigl(1+g(u_{\varepsilon })\bigr) \vert x \vert ^{-2\gamma }e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}} \quad \text{is bounded in } L ^{p}(\varOmega ), $$

for some \(p>1\). Note that

$$ \begin{aligned}[b] & \biggl\vert \bigl(1+g(u_{j}) \bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{j}^{2}}}{ \vert x \vert ^{-2 \gamma }} -\bigl(1+g(u_{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{-2\gamma }} \biggr\vert \\ &\quad \leq C \vert x \vert ^{-2\gamma }\bigl(e^{4\pi (1-\gamma -\varepsilon ) u_{j}^{2}}+e ^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\bigr) \bigl\vert u_{j}^{2}-u _{\varepsilon }^{2} \bigr\vert , \\ &\qquad {}+ \vert x \vert ^{-2\gamma }\max \bigl\{ g'(u_{j}),g'(u_{\varepsilon }) \bigr\} \vert u_{j}-u_{ \varepsilon } \vert e^{4\pi (1-\gamma -\varepsilon ) u_{j}^{2}}. \end{aligned} $$
(15)

Since \(u_{j}\rightarrow u_{\varepsilon }\) strongly in \(L^{p}(\varOmega )\) for any \(p>1\), in view of (6) and (8), we can conclude from (15) that

$$ \int _{\varOmega }\bigl(1+g(u_{j})\bigr) \vert x \vert ^{-2\gamma }e^{4\pi (1-\gamma -\varepsilon ) u_{j}^{2}}\,dx\rightarrow \int _{\varOmega }\bigl(1+g(u_{\varepsilon })\bigr) \vert x \vert ^{-2 \gamma }e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\,dx, $$

as \(j\rightarrow \infty \). This together with (11) immediately leads to (10). Obviously \(u_{\varepsilon }\not \equiv 0\). If \(\|\nabla u_{\varepsilon }\|_{2}<1\), set \(\widetilde{u}_{\varepsilon }=\frac{u_{\varepsilon }}{\|\nabla u_{\varepsilon }\|_{2}}\), then we obtain \(\| \nabla \widetilde{u}_{\varepsilon }\|_{2}=1\). Since \(0\leq u_{\varepsilon }<\widetilde{u}_{\varepsilon }\) and \(u_{\varepsilon }\not \equiv 0\), it follows from (6) that

$$ \int _{\varOmega }\bigl(1+g(u_{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }} \,dx< \int _{\varOmega }\bigl(1+g( \widetilde{u_{\varepsilon }})\bigr) \frac{e^{4\pi (1-\gamma -\varepsilon ) \widetilde{u}_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx\leq \varLambda _{4\pi (1-\gamma -\varepsilon )}, $$

which contradicts (10). Consequently, \(\|\nabla u_{\varepsilon }\|_{2}=1\) holds. Furthermore, one can also check that \(|u_{\varepsilon }|\) attains the supremum \(\varLambda _{4\pi (1-\gamma -\varepsilon )}\). Thus, \(u_{\varepsilon }\) can be chosen so that \(u_{\varepsilon } \geq 0\). It is not difficult to see that \(u_{\varepsilon }\) satisfies the following Euler–Lagrange equation:

$$ \textstyle\begin{cases} -\Delta u_{\varepsilon } =\lambda _{\varepsilon }^{-1} \vert x \vert ^{-2\gamma }(1+h(u _{\varepsilon }))u_{\varepsilon } e^{4\pi (1-\gamma -\varepsilon ) u _{\varepsilon }^{2}} &\text{in }\varOmega \subset \mathbb{R}^{2}, \\ u_{\varepsilon }\geq 0, \qquad \Vert \nabla u_{\varepsilon } \Vert _{2}=1& \text{in }\varOmega \subset \mathbb{R}^{2}, \\ \lambda _{\varepsilon }=\int _{\varOmega } \vert x \vert ^{-2\gamma }(1+h(u_{\varepsilon })) u_{\varepsilon }^{2}e ^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\,dx, \end{cases} $$
(16)

where \(h(x)\) is defined as in (7). □

2.1.1 The case when \(u_{\varepsilon }\) is uniformly bounded in Ω

The proof of Theorem 2 will be ended if we can find some \(u_{0}\in W _{0}^{1,2}(\varOmega )\cap C_{\mathrm{loc}}^{1}(\overline{\varOmega }\setminus \{0\}) \cap C^{0}(\overline{\varOmega })\) satisfying \(\| \nabla u_{0}\|_{2}=1\) and

$$ \int _{\varOmega }\bigl(1+g(u_{0})\bigr)\frac{e^{4\pi (1-\gamma ) u_{0}^{2}}}{ \vert x \vert ^{2 \gamma }} \,dx=\sup_{u\in W_{0}^{1,2}(\varOmega ), \Vert \nabla u \Vert _{2}\leq 1} \int _{\varOmega }\bigl(1+g(u)\bigr)\frac{e^{4\pi (1-\gamma ) u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx. $$
(17)

Since \(u_{\varepsilon }\) is bounded in \(W_{0}^{1,2}(\varOmega )\), we assume without loss of generality

$$ \begin{aligned} &u_{\varepsilon }\rightharpoonup u_{0} \quad \text{weakly in } W_{0}^{1,2}(\varOmega ), \\ &u_{\varepsilon }\rightarrow u_{0} \quad \text{strongly in } L ^{p}(\varOmega ), \forall p\geq 1, \\ &u_{\varepsilon }\rightarrow u_{0} \quad \text{a.e. in } \varOmega . \end{aligned} $$
(18)

Let \(c_{\varepsilon }=u_{\varepsilon }(x_{\varepsilon })=\max_{\varOmega }u_{\varepsilon }\). If \(c_{\varepsilon }\) is bounded, for any \(u\in W_{0}^{1,2}(\varOmega )\) with \(u\geq 0\), \(\| \nabla u_{0}\|_{2}=1\), together with Lebesgue dominated convergence theorem gives

$$ \begin{aligned}[b] \int _{\varOmega }\bigl(1+g(u)\bigr)\frac{e^{4\pi (1-\gamma ) u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx &=\lim _{\varepsilon \rightarrow 0} \int _{\varOmega }\bigl(1+g(u_{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u^{2}}}{ \vert x \vert ^{2\gamma }} \,dx \\ &\leq \lim_{\varepsilon \rightarrow 0} \int _{\varOmega }\bigl(1+g(u_{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2 \gamma }} \,dx \\ &= \int _{\varOmega }\bigl(1+g(u_{0})\bigr)\frac{e^{4\pi (1-\gamma ) u_{0}^{2}}}{ \vert x \vert ^{2 \gamma }} \,dx. \end{aligned} $$
(19)

By the arbitrariness of \(u\in W^{1,2}_{0}(\varOmega )\), we conclude that \(u_{0}\) is the desired maximizer when \(u_{\varepsilon }\) is uniformly bounded in Ω. Applying elliptic estimates to its Euler–Lagrange equation, one can deduce that \(u_{0}\in W_{0}^{1,2}(\varOmega )\cap C _{\mathrm{loc}}^{1}(\overline{\varOmega }\setminus \{0\})\cap C^{0}(\overline{ \varOmega })\). And then (17) follows immediately.

2.2 Blowing up analysis

In this subsection, as in [1, 17], we will use the blow-up analysis to understand the asymptotic behavior of the maximizers \(u_{\varepsilon }\). Assume \(c_{\varepsilon }=u_{\varepsilon }(x_{ \varepsilon })\rightarrow \infty \) and we distinguish two cases to proceed.

Case 1. If \(u_{0}\not \equiv 0\), the supremum in (9) can be attained by \(u_{0}\) without difficulty. And the proof will just be divided into several simple steps.

Step 1. A similar estimate as in (13), one can easily check that \(\frac{(1+g(u_{\varepsilon }))}{|x|^{2\gamma }}e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\) is bounded in \(L^{p}(\varOmega )\) (\(p>1\)).

Step 2. By the mean value theorem and the Hölder inequality, we have

$$ \lim_{\varepsilon \rightarrow 0} \int _{\varOmega } \vert x \vert ^{-2\gamma }e^{4 \pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\,dx= \int _{\varOmega } \vert x \vert ^{-2 \gamma }e^{4\pi (1-\gamma ) u_{0}^{2}} \,dx. $$

Step 3. Based on the above steps, one can easily check that

$$ \begin{aligned}[b] & \int _{\varOmega } \bigl\vert \bigl(1+g(u_{\varepsilon })\bigr) \vert x \vert ^{-2\gamma }e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon }^{2}}-\bigl(1+g(u_{0})\bigr) \vert x \vert ^{-2\gamma }e^{4\pi (1-\gamma ) u_{0}^{2}} \bigr\vert \,dx \\ &\quad \leq \bigl\vert g(u_{0})+1 \bigr\vert \int _{\varOmega } \bigl( \vert x \vert ^{-2\gamma }e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon }^{2}}- \vert x \vert ^{-2\gamma }e^{4\pi (1- \gamma ) u_{0}^{2}} \bigr)\,dx \\ &\qquad {}+ \int _{\varOmega } \vert x \vert ^{-2\gamma } e^{4\pi (1-\gamma -\varepsilon ) u _{\varepsilon }^{2}} \bigl\vert g(u_{\varepsilon })-g(u_{0}) \bigr\vert \,dx \\ &\quad =o_{\varepsilon }(1). \end{aligned} $$

Thus, we arrive at the conclusion that

$$ \lim_{\varepsilon \rightarrow 0} \int _{\varOmega }\bigl(1+g(u_{\varepsilon })\bigr) \vert x \vert ^{-2 \gamma }e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\,dx= \int _{\varOmega }\bigl(1+g(u_{0})\bigr) \vert x \vert ^{-2\gamma }e^{4\pi (1-\gamma ) u_{0} ^{2}}\,dx. $$

This together with (17) gives the desired result.

Case 2. If \(u_{0}\equiv 0\), in view of Eq. (16), it is important to figure out whether \(\lambda _{\varepsilon }\) has a positive lower bound or not. For this purpose, we have the following.

Lemma 4

Let \(\lambda _{\varepsilon }\) be as in (16). Then we have \(\liminf_{\varepsilon \rightarrow 0}\lambda _{\varepsilon }>0\).

Proof

By an inequality \(e^{t^{2}}\leq 1+t^{2}e^{t^{2}}\) for \(t\geq 0\), it follows from (6) and (7) that

$$ \begin{aligned}[b] \lambda _{\varepsilon } &\geq \frac{1}{4\pi (1-\gamma -\varepsilon )} \int _{\varOmega }\bigl(1+h(u_{\varepsilon })\bigr)\frac{(e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}-1)}{ \vert x \vert ^{2\gamma }} \,dx \\ &\geq \frac{1}{4\pi (1-\gamma -\varepsilon )}\biggl( \int _{\varOmega }\bigl(1+g(u _{\varepsilon })\bigr) \frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx- \int _{\varOmega }\frac{(1+g(u_{\varepsilon }))}{ \vert x \vert ^{2 \gamma }}\,dx \\ & \quad {}+ \int _{\varOmega } \frac{g'(u_{\varepsilon })}{8\pi (1-\gamma - \varepsilon ) \vert x \vert ^{2\gamma }u_{\varepsilon }} \bigl(e ^{4\pi (1-\gamma - \varepsilon )u_{\varepsilon }^{2}}-1\bigr) \,dx\biggr) \\ &\geq \frac{1}{4\pi (1-\gamma -\varepsilon )} \biggl(\int _{\varOmega }\bigl(1+g(u _{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }} \,dx- \int _{\varOmega }\frac{(1+g(u_{\varepsilon }))}{ \vert x \vert ^{2 \gamma }}\,dx \biggr). \end{aligned} $$

This together with (10) leads to

$$ \liminf_{\varepsilon \rightarrow 0}\lambda _{\varepsilon }\geq \frac{1}{4 \pi (1-\gamma )} \biggl(\varLambda _{4\pi (1-\gamma )}- \int _{\varOmega }\frac{(1+g(0))}{ \vert x \vert ^{2 \gamma }}\,dx \biggr)>0. $$

Or equivalently, we have

$$ \frac{1}{\lambda _{\varepsilon }}\leq C. $$
(20)

Therefore, \(\frac{1}{\lambda _{\varepsilon }}\) is uniformly bounded in Ω. This ends the proof of the lemma. □

2.2.1 Energy concentration phenomenon

Using the same argument as the one in step 2 of [28], we get the following concentration phenomenon, which is crucial in our blow-up analysis.

Proposition 5

For the function sequence \(\{u_{\varepsilon }\}\), we have \(u_{\varepsilon }\rightharpoonup 0\) weakly in \(W^{1,2}_{0}(\varOmega )\) and \(u_{\varepsilon }\rightarrow 0\) strongly in \(L^{q}(\varOmega )\) for any \(q>1\). Moreover, \(|\nabla u_{\varepsilon }|^{2} \,dx\rightharpoonup \delta _{0}\) weakly in a sense of measure, where \(\delta _{0}\) is the usual Dirac measure centered at the point 0.

Proof

Since \(\|\nabla u_{\varepsilon }\|_{2}=1\), we have the same assumptions as in (18). Observe that

$$ \int _{\varOmega } \bigl\vert \nabla (u_{\varepsilon }-u_{0}) \bigr\vert ^{2}\,dx=1- \int _{\varOmega } \vert \nabla u_{0} \vert ^{2}\,dx+o(1). $$
(21)

Suppose \(u_{0}\not \equiv 0\). In view of (21) and an obvious analog of (13), it follows that

$$ \bigl(1+g(u_{\varepsilon })\bigr) \vert x \vert ^{-2\gamma }e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}} \quad \text{is bounded in } L^{q}( \varOmega ), $$

for some \(q>1\). Then applying elliptic estimates to (18), one can deduce that \(u_{\varepsilon }\) is bounded in \(W_{0}^{2,q}(\varOmega )\). Together with Sobolev embedding results, we conclude \(u_{\varepsilon }\) is bounded in \(C^{0}(\overline{\varOmega })\), which contradicts \(c_{\varepsilon }\rightarrow \infty \). Therefore \(u_{0}\equiv 0\) and (21) becomes

$$ \int _{\varOmega } \vert \nabla u_{\varepsilon } \vert ^{2}\,dx=1+o_{\varepsilon }(1). $$
(22)

We next prove \(|\nabla u_{\varepsilon }|^{2} \,dx\rightharpoonup \delta _{x_{0}}\). If the statements were false, suppose \(|\nabla u_{ \varepsilon }|^{2} \,dx\rightharpoonup \eta \) in a sense of measure. In view of \(\eta \neq \delta _{x_{0}}\), there exists \(r_{0}>0\) such that

$$ \lim_{\varepsilon \rightarrow 0} \int _{B_{r_{0}}(x_{0})} \vert \nabla u_{ \varepsilon } \vert ^{2} \,dx\leq \frac{\eta +1}{2}< 1. $$

In view of (22) and \(u_{0}\equiv 0\), we can choose a cut-off function \(\phi \in C^{1}_{0}(B_{r_{0}}(x_{0}))\), which is equal to 1 on \(B_{r_{0}/2}(x_{0})\), then it follows that

$$ \limsup_{\varepsilon \rightarrow 0} \int _{B_{r_{0}}(x_{0})} \bigl\vert \nabla ( \phi u_{\varepsilon }) \bigr\vert ^{2} \,dx< 1. $$

By the singular Trudinger–Moser inequality (3), one sees that \((1+g(\phi u_{\varepsilon }))\frac{e^{4\pi (1-\gamma -\varepsilon ) ( \phi u_{\varepsilon })^{2}}}{|x|^{2\gamma }}\) is bounded in \(L^{r}(B_{r_{0}}(x_{0}))\) for some \(r>1\). Applying elliptic estimates to (16), one gets \(u_{\varepsilon }\) is uniformly bounded in Ω, which contradicts \(c_{\varepsilon }\rightarrow \infty \) again. Therefore \(|\nabla u_{\varepsilon }|^{2} \,dx\rightharpoonup \delta _{x_{0}}\). Moreover, we get \(u_{\varepsilon }\rightarrow 0\) in \(C^{1}_{\mathrm{loc}}(\overline{\varOmega }\setminus \{0, x_{0}\})\cap C^{0}_{\mathrm{loc}}(\overline{ \varOmega }\setminus \{ x_{0}\})\).

In fact, we have \(x_{0}=0\). Set \(r_{0}=|x_{0}|/2\). Note that \(\lambda _{\varepsilon }^{-1}|x|^{-2\gamma }(1+h(u_{\varepsilon }))u _{\varepsilon } e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\) is bounded in \(L^{q_{1}}(B_{r_{0}}(0))\) for some \(q_{1}>1\). When \(|x|>r_{0}\), by the classical Trudinger–Moser inequality (2), we recognize \(\lambda _{\varepsilon }^{-1}|x|^{-2\gamma }(1+h(u_{ \varepsilon }))u_{\varepsilon } e^{4\pi (1-\gamma -\varepsilon ) u _{\varepsilon }^{2}}\) is bounded in \(L^{q_{2}}(\varOmega \setminus B_{r _{0}}(0))\) for some \(q_{2}>1\). Choose \(q= \min \{q_{1}, q_{2}\}>1\), and we conclude \(\lambda _{\varepsilon }^{-1}|x|^{-2\gamma }(1+h(u_{\varepsilon }))u_{\varepsilon } e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon } ^{2}}\) is bounded in \(L^{q}(\varOmega )\). Then the elliptic estimate on the Euler–Lagrange equation (16) implies that \(c_{\varepsilon }\) is bounded, which also makes a contradiction. Thus, we complete the proof of the proposition. □

2.2.2 Asymptotic behavior of \(u_{\varepsilon }\) near the concentration point

Let

$$ r_{\varepsilon }=\sqrt{\lambda _{\varepsilon }}c_{\varepsilon }^{-1}e ^{-2\pi (1-\gamma -\varepsilon )c_{\varepsilon }^{2}}. $$
(23)

For any \(0<\delta <1-\gamma \), in view of (8), we have by using the Hölder inequality and the singular Trudinger–Moser inequality (3),

$$ \begin{aligned}[b] \lambda _{\varepsilon } &= \int _{\varOmega } \vert x \vert ^{-2\gamma } \bigl(1+h(u_{\varepsilon })\bigr) u_{\varepsilon }^{2}e ^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\,dx \\ &\leq e^{4\pi \delta c_{\varepsilon }^{2}} \int _{\varOmega } \vert x \vert ^{-2 \gamma } \bigl(1+h(u_{\varepsilon })\bigr) u_{\varepsilon }^{2}e ^{4\pi (1- \gamma -\varepsilon -\delta ) u_{\varepsilon }^{2}}\,dx \\ &\leq C e^{4\pi \delta c_{\varepsilon }^{2}} \end{aligned} $$

for some constant C depending only on δ. This leads to

$$ r_{\varepsilon }^{2} e^{4\pi \mu c_{\varepsilon }^{2}}\leq C c_{ \varepsilon }^{-2}e^{4\pi (\delta +\mu )}e ^{-4\pi (1-\gamma -\varepsilon ) c_{\varepsilon }^{2}} \rightarrow 0, \quad \text{for } \forall 0< \mu < 1-\gamma , $$
(24)

as \(\varepsilon \rightarrow 0\). To characterize the blow-up behavior more exactly, we need to divide the process into two cases as in [30].

Case 1. \(r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon }\leq C\).

Let \(\varOmega _{\varepsilon }=\{x\in \mathbb{R}^{2}:x_{\varepsilon }+r _{\varepsilon }^{1/(1-\gamma )} x\in \varOmega \}\). Define two blow-up sequences of function on \(\varOmega _{\varepsilon }\) as

$$ \zeta _{\varepsilon }(x)=c_{\varepsilon }^{-1}u_{\varepsilon } \bigl(x_{ \varepsilon }+r_{\varepsilon }^{1/(1-\gamma )} x\bigr), \qquad \vartheta _{\varepsilon }(x)=c_{\varepsilon }\bigl(u_{\varepsilon }\bigl(x_{ \varepsilon }+r_{\varepsilon }^{1/(1-\gamma )} x\bigr)-c_{\varepsilon }\bigr). $$

A direct computation shows

$$\begin{aligned}& -\Delta \zeta _{\varepsilon }(x)=c_{\varepsilon }^{-2} \bigl\vert x+r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon } \bigr\vert ^{-2 \gamma }\bigl(1+h(u_{\varepsilon })\bigr) \zeta _{\varepsilon }e^{4\pi (1-\gamma -\varepsilon ) (u_{\varepsilon }^{2}-c_{\varepsilon }^{2})} \quad \text{in } \varOmega _{\varepsilon }, \end{aligned}$$
(25)
$$\begin{aligned}& -\Delta \vartheta _{\varepsilon }(x)= \bigl\vert x+r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon } \bigr\vert ^{-2 \gamma } \bigl(1+h(u_{\varepsilon })\bigr) \zeta _{\varepsilon }e^{4\pi (1-\gamma -\varepsilon ) (1+ \zeta _{\varepsilon })\vartheta _{\varepsilon }}\quad \text{in } \varOmega _{\varepsilon }. \end{aligned}$$
(26)

We now investigate the convergence behavior of \(\zeta _{\varepsilon }(x)\) and \(\vartheta _{\varepsilon }(x)\). Assume \(\lim_{\varepsilon \rightarrow 0} r_{\varepsilon }^{-1/(1-\gamma )} x _{\varepsilon }=-\bar{x}\). From (24), we have \(r_{\varepsilon }\rightarrow 0\) obviously. Thus \(\varOmega _{\varepsilon }\rightarrow \mathbb{R}^{2}\) as \(\varepsilon \rightarrow 0\). In view of \(| \zeta _{\varepsilon }(x)|\leq 1\) and \(\Delta \zeta _{\varepsilon }(x) \rightarrow 0\) in \(x \in \varOmega _{\varepsilon }\setminus \{\bar{x}\}\) as \(\varepsilon \rightarrow 0\), we have by elliptic estimates that \(\zeta _{\varepsilon }(x)\rightarrow \zeta (x)\) in \(C^{1}_{\mathrm{loc}}( \mathbb{R}^{2}\setminus \{\bar{x}\})\cap C^{0}_{\mathrm{loc}}(\mathbb{R}^{2})\), where ζ is a bounded harmonic function in \(\mathbb{R}^{2}\). Observe that \(\zeta (x)\leq \limsup_{\varepsilon \rightarrow 0} \zeta _{\varepsilon }(x)\leq 1\) and \(\zeta (0)=1\). It follows from the Liouville theorem that \(\zeta \equiv 1\) on \(\mathbb{R}^{2}\). Thus, we have

$$ \zeta _{\varepsilon }\rightarrow 1\quad \text{in } C^{1}_{\mathrm{loc}}\bigl( \mathbb{R}^{2}\setminus \{ \bar{x}\}\bigr)\cap C^{0}_{\mathrm{loc}}\bigl(\mathbb{R}^{2} \bigr) $$
(27)

as \(\varepsilon \rightarrow 0\). Note also that

$$ \vartheta _{\varepsilon }(x)\leq \vartheta _{\varepsilon }(0)=0\quad \text{for all } x\in \varOmega _{\varepsilon }(x). $$

In view of (27), we conclude by applying elliptic estimates to (26) that

$$ \vartheta _{\varepsilon }\rightarrow \vartheta \quad \text{in } C^{1}_{\mathrm{loc}}\bigl(\mathbb{R}^{2}\setminus \{\bar{x} \}\bigr)\cap C^{0}_{\mathrm{loc}}\bigl( \mathbb{R}^{2}\bigr), $$
(28)

where ϑ is a distributional solution to

$$ -\Delta \vartheta = \vert x-\bar{x} \vert ^{-2\gamma }e^{8\pi (1-\gamma )\vartheta } \quad \text{in } \mathbb{R}^{2}\setminus \{\bar{x}\}. $$

Observe that

$$ \zeta _{\varepsilon }(x)=\frac{u_{\varepsilon }(x_{\varepsilon }+r_{ \varepsilon }^{1/(1-\gamma )} x)}{c_{\varepsilon }}\rightarrow 1\quad \text{in } C^{1}_{\mathrm{loc}}(\mathbb{B}_{R}\setminus \mathbb{B}_{1/R}), $$
(29)

as \(\varepsilon \rightarrow 0\). Set \(y=x_{\varepsilon }+r_{\varepsilon }^{1/(1-\gamma )} x\) with \(|x-\bar{x}|\leq R\), and then we have

$$ \vert y \vert \leq r_{\varepsilon }^{1/(1-\gamma )} \vert x-\bar{x} \vert + \bigl\vert x_{\varepsilon }+r _{\varepsilon }^{1/(1-\gamma )}\bar{x} \bigr\vert \leq 2Rr_{\varepsilon }^{1/(1- \gamma )}. $$

Since \(r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon }\leq C\), choose R big enough such that

$$ \bigl\vert x-r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon } \bigr\vert \leq R. $$

This together with (29) leads to

$$ \begin{aligned}[b] &\lim_{\varepsilon \rightarrow 0} \biggl\Vert \frac{u_{\varepsilon }(r_{\varepsilon }^{1/(1-\gamma )}x)}{c_{\varepsilon }} \biggr\Vert _{L^{\infty }(\mathbb{B}_{R} \setminus \mathbb{B}_{1/R}(\bar{x}))} \\ &\quad =\lim_{\varepsilon \rightarrow 0} \biggl\Vert \frac{u_{\varepsilon }(x_{ \varepsilon }+r_{\varepsilon }^{1/(1-\gamma )} (x-r_{\varepsilon } ^{-1/(1-\gamma )}x_{\varepsilon }))}{c_{\varepsilon }} \biggr\Vert _{L^{\infty }( \mathbb{B}_{R}\setminus \mathbb{B}_{1/R}(\bar{x}))} \\ &\quad =1. \end{aligned} $$

Combining with Fatou’s lemma, we obtain

$$ \begin{aligned}[b] & \int _{\mathbb{B}_{R}\setminus \mathbb{B}_{1/R}(\bar{x})} \vert x-\bar{x} \vert ^{-2 \gamma }e^{8\pi (1-\gamma )\vartheta } \,dx \\ &\quad \leq \limsup_{\varepsilon \rightarrow 0} \int _{\mathbb{B}_{R}\setminus \mathbb{B}_{1/R}(\bar{x})} \bigl\vert x+r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon } \bigr\vert ^{-2\gamma }e^{4\pi (1-\gamma - \varepsilon ) (1+\zeta _{\varepsilon })\vartheta _{\varepsilon }}\,dx \\ &\quad \leq \limsup_{\varepsilon \rightarrow 0}\frac{1}{\lambda _{\varepsilon }} \int _{\mathbb{B}_{2Rr_{\varepsilon }^{1/(1-\gamma )}}\setminus \mathbb{B}_{\frac{1}{2}Rr_{\varepsilon }^{-1/(1-\gamma )}}(0)}\bigl(1+h(u _{\varepsilon })\bigr) \frac{u_{\varepsilon }^{2}(y)}{ \vert y \vert ^{2\gamma }} e^{4 \pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}(y)}\,dy \\ &\quad \leq 1. \end{aligned} $$
(30)

Passing to the limit \(R\rightarrow \infty \), we have

$$ \int _{\mathbb{R}^{2}} \vert x-\bar{x} \vert ^{-2\gamma }e^{8\pi (1-\gamma )\vartheta } \,dx\leq 1. $$

The uniqueness theorem obtained in [3] implies that

$$ \vartheta (x)=-\frac{1}{4\pi (1-\gamma )}\log \biggl(1+\frac{1}{1- \gamma } \vert x-\bar{x} \vert ^{2(1-\gamma )} \biggr). $$
(31)

Let \(x=0\), and then

$$ \vartheta (0)=\lim_{\varepsilon \rightarrow 0}\vartheta _{\varepsilon }(0)=0. $$

Thus, it follows from (31) that \(\bar{x}=0\). Namely,

$$ \vartheta (x)=-\frac{1}{4\pi (1-\gamma )}\log \biggl(1+\frac{1}{1- \gamma } \vert x \vert ^{2(1-\gamma )} \biggr). $$
(32)

Furthermore, we can get

$$ \int _{\mathbb{R}^{2}} \vert x \vert ^{-2\gamma }e^{8\pi (1-\gamma )\vartheta } \,dx=1. $$
(33)

Case 2. \(r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon }\rightarrow +\infty \). Set

$$ \widetilde{\varOmega }_{\varepsilon }=\bigl\{ x\in \mathbb{R}^{2}:x_{\varepsilon }+r_{\varepsilon } \vert x_{\varepsilon } \vert ^{\gamma }x\in \varOmega \bigr\} . $$

Denote the blowing up functions on \(\overline{\varOmega }_{\varepsilon }\)

$$ \alpha _{\varepsilon }(x)=c_{\varepsilon }^{-1}u_{\varepsilon } \bigl(x_{ \varepsilon }+r_{\varepsilon } \vert x_{\varepsilon } \vert ^{\gamma }x\bigr), \qquad \beta _{\varepsilon }(x)=c_{\varepsilon } \bigl(u_{\varepsilon }\bigl(x_{\varepsilon }+r_{\varepsilon } \vert x_{\varepsilon } \vert ^{\gamma }x\bigr)-c_{\varepsilon }\bigr). $$

In view of (16), \(\alpha _{\varepsilon }(x)\) is a distributional solution to the equation

$$ -\Delta \alpha _{\varepsilon }(x)=f_{\varepsilon }(u)\quad \text{in } \overline{\varOmega }_{\varepsilon }, $$
(34)

where

$$ f_{\varepsilon }=c_{\varepsilon }^{-2} \vert x_{\varepsilon } \vert ^{2 \gamma } \bigl\vert x _{\varepsilon }+r_{\varepsilon } \vert x_{\varepsilon } \vert ^{\gamma }x \bigr\vert ^{-2 \gamma } \bigl(1+h(u_{\varepsilon })\bigr)\alpha _{\varepsilon }e^{4\pi (1-\gamma -\varepsilon ) c_{\varepsilon }^{2}(\alpha _{\varepsilon }^{2}-1)}. $$

Since \(r_{\varepsilon }^{-1/(1-\gamma )}x_{\varepsilon }\rightarrow + \infty \), we have \(|x_{\varepsilon }|^{2 \gamma }|x_{\varepsilon }+r _{\varepsilon }|x_{\varepsilon }|^{\gamma }x|^{-2\gamma }=1+o_{\varepsilon }(1)\) clearly. Since \(|\alpha _{\varepsilon }(x)|\leq 1\), we obtain \(f_{\varepsilon }\) is bounded in \(L^{p}\) (\(p>1\)) according to (8). Elliptic estimates and embedding theorem lead to \(\alpha _{\varepsilon }\rightarrow \alpha \) in \(C^{1}_{\mathrm{loc}}(\mathbb{R} ^{2})\), where α satisfies

$$ -\Delta \alpha (x)=0 \quad \text{in } \mathbb{R}^{2}. $$

Note that \(\alpha \leq 1\) and \(\alpha (0)=1\). Thus, together with the Liouville theorem, we obtain \(\alpha \equiv 1\). Also we have

$$ -\Delta \beta _{\varepsilon }= \vert x_{\varepsilon } \vert ^{2 \gamma } \bigl\vert x_{\varepsilon }+r_{\varepsilon } \vert x_{\varepsilon } \vert ^{\gamma }x \bigr\vert ^{-2\gamma } \bigl(1+h(u _{\varepsilon })\bigr)\alpha _{\varepsilon }e^{4\pi (1-\gamma -\varepsilon ) \beta _{\varepsilon }(\alpha _{\varepsilon }+1)}\quad \text{in } \overline{\varOmega }_{\varepsilon }. $$
(35)

Applying elliptic estimates to (35), we conclude that \(\beta _{\varepsilon }\rightarrow \beta \) in \(C^{1}_{\mathrm{loc}}(\mathbb{R} ^{2})\), where β is a distributional solution to

$$ \textstyle\begin{cases} \beta (0)=0=\sup \beta , \\ \Delta \beta =-e^{8\pi (1-\gamma )\beta }\quad \text{in } \mathbb{R}^{2}. \end{cases} $$
(36)

For \(0<\beta <1\), (36) follows from Chen and Li [6] that β satisfies

$$ \int _{\mathbb{R}^{2}}e^{8\pi (1-\gamma )\beta }\,dx\geq \frac{1}{1- \beta }>1. $$

Using a suitable change of variable \(y=x_{\varepsilon }+r_{\varepsilon }|x_{\varepsilon }|^{\gamma }x\), for any \(R>0\), we have

$$ \begin{aligned}[b] \int _{\mathbb{B}_{R}(\bar{x})}e^{8\pi (1-\gamma )\beta }\,dx &= \lim_{\varepsilon \rightarrow 0} \int _{\mathbb{B}_{R}(0)}\bigl(1+h(u_{ \varepsilon })\bigr)e^{4\pi (1-\gamma -\varepsilon ) (u_{\varepsilon }^{2}(x _{\varepsilon }+r_{\varepsilon } \vert x_{\varepsilon } \vert ^{\gamma }x)-c_{ \varepsilon }^{2})} \,dx \\ &\leq \lim_{\varepsilon \rightarrow 0}\frac{1}{\lambda _{\varepsilon }} \int _{\mathbb{B}_{Rr_{\varepsilon } \vert x_{\varepsilon } \vert ^{\gamma }}(x _{\varepsilon })} \bigl(1+h(u_{\varepsilon })\bigr) \frac{u_{\varepsilon }^{2}(y)}{ \vert y \vert ^{2 \gamma }}e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}(y)}\,dy \\ &\leq 1, \end{aligned} $$
(37)

which leads to a contradiction. Thus, it is impossible for Case 2 to happen.

2.2.3 Convergence away from the concentration point

To understand the convergence behavior away from the blow-up point \(x_{0}=0\), we need to investigate how \(c_{\varepsilon }u_{\varepsilon }\) converges. Similar to [1, 15], define \(u_{\varepsilon , \tau }=\min \{\tau c_{\varepsilon }, u_{\varepsilon }\}\), then we have the following.

Lemma 6

For any \(0<\tau <1\), we have

$$ \lim_{\varepsilon \rightarrow 0} \int_{\varOmega } \vert \nabla u_{\varepsilon ,\tau } \vert ^{2} \,dx= \tau . $$

Proof

Observe that \(u_{\varepsilon }/c_{\varepsilon }=1+o_{ \varepsilon }(1)\) in \(B_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })\). For any \(0<\tau <1\), it follows from Eq. (16) and the divergence theorem that

$$ \begin{aligned}[b] \int _{\varOmega } \vert \nabla u_{\varepsilon ,\tau } \vert ^{2} \,dx &=\frac{1}{ \lambda _{\varepsilon }} \int _{\varOmega }\frac{u_{ \varepsilon ,\tau }u_{\varepsilon }}{ \vert x \vert ^{2\gamma }} \bigl(1+h(u_{\varepsilon })\bigr) e^{4\pi (1- \gamma -\varepsilon )u_{\varepsilon }^{2}}\,dx \\ &\geq \frac{1}{\lambda _{\varepsilon }} \int _{B_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \frac{u _{\varepsilon ,\tau }u_{\varepsilon }}{ \vert x \vert ^{2\gamma }}\bigl(1+h(u_{\varepsilon }) \bigr) e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}\,dx+o_{\varepsilon }(1) \\ &=\tau \int _{B_{R}(0)}\frac{(1+h(u_{\varepsilon }))e^{4\pi (1-\gamma -\varepsilon )(u_{\varepsilon }^{2}(x_{\varepsilon }+r_{\varepsilon } ^{1/(1-\gamma )}y)-c_{\varepsilon }^{2})}}{ \vert y+r_{\varepsilon }^{-1/(1- \gamma )}x_{\varepsilon } \vert ^{2\gamma }}\,dy +o_{\varepsilon }(1). \end{aligned} $$

Hence

$$ \liminf_{\varepsilon \rightarrow 0} \int _{\varOmega } \vert \nabla u_{\varepsilon ,\tau } \vert ^{2} \,dx\geq \tau \int _{B_{R}(0)}e^{8\pi (1-\gamma )\vartheta }\,dy,\quad \forall R>0. $$

In view of (33), passing to the limit \(R\rightarrow +\infty \), we obtain

$$ \liminf_{\varepsilon \rightarrow 0} \int _{\varOmega } \vert \nabla u_{\varepsilon ,\tau } \vert ^{2} \,dx\geq \tau . $$
(38)

Note that

$$ \bigl\vert \nabla (u_{\varepsilon }-\tau c_{\varepsilon })^{+} \bigr\vert ^{2}=\nabla (u _{\varepsilon }-\tau c_{\varepsilon })^{+} \cdot \nabla u_{\varepsilon } \quad \text{on } \varOmega $$

and

$$ (u_{\varepsilon }-\tau c_{\varepsilon })^{+}=\bigl(1+o_{\varepsilon }(1) \bigr) (1- \tau )c_{\varepsilon }\quad \text{in } B_{Rr_{\varepsilon } ^{1/(1-\gamma )}}(x_{0}). $$

Testing Eq. (16) by \((u_{\varepsilon }-\tau c_{\varepsilon })^{+}\), for any fixed \(R>0\), simple computation shows that

$$ \begin{aligned}[b] \int _{\varOmega } \bigl\vert \nabla (u_{\varepsilon }-\tau c_{\varepsilon })^{+} \bigr\vert ^{2}\,dx &= \int _{\varOmega }(u_{\varepsilon }-\tau c_{\varepsilon })^{+} \frac{u_{ \varepsilon }}{\lambda _{\varepsilon } \vert x \vert ^{2\gamma }}\bigl(1+h(u_{\varepsilon })\bigr)e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}\,dx \\ &\geq \int _{B_{Rr_{\varepsilon }^{1/(1-\gamma )}(x_{\varepsilon })}}(u _{\varepsilon }-\tau c_{\varepsilon })^{+} \frac{u_{\varepsilon }(1+h(u _{\varepsilon }))}{\lambda _{\varepsilon } \vert x \vert ^{2\gamma }}e^{4\pi (1- \gamma -\varepsilon )u_{\varepsilon }^{2}}\,dx \\ &=\bigl(1+o_{\varepsilon }(1)\bigr) (1-\tau ) \int _{B_{R(0)}}\zeta _{\varepsilon }\bigl(1+h(u_{\varepsilon }) \bigr)e^{4\pi (1-\gamma -\varepsilon ) \vartheta _{\varepsilon }^{2}}\,dx. \end{aligned} $$

By passing to the limit \(\varepsilon \rightarrow 0\), we get

$$ \liminf_{\varepsilon \rightarrow 0} \int _{\varOmega } \bigl\vert \nabla (u_{\varepsilon }-\tau c_{\varepsilon })^{+} \bigr\vert ^{2}\,dx\geq (1-\tau ) \int _{B_{R(0)}}e^{8 \pi (1-\gamma )\vartheta }\,dx=1-\tau . $$
(39)

Since \(|\nabla u_{\varepsilon ,\tau }|^{2}+|\nabla (u_{\varepsilon }- \tau c_{\varepsilon })^{+}|^{2}=|\nabla u_{\varepsilon }|^{2}\) almost everywhere, it follows that

$$ \int _{\varOmega } \bigl\vert \nabla (u_{\varepsilon }-\tau c_{\varepsilon })^{+} \bigr\vert ^{2}\,dx+ \int _{\varOmega } \vert \nabla u_{\varepsilon ,\tau } \vert ^{2}\,dx= \int _{\varOmega } \vert \nabla u_{\varepsilon } \vert ^{2}\,dx=1+o_{\varepsilon }(1). $$
(40)

Therefore, we end the proof of this lemma together with (38), (39) and (40). □

The following estimate is a byproduct of Lemma 6 and will be employed in the next section.

Lemma 7

We have

$$ \lim_{\varepsilon \rightarrow 0} \int _{\varOmega } \vert x \vert ^{-2\gamma }\bigl(1+g(u _{\varepsilon })\bigr)e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}\,dx =\bigl(1+g(0)\bigr) \int _{\varOmega } \vert x \vert ^{-2\gamma }\,dx +\lim _{\varepsilon \rightarrow 0}\frac{\lambda _{\varepsilon }}{c_{\varepsilon }^{2}}. $$
(41)

Proof

Let \(0<\tau <1\) be fixed. By the definition of \(u_{\varepsilon ,\tau }\), we can get

$$ \begin{aligned}[b] & \int _{u_{\varepsilon }\leq \tau c_{\varepsilon }}\bigl(1+g(u_{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2 \gamma }} \,dx-\bigl(1+g(0)\bigr) \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma }}\,dx \\ &\quad \leq \int _{\varOmega }\bigl(1+g(u_{\varepsilon ,\tau })\bigr)\frac{e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon ,\tau }^{2}}}{ \vert x \vert ^{2\gamma }} \,dx-\bigl(1+g(0)\bigr) \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma }}\,dx \\ &\quad \leq \int _{\varOmega } \bigl\vert g(u_{\varepsilon ,\tau })-g(0) \bigr\vert \frac{e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon ,\tau }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx + \bigl\vert 1+g(0) \bigr\vert \int _{\varOmega }\frac{(e^{4\pi (1-\gamma -\varepsilon ) u_{ \varepsilon ,\tau }^{2}}-1)}{ \vert x \vert ^{2\gamma }}\,dx. \end{aligned} $$
(42)

Combining Lemma 6 and Proposition 5, we see that \(u_{\varepsilon , \sigma }\) converges to 0 in \(C^{1}_{\mathrm{loc}}(\overline{\varOmega }\setminus \{0\})\) as \(\varepsilon \rightarrow 0 \). Then from (3), one can deduce that

$$ \int _{\varOmega }\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon , \tau }^{2}}}{ \vert x \vert ^{2\gamma }} \bigl\vert g(u_{\varepsilon ,\tau })-g(0) \bigr\vert \,dx=o_{ \varepsilon }(1). $$
(43)

According to the Hölder inequality and the Lagrange theorem, we have

$$ \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma }}\bigl(e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon ,\tau }^{2}}-1\bigr)\,dx =o_{\varepsilon }(1). $$
(44)

Inserting (43) and (44) into (42), one has

$$ \lim_{\varepsilon \rightarrow 0} \int _{u_{\varepsilon }\leq \tau c_{\varepsilon }}\bigl(1+g(u_{\varepsilon })\bigr)\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2 \gamma }} \,dx=\bigl(1+g(0)\bigr) \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma }}\,dx. $$
(45)

Moreover, we calculate

$$ \begin{aligned}[b] & \int _{u_{\varepsilon }>\tau c_{\varepsilon }}\bigl(1+g(u_{\varepsilon })\bigr)\frac{e ^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }} \,dx \\ &\quad \leq \frac{1}{\tau ^{2}} \int _{u_{\varepsilon }>\tau c_{\varepsilon }}\frac{u _{\varepsilon }^{2}}{c_{\varepsilon }^{2}}\bigl(1+g(u_{\varepsilon })\bigr) \frac{e ^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx \\ &\quad \leq \frac{1}{\tau ^{2}}\frac{\lambda _{\varepsilon }^{2}}{c_{\varepsilon }^{2}}. \end{aligned} $$
(46)

Combining (45) and (46), we obtain

$$ \lim_{\varepsilon \rightarrow 0} \int _{\varOmega }\frac{(1+g(u_{\varepsilon })) e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}}{ \vert x \vert ^{2 \gamma }}\,dx\leq \bigl(1+g(0)\bigr) \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma }}\,dx+\frac{1}{ \tau ^{2}}\liminf _{\varepsilon \rightarrow 0} \frac{\lambda _{\varepsilon }^{2}}{c_{\varepsilon }^{2}}. $$

It follows by letting \(\tau \rightarrow 1 \) that

$$ \lim_{\varepsilon \rightarrow 0} \int _{\varOmega }\frac{(1+g(u_{\varepsilon })) e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}}{ \vert x \vert ^{2 \gamma }}\,dx-\bigl(1+g(0)\bigr) \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma }}\,dx\leq \liminf _{\varepsilon \rightarrow 0} \frac{\lambda _{\varepsilon }^{2}}{c _{\varepsilon }^{2}}. $$
(47)

On the other hand, in view of (16), we estimate

$$ \begin{aligned}[b] & \int _{\varOmega }\bigl(1+g(u_{\varepsilon })\bigr) \frac{e^{4\pi (1-\gamma - \varepsilon )u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx-\bigl(1+g(0)\bigr) \int _{\varOmega }\frac{1}{ \vert x \vert ^{2\gamma }}\,dx \\ &\quad \geq \int _{\varOmega } \frac{u_{\varepsilon }^{2}}{c_{\varepsilon }^{2}} \biggl(\bigl(1+g(u_{ \varepsilon }) \bigr) \frac{e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}-\bigl(1+g(0)\bigr)\frac{1}{ \vert x \vert ^{2\gamma }} \biggr)\,dx \\ &\quad =\frac{\lambda _{\varepsilon }}{c_{\varepsilon }^{2}}-\frac{1}{c_{ \varepsilon }^{2}} \int _{\varOmega }\frac{(1+g(0))u_{\varepsilon }^{2}}{ \vert x \vert ^{2 \gamma }}\,dx -\frac{1}{c_{\varepsilon }^{2}} \int _{\varOmega }\frac{u_{ \varepsilon }g'(u_{\varepsilon })}{8\pi (1-\gamma -\varepsilon ) \vert x \vert ^{2 \gamma }}e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}\,dx. \end{aligned} $$

Thus, by Proposition 5 and (6), (8), one can check that

$$ \limsup_{\varepsilon \rightarrow 0}\frac{\lambda _{\varepsilon }^{2}}{c _{\varepsilon }^{2}}\leq \lim _{\varepsilon \rightarrow 0} \int _{\varOmega } \vert x \vert ^{-2\gamma } \bigl(1+g(u_{\varepsilon })\bigr) e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon }^{2}}\,dx-\bigl(1+g(0)\bigr) \int _{\varOmega } \vert x \vert ^{-2\gamma }\,dx. $$
(48)

In view of (47) and (48), we complete the proof of Lemma 7. □

Corollary 8

If \(\theta <2\), then \(\frac{\lambda _{\varepsilon }}{c_{\varepsilon } ^{\theta }}\rightarrow \infty \) as \(\varepsilon \rightarrow 0\).

Proof

In contrast, we have \(\lambda _{\varepsilon }/c_{\varepsilon }^{2}\rightarrow 0\) as \(\varepsilon \rightarrow 0\). For any \(\nu \in W_{0}^{1,2}(\varOmega )\) with \(\|\nabla \nu \|_{2}\leq 1\), clearly, it is impossible for (41) to hold since \(\nu \not \equiv 0\). □

Lemma 9

For any function \(\phi \in C_{0}^{1}(\varOmega )\), we have

$$ \lim_{\varepsilon \rightarrow 0} \int _{\varOmega }\bigl(1+h(u_{\varepsilon })\bigr) \lambda _{\varepsilon }^{-1}c_{\varepsilon }u_{\varepsilon } \vert x \vert ^{-2 \gamma } e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}\phi \,dx= \phi (0). $$
(49)

Proof

To see this, let \(\phi \in C_{0}^{1}(\varOmega )\) be fixed. Write for simplicity

$$ \omega _{\varepsilon }=\bigl(1+h(u_{\varepsilon })\bigr)\lambda _{\varepsilon } ^{-1}c_{\varepsilon }u_{\varepsilon } \vert x \vert ^{-2\gamma } e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon }^{2}}. $$

Clearly

$$ \begin{aligned}[b] \int _{\varOmega }\omega _{\varepsilon }\phi \,dx &= \int _{\{u_{\varepsilon }< \tau c_{\varepsilon }\}}\omega _{\varepsilon }\phi \,dx+ \int _{\{u_{\varepsilon }\geq \tau c_{\varepsilon }\}\setminus B_{R _{r_{\varepsilon }}^{1/(1-\gamma )}}(x_{\varepsilon })} \omega _{\varepsilon }\phi \,dx \\ &\quad {}+ \int _{\{u_{\varepsilon }\geq \tau c_{\varepsilon }\}\cap B_{R_{r_{ \varepsilon }}^{1/(1-\gamma )}}(x_{\varepsilon })}\omega _{\varepsilon }\phi \,dx. \end{aligned} $$
(50)

Given \(0<\tau <1\), we estimate the three integrals on the right hand of (50), respectively. Note that \(u_{\varepsilon }\rightarrow 0\) in \(L^{q}\) (\(\forall q>1\)). This together with Lemma 6 and Corollary 8 gives

$$ \begin{aligned}[b] \int _{\{u_{\varepsilon }< \tau c_{\varepsilon }\}}\omega _{\varepsilon }\phi \,dx &\leq \lambda _{\varepsilon }^{-1}c_{\varepsilon } \Bigl(\sup_{ \varOmega } \bigl\vert \phi \bigl(1+h(u_{\varepsilon })\bigr) \bigr\vert \Bigr) \int _{\{u_{\varepsilon }< \tau c_{\varepsilon }\}} u_{\varepsilon } \vert x \vert ^{-2 \gamma } e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon ,\tau }^{2}}\,dx \\ &\leq C\lambda _{\varepsilon }^{-1}c_{\varepsilon } \int _{\{u_{\varepsilon }< \tau c_{\varepsilon }\}} u_{\varepsilon } \vert x \vert ^{-2 \gamma }e^{4\pi (1-\gamma -\varepsilon )u_{\varepsilon ,\tau }^{2}} \,dx \\ &=o_{\varepsilon }(1). \end{aligned} $$
(51)

Now we consider in \(B_{R_{r_{\varepsilon }}^{1/(1-\gamma )}}(x_{ \varepsilon })\subset \{x\in \varOmega \mid u_{\varepsilon }\geq \tau c _{\varepsilon }\}\) for sufficiently small \(\varepsilon >0\). One can deduce from (33) that

$$ \begin{aligned}[b] \int _{\{u_{\varepsilon }\geq \tau c_{\varepsilon }\}\cap B_{R_{r_{ \varepsilon }}^{1/(1-\gamma )}}(x_{\varepsilon })}\omega _{\varepsilon }\phi \,dx &=\phi (0) \bigl(1+o_{\varepsilon }(1)\bigr) \int _{B_{R\backslash 1/R}(0)} \vert x \vert ^{-2 \gamma }e^{8\pi \vartheta } \,dx \\ &=\phi (0) \bigl(1+o_{\varepsilon }(1)+o_{R}(1)\bigr). \end{aligned} $$
(52)

On the other hand, we calculate

$$ \begin{aligned}[b] \int _{\{u_{\varepsilon }\geq \tau c_{\varepsilon }\}\backslash B_{R _{r_{\varepsilon }}^{1/(1-\gamma )}}(x_{\varepsilon })} \omega _{\varepsilon }\phi \,dx &\leq \frac{C}{\tau } \biggl(1- \int _{B_{R_{r_{\varepsilon }}^{1/(1-\gamma )}}(x_{\varepsilon })} \frac{u _{\varepsilon }^{2}}{ \lambda _{\varepsilon }}\frac{e^{4\pi (1-\gamma -\varepsilon ) u_{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx \biggr) \\ &=\frac{C}{\tau } \biggl(1- \int _{B_{R}(0)}\frac{e^{8\pi (1-\gamma ) \vartheta }}{ \vert x \vert ^{2\gamma }}\,dx \biggr). \end{aligned} $$

Hence, we derive by (33) that

$$ \lim_{R\rightarrow \infty }\lim_{\varepsilon \rightarrow 0} \int _{\{u_{\varepsilon }\geq \tau c_{\varepsilon }\}\backslash B_{R _{r_{\varepsilon }}^{1/(1-\gamma )}}(x_{\varepsilon })} \omega _{\varepsilon }\phi \,dx =0. $$
(53)

Inserting (51)–(53) to (50), we conclude (49) finally. □

In particular, we propose, by letting \(\phi =1\),

$$ \omega _{\varepsilon }(x)= \bigl(1+h(u_{\varepsilon })\bigr) \lambda _{\varepsilon }^{-1}c_{\varepsilon }u_{\varepsilon } \vert x \vert ^{-2\gamma } e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon }^{2}} \quad \text{is bounded in } L^{1}(\varOmega ), $$
(54)

which will be used in the following proof.

We now prove that \(c_{\varepsilon }u_{\varepsilon }\) converges to a Green function in distributional sense when \(\varepsilon \rightarrow 0\), where \(\delta _{0}\) stands for the Dirac measure centered at 0. More precisely, we have

Lemma 10

\(c_{\varepsilon }u_{\varepsilon }\rightarrow G\) in \(C_{\mathrm{loc}}^{1}(\overline{ \varOmega }\setminus \{0\})\) and weakly in \(W_{0}^{1,q}(\varOmega )\) for all \(1< q<2\), where \(G\in C^{1}(\overline{\varOmega }\setminus \{0\})\) is a distributional solution satisfying the following:

$$ \textstyle\begin{cases} -\Delta G=\delta _{0} & \textit{in } \varOmega , \\ G=0 & \textit{on } \partial \varOmega . \end{cases} $$
(55)

Moreover, G takes the form

$$ G(x)=-\frac{1}{2\pi }\log \vert x \vert +A_{0}+ \xi (x), $$
(56)

where \(\xi (x)\in C^{1}(\overline{\varOmega })\) and \(A_{0}\) is a constant depending on 0.

Proof

By Eq. (16), \(c_{\varepsilon }u_{\varepsilon }\) is a distributional solution to

$$ -\Delta (c_{\varepsilon }u_{\varepsilon })=\omega _{\varepsilon } \quad \text{in } \varOmega . $$
(57)

It follows from (54) that \(\omega _{\varepsilon }\) is bounded in \(L^{1}(\varOmega )\). Using the argument in Struwe ([25], Theorem 2.2), one concludes that \(c_{\varepsilon }u_{\varepsilon }\) is bounded in \(W_{0}^{1,q}(\varOmega )\) for all \(1< q<2\). Hence, we can assume, for any \(1< q<2\), \(r>1\), that

$$ \begin{aligned}[b] &c_{\varepsilon }u_{\varepsilon }\rightharpoonup G \quad \text{weakly in } W_{0}^{1,q}(\varOmega ), \\ &c_{\varepsilon }u_{\varepsilon }\rightarrow G \quad \text{strongly in } L^{r}(\varOmega ). \end{aligned} $$

Testing (57) by \(\phi \in C^{1}_{0}(\varOmega )\), we deduce

$$ \int _{\varOmega }\nabla (c_{\varepsilon }u_{\varepsilon })\nabla \phi \,dx= \int _{\varOmega }\phi \lambda _{\varepsilon }^{-1}c_{\varepsilon }u_{ \varepsilon } \bigl(1+h(u_{\varepsilon })\bigr) \vert x \vert ^{-2\gamma } e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon }^{2}}. $$

Let \(\varepsilon \rightarrow 0\) and it yields by (55)

$$ \int _{\varOmega }\nabla G\nabla \phi \,dx =\phi (0), $$

which implies that \(-\Delta G=\delta _{0}\) in a distributional sense. Since \(\Delta (G+\frac{1}{2\pi }\log |x|)\in L^{p}(\varOmega )\) for any \(p>2\), (56) follows from the elliptic solution immediately. Applying elliptic estimates to Eq. (57), we arrive at the conclusion

$$ c_{\varepsilon }u_{\varepsilon }\rightarrow G\quad \text{in } C _{\mathrm{loc}}^{1}\bigl(\overline{\varOmega }\setminus \{0\}\bigr). $$
(58)

Thus, the two assertions holds. □

2.3 Upper bound calculates by means of capacity estimate

In this subsection, we aim to derive an upper bound of the integrals \(\int _{\varOmega }(1+g(u_{\varepsilon }))|x|^{-2\gamma } e^{4\pi (1- \gamma -\varepsilon ) u_{\varepsilon }^{2}}\,dx\). Analogous to the one obtained in [15], we mainly use the capacity estimate. Now choose a proper δ to ensure that \(B_{2\delta }\subset \varOmega \), and then construct a new function space

$$ \mathscr{M}_{\varepsilon }(\rho _{\varepsilon },\sigma _{\varepsilon })= \bigl\{ u|u\in W^{1,2}\bigl(\mathbb{B}_{\delta }(x_{\varepsilon }) \setminus \mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })\bigr): u|_{ \partial \mathbb{B}_{\delta }(x_{\varepsilon })}= \rho _{\varepsilon }, u|_{\partial \mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })}=\sigma _{\varepsilon }\bigr\} $$

where

$$ \rho _{\varepsilon }=\sup_{\partial \mathbb{B}_{\delta }(x_{\varepsilon })}u_{\varepsilon },\qquad \sigma _{\varepsilon }= \inf_{\partial \mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{ \varepsilon })} u_{\varepsilon }. $$

Define

$$ \varLambda _{\varepsilon }= \inf_{u\in \mathscr{M}_{\varepsilon }(\rho _{\varepsilon }, \sigma _{\varepsilon })} \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla u \vert ^{2}\,dx. $$

Clearly, the infimum \(\varLambda _{\varepsilon }\) can be attained by the sequence \(u_{k}\in \mathscr{M}\) as \(k\rightarrow \infty \). By the proof of the Poincaré inequality, we infer that \(u_{k}\) is bounded in \(W_{0}^{1,2}(\varOmega )\). Without loss of generality, there exists some function \(t\in W^{1,2}(\varOmega )\) such that up to a subsequence. As \(k\rightarrow \infty \), we have \(u_{k}\rightharpoonup t\) weakly in \(W^{1,2}(\varOmega )\), \(u_{k}\rightarrow t\) in \(L^{p}_{\mathrm{loc}}(\varOmega )\) for any \(p>0\) and \(u_{k}\rightarrow t\) a.e. in Ω. Besides, for \(t\in \mathscr{M}_{\varepsilon }(\rho _{\varepsilon },\sigma _{\varepsilon }) \), we have

$$ \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla t \vert ^{2}\,dx \leq \lim_{k\rightarrow \infty } \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla u_{k} \vert ^{2}\,dx= \varLambda _{\varepsilon } $$

and

$$ \varLambda _{\varepsilon }\leq \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla t \vert ^{2}\,dx. $$

Through the method of variation, we see that there exists some harmonic function \(t(x)\) to reach the \(\varLambda _{\varepsilon }\) which satisfies the following:

$$ \textstyle\begin{cases} \Delta t =0 \quad \text{in } \mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon }), \\ t|_{\partial \mathbb{B}_{\delta }(x_{\varepsilon })}=\rho _{\varepsilon }, \\ t|_{\partial \mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })}=\sigma _{\varepsilon }. \end{cases} $$
(59)

Obviously, the solution of (59) can be expressed as

$$ t(x)=a\log \vert x-x_{0} \vert +b. $$

One can check that

$$ \textstyle\begin{cases} a=\frac{\sigma _{\varepsilon }-\rho _{\varepsilon }}{\log \delta - \log Rr_{\varepsilon }^{1/(1-\gamma )}}, \\ b=\frac{\sigma _{\varepsilon }\log Rr_{\varepsilon }^{1/(1-\gamma )} -\rho _{\varepsilon }\log \delta }{\log Rr_{\varepsilon }^{1/(1-\gamma )}-\log \delta }. \end{cases} $$
(60)

Thus, \(t(x)\) can be expressed as

$$ t(x)=\frac{\sigma _{\varepsilon }(\log \delta -\log \vert x-x_{\varepsilon } \vert )-\rho _{\varepsilon }(\log Rr_{\varepsilon }^{1/(1-\gamma )}-\log \vert x-x _{\varepsilon } \vert )}{\log \delta -\log Rr_{\varepsilon }^{1/(1-\gamma )}}. $$

With a direct computation, it is easy to check that

$$ \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla t \vert ^{2}\,dx= \frac{2 \pi (\sigma _{\varepsilon }-\rho _{\varepsilon })^{2}}{\log \delta - \log Rr_{\varepsilon }^{1/(1-\gamma )}}. $$
(61)

According to (23), we have

$$ \log \delta -\log Rr_{\varepsilon }^{1/(1-\gamma )}=\log \delta - \log R +\frac{2\pi (1-\gamma -\varepsilon )c_{\varepsilon }^{2}}{1- \gamma }- \frac{1}{2(1-\gamma )}\log \frac{\lambda _{\varepsilon }}{c _{\varepsilon }^{2}}. $$
(62)

Furthermore, Lemma 10 and (31) show that

$$ \sigma _{\varepsilon }=c_{\varepsilon }+\frac{1}{c_{\varepsilon }} \biggl(-\frac{1}{4\pi (1-\gamma )}\log \biggl(1+\frac{\pi }{1-\gamma }R^{2(1- \gamma )} \biggr)+o(1) \biggr) $$
(63)

and

$$ \rho _{\varepsilon }=\frac{1}{c_{\varepsilon }} \biggl(- \frac{1}{2 \pi }\log \delta +A_{0}+o(1) \biggr), $$
(64)

where \(o(1)\rightarrow 0\) by letting \(\varepsilon \rightarrow 0\) and \(\delta \rightarrow 0\) in succession. Set \(u_{\varepsilon }^{*}= \max \{\rho _{\varepsilon },\min \{u_{\varepsilon },\sigma _{\varepsilon }\}\}\). From \(u_{\varepsilon }^{*}\in \mathscr{M}_{\varepsilon }( \rho _{\varepsilon },\sigma _{\varepsilon }) \), one can easily check that

$$ \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla t \vert ^{2}\,dx= \varLambda _{\varepsilon }\leq \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \bigl\vert \nabla u_{\varepsilon }^{*} \bigr\vert ^{2}\,dx. $$
(65)

Observe that \(|\nabla u_{\varepsilon }^{*}|\leq |\nabla u_{\varepsilon }|\) a.e. in \(\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })\) if ε is sufficiently small. Thus, it follows

$$ \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \bigl\vert \nabla u_{\varepsilon }^{*} \bigr\vert ^{2}\,dx\leq \int _{\mathbb{B}_{\delta }(x_{\varepsilon })\setminus \mathbb{B}_{Rr _{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx. $$
(66)

In view of (61), (65) and (66), it can be inferred that

$$ \begin{aligned}[b] 2\pi (\sigma _{\varepsilon }-\rho _{\varepsilon })^{2} &\leq \biggl(1- \int _{\varOmega \setminus \mathbb{B}_{\delta }(x_{\varepsilon })} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx- \int _{\mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx \biggr) \\ &\quad {}\times \bigl(\log \delta -\log Rr_{\varepsilon }^{1/(1- \gamma )} \bigr). \end{aligned} $$
(67)

Since \(c_{\varepsilon }u_{\varepsilon }\rightarrow G\) in \(C^{1}_{\mathrm{loc}}(\overline{ \varOmega }\backslash \{0\})\), we obtain the conclusion through integrating by parts:

$$ \begin{aligned}[b] \int _{\varOmega \setminus \mathbb{B}_{\delta }(x_{\varepsilon })} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx &=\frac{1}{c_{\varepsilon }^{2}} \int _{\varOmega \setminus \mathbb{B}_{\delta }(x_{\varepsilon })} \vert \nabla G_{\varepsilon } \vert ^{2}\,dx \\ &=-\frac{1}{c_{\varepsilon }^{2}} \biggl( \int _{\varOmega \setminus \mathbb{B}_{\delta }(x_{\varepsilon })}G\Delta G \,dx+ \int _{\partial \mathbb{B}_{\delta }(x_{\varepsilon })}G \frac{\partial G}{\partial \nu }\,ds \biggr) \\ &=-\frac{1}{c_{\varepsilon }^{2}} \biggl(\frac{1}{2\pi }\log \delta -A _{0}+o_{\varepsilon }(1)+ o_{\delta }(1) \biggr). \end{aligned} $$
(68)

Observe that \(\vartheta _{\varepsilon }\rightarrow \vartheta \) in \(C^{1}_{\mathrm{loc}}(\mathbb{R}^{2}\setminus \{0\})\), and

$$ u_{\varepsilon }=\frac{\vartheta _{\varepsilon }(x)}{c_{\varepsilon }}+c _{\varepsilon }\quad \text{in } \mathbb{B}_{Rr_{\varepsilon } ^{1/(1-\gamma )}}(x_{\varepsilon }). $$
(69)

A direct computation shows that

$$ \begin{aligned}[b] \int _{\mathbb{B}_{R}(0)} \vert \nabla \vartheta \vert ^{2}\,dx &= \int _{0}^{R}\frac{2 \pi }{4(1-\gamma )^{2}(1+\frac{\pi }{1-\gamma } \vert r \vert ^{2(1-\gamma )})^{2}}r ^{-4\gamma } \,dr \\ &=\frac{1}{4\pi (1-\gamma )}\log \frac{\pi }{1-\gamma }+\frac{1}{2 \pi }\log R- \frac{1}{4\pi (1-\gamma )}+O\biggl(\frac{1}{R^{2(1-\gamma )}}\biggr). \end{aligned} $$
(70)

Then it follows from (69) and (70) that

$$ \begin{aligned}[b] \int _{\mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx &=\frac{1}{c_{\varepsilon }^{2}} \int _{\mathbb{B}_{Rr_{\varepsilon }^{1/(1-\gamma )}}(x_{\varepsilon })} \bigl\vert \nabla \vartheta _{\varepsilon }(x) \bigr\vert ^{2}\,dx \\ &=\frac{1}{c_{\varepsilon }^{2}} \biggl( \int _{\mathbb{B}_{R}(0)} \bigl\vert \nabla \vartheta (y) \bigr\vert ^{2} \,dy+o_{\varepsilon }(1) \biggr) \\ &=\frac{1}{4\pi c_{\varepsilon }^{2}(1-\gamma )}\log \frac{\pi }{1- \gamma }+\frac{1}{2\pi c_{\varepsilon }^{2}}\log R- \frac{1}{4\pi c _{\varepsilon }^{2}(1-\gamma )}+\frac{o(1)}{c_{\varepsilon }^{2}}. \end{aligned} $$

This together with (62)–(64) and (68), we obtain

$$ -2\pi A_{0}-\frac{\log (1+\frac{\pi }{1-\gamma }R^{2(1-\gamma )} )}{1- \gamma } \leq -2\log R+\frac{(1-\log \frac{\lambda _{\varepsilon }}{c _{\varepsilon }^{2}}-\log \frac{\pi }{1-\gamma })}{2(1-\gamma )}+o(1). $$

Hence,

$$ \limsup_{\varepsilon \rightarrow 0}\frac{\lambda _{\varepsilon }}{c _{\varepsilon }^{2}} \leq \frac{\pi }{1-\gamma }e^{4\pi (1-\gamma )A _{0}+1}. $$

In view of Lemma 7, we arrive at the conclusion

$$ \varLambda _{4\pi (1-\gamma )} \leq \bigl(1+g(0)\bigr) \int _{\varOmega } \vert x \vert ^{-2\gamma }\,dx + \frac{\pi }{1-\gamma }e^{4\pi (1-\gamma )A_{0}+1}. $$
(71)

2.4 Completion of the proof of Theorem 1

As a consequence, if \(c_{\varepsilon }\rightarrow \infty \), it follows from (71) that \(\varLambda _{4\pi (1-\gamma )}\) is bounded. Otherwise, we can find the extremal function \(u_{0}\) which satisfies (17). Therefore, necessarily

$$ \sup_{u\in W_{0}^{1,2}(\varOmega ), \Vert \nabla u \Vert _{2}\leq 1} \int _{\varOmega }\bigl(1+g(u)\bigr)\frac{e ^{4\pi (1-\gamma ) u^{2}}}{ \vert x \vert ^{2\gamma }}\,dx< \infty . $$

3 Proof of Theorem 2

3.1 Test function computation

Similar to [30], we construct a blow-up sequence \(\phi _{\varepsilon }\in W_{0}^{1,2}(\varOmega )\) with \(\|\nabla \phi _{\varepsilon }\|_{2}=1\). For sufficiently small \(\varepsilon >0\), there exists

$$ \int _{\varOmega } \vert x \vert ^{-2\gamma }\bigl(1+g(\phi _{\varepsilon })\bigr)e^{4\pi (1- \gamma )\phi _{\varepsilon }^{2}}\,dx >\bigl(1+g(0)\bigr) \int _{\varOmega } \vert x \vert ^{-2 \gamma }\,dx + \frac{\pi }{1-\gamma }e^{4\pi (1-\gamma )A_{0}+1}. $$
(72)

Then we will find (72) is a contradiction to (71), so that \(c_{\varepsilon }\) has to be bounded, which means the blow-up cannot take place. Furthermore, Theorem 2 follows immediately from what we have proved according to the elliptic estimates. For this purpose we set

$$\begin{aligned} \phi _{\varepsilon }(x)=\textstyle\begin{cases} c+\frac{1}{c}(-\frac{1}{4\pi (1-\gamma )}\log (1+\frac{\pi }{1-\gamma }\frac{ \vert x \vert ^{2(1-\gamma )}}{\varepsilon ^{2(1-\gamma )}})+b), & \text{for } x\in \overline{\mathbb{B}}_{ R\varepsilon }, \\ \frac{G-\xi \eta }{c}, & \text{for } x\in \mathbb{B}_{ 2R\varepsilon }\setminus \overline{\mathbb{B}}_{ R \varepsilon }, \\ \frac{G}{c}, & \text{for } x\in \varOmega \setminus \mathbb{B}_{ 2R\varepsilon }, \end{cases}\displaystyle \end{aligned}$$
(73)

where \(\eta \in C_{0}^{1}(\mathbb{B}_{2R\varepsilon })\) is a cut-off function satisfying \(\eta =1\) on \(\mathbb{B}_{R\varepsilon }\), and \(|\nabla \eta |\leq \frac{2}{R\varepsilon }\). And G is given as in (56). b and c are constants which depend only on ε, to be determined later. To ensure \(\phi _{\varepsilon }\in W_{0}^{1,2}(\varOmega )\), we let

$$ c+\frac{1}{c}\biggl(-\frac{1}{4\pi (1-\gamma )}\log \biggl(1+\frac{\pi }{1-\gamma } \frac{ \vert x \vert ^{2(1-\gamma )}}{\varepsilon ^{2(1-\gamma )}}\biggr)+b\biggr)= \frac{1}{c}\biggl(-\frac{1}{2\pi } \log R\varepsilon +A_{0}\biggr), $$

which leads to

$$ 2\pi c^{2}=-\log \varepsilon -2\pi b+2\pi A_{0}+ \frac{1}{2(1-\gamma )} \log \frac{\pi }{1-\gamma }+O\biggl( \frac{1}{R^{2(1- \gamma )}}\biggr). $$
(74)

Now we calculate

$$ \begin{aligned}[b] \int _{\mathbb{B}_{R\varepsilon }} \vert \nabla \phi _{\varepsilon } \vert ^{2}\,dx &= \int _{\mathbb{B}_{R}}\frac{ \vert x \vert ^{2-4\gamma }}{4 c^{2}(1-\gamma )^{2}(1+\frac{ \pi }{1-\gamma } \vert x \vert ^{2-4\gamma })^{2}}\,dx \\ &= \int _{0}^{\frac{\pi }{1-\gamma }R^{2-2\gamma }}\frac{t \,dt}{4 \pi c^{2} (1-\gamma )(1+t)^{2}}\,dt \\ &=\frac{1}{4\pi c^{2}(1-\gamma ) } \biggl(\log \frac{\pi }{1-\gamma }-1+ \log R^{2-2\gamma }+O \biggl(\frac{1}{R^{2-2\gamma }}\biggr) \biggr). \end{aligned} $$
(75)

On the other hand

$$ \begin{aligned}[b] \int _{\varOmega \setminus \mathbb{B}_{R\varepsilon }} \vert \nabla \phi _{\varepsilon } \vert ^{2}\,dx &= \frac{1}{c^{2}}\biggl( \int _{\varOmega \setminus \mathbb{B}_{R\varepsilon }} \vert \nabla G \vert ^{2}\,dx+ \int _{\mathbb{B}_{2R\varepsilon }\setminus \mathbb{B}_{R\varepsilon }} \bigl\vert \nabla (\xi \eta ) \bigr\vert ^{2}\,dx \\ &\quad {}-2 \int _{\mathbb{B}_{2R\varepsilon }\setminus \mathbb{B}_{R\varepsilon }}\nabla G\nabla (\xi \eta )\,dx \biggr) \\ &= \frac{1}{c^{2}}\biggl(- \int _{\varOmega \setminus \mathbb{B}_{R\varepsilon }}G \Delta G \,dx- \int _{\partial \mathbb{B}_{R\varepsilon }}G \frac{\partial G}{\partial \nu }\,ds \\ &\quad {}+ \int _{\mathbb{B}_{2R\varepsilon }\setminus \mathbb{B}_{R\varepsilon }} \bigl\vert \nabla (\xi \eta ) \bigr\vert ^{2}\,dx -2 \int _{\mathbb{B}_{2R\varepsilon }\setminus \mathbb{B}_{R\varepsilon }} \nabla G\nabla (\xi \eta )\,dx \biggr). \end{aligned} $$

Observe that \(\xi (x)=O(|x|)\) as \(x\rightarrow 0\). Since η is a cut-off function, it yields \(|\nabla (\xi \eta )|=O(1)\) as \(\varepsilon \rightarrow 0\). Then we have

$$ \int _{\mathbb{B}_{2R\varepsilon }\setminus \mathbb{B}_{R\varepsilon }} \bigl\vert \nabla (\xi \eta ) \bigr\vert ^{2}\,dx=O\bigl(R^{2}\varepsilon ^{2}\bigr),\qquad \int _{\mathbb{B}_{2R\varepsilon }\setminus \mathbb{B}_{R\varepsilon }} \nabla G \nabla (\xi \eta )\,dx=O(R\varepsilon ), $$

which together with (56) leads to

$$ \int _{\varOmega \setminus \mathbb{B}_{R\varepsilon }} \vert \nabla \phi _{\varepsilon } \vert ^{2}\,dx =\frac{1}{c^{2}} \biggl( -\frac{1}{2\pi } \log (R \varepsilon )+A_{0}+O(R\varepsilon ) \biggr). $$
(76)

Combining (75) and (76), a delicate but straightforward calculation shows

$$ \int _{\varOmega } \vert \nabla \phi _{\varepsilon } \vert ^{2}\,dx=\frac{1}{c^{2}} \biggl( -\frac{\log \varepsilon }{2\pi }- \frac{1}{4\pi (1-\gamma ) }+\frac{1}{4 \pi (1-\gamma ) }\log \frac{\pi }{1-\gamma }+A_{0}+O \biggl(\frac{1}{R^{2-2 \gamma }}\biggr) \biggr). $$

Put \(\|\nabla \phi _{\varepsilon }\|_{2}=1\). It yields

$$ c^{2}=A_{0}-\frac{1}{2\pi }\log \varepsilon +\frac{1}{4\pi (1-\gamma ) }\log \frac{\pi }{1-\gamma }-\frac{1}{4\pi (1-\gamma ) }+O \biggl(\frac{1}{R ^{2-2\gamma }}\biggr). $$
(77)

Together with (74) and (77), we are led to

$$ b=\frac{1}{4\pi (1-\gamma ) }+O\biggl(\frac{1}{R^{2-2\gamma }}\biggr). $$
(78)

For all \(x\in \mathbb{B}_{R\varepsilon }\), it follows from (77) and (78) that

$$ \begin{aligned}[b] 4\pi (1-\gamma )\phi _{\varepsilon }^{2} &\geq 4\pi (1-\gamma ) c^{2}+8 \pi (1- \gamma ) b-2\log \biggl(1+\frac{\pi \vert x \vert ^{2(1-\gamma )}}{(1- \gamma )\varepsilon ^{2(1-\gamma )}} \biggr) \\ &=1+4\pi (1-\gamma )A_{0}+\log \frac{\pi }{1-\gamma }- 2(1-\gamma ) \log \varepsilon \\ &\quad {}-2\log \biggl(1+\frac{\pi \vert x \vert ^{2(1-\gamma )}}{(1-\gamma ) \varepsilon ^{2(1-\gamma )}} \biggr)+O\biggl(\frac{1}{R^{2-2\gamma }}\biggr). \end{aligned} $$
(79)

Note that \(\|\frac{\phi _{\varepsilon }(x)}{c}\|_{L^{\infty }(B_{R \varepsilon })}\rightarrow 1\) by passing to the limit \(\varepsilon \rightarrow 0\). When \(r\leq R\varepsilon \), there exists

$$ \biggl\vert \frac{\phi _{\varepsilon }(x)}{c} \biggr\vert = \biggl\vert 1+ \frac{-\log (1+\pi \frac{r^{2}}{ \varepsilon ^{2}})+b}{c^{2}} \biggr\vert \rightarrow 1. $$

as \(\varepsilon \rightarrow 0\). Since \(\phi _{\varepsilon }(x)\sim c\) in \(\mathbb{B}_{R\varepsilon }\) and \(g(c)=o(\frac{1}{c^{2}})\), we conclude \(g(\phi _{\varepsilon }(\xi _{\varepsilon }))= o(\frac{1}{c^{2}})\) as \(\varepsilon \rightarrow 0\), where \(\xi _{\varepsilon }\in \mathbb{B} _{R\varepsilon }\). Combining with the mean value theorem, it follows from (79) that

$$\begin{aligned} \begin{aligned}[b] \int _{\mathbb{B}_{R\varepsilon }}\bigl(1+g(\phi _{\varepsilon })\bigr) \frac{e ^{4\pi (1-\gamma ) \phi _{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx &=\bigl(1+g\bigl( \phi _{\varepsilon }(\xi _{\varepsilon })\bigr)\bigr) \int _{\mathbb{B}_{R\varepsilon }}\frac{e^{4\pi (1-\gamma ) \phi _{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx \\ &\geq \biggl(1+o\biggl(\frac{1}{c^{2}}\biggr)\biggr)\frac{\pi }{1-\gamma }e^{1+4\pi (1- \gamma )A_{0}+ O(\frac{1}{R^{2-2\gamma }})} \\ &\quad {}\times \int _{0}^{R}\frac{2\pi r^{1-2\gamma }}{(1+\frac{\pi }{1- \gamma }r^{2-2\gamma })^{2}}\,dr \\ &=\frac{\pi }{(1-\gamma )}e^{1+4\pi (1-\gamma )A_{0}} +O\biggl(\frac{1}{R ^{2-2\gamma }}\biggr)+o \biggl(\frac{1}{c^{2}}\biggr). \end{aligned} \end{aligned}$$
(80)

Furthermore, \(\frac{G}{c_{\varepsilon }}\geq 0\) a.e. in \(\varOmega \setminus \mathbb{B}_{R\varepsilon }\), by using the inequality \(e^{t}\geq t+1\), \(\forall t\geq 0\), we estimate

$$ \begin{aligned}[b] &\int _{\varOmega \setminus \mathbb{B}_{R\varepsilon }}\bigl(1+g(\phi _{\varepsilon })\bigr) \frac{e^{4\pi (1-\gamma ) \phi _{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx\\ &\quad \geq \int _{\varOmega \setminus \mathbb{B}_{2R\varepsilon }}\bigl(1+g( \phi _{\varepsilon })\bigr) \frac{1+4\pi (1-\gamma )\phi _{\varepsilon }^{2}}{ \vert x \vert ^{2 \gamma }}\,dx \\ &\quad \geq \int _{\varOmega }\bigl(1+g(0)\bigr) \vert x \vert ^{-2\gamma } \,dx+O \bigl((R\varepsilon ) ^{2-2\gamma }\log ^{2}(R\varepsilon ) \bigr) \\ &\qquad {}+\frac{4\pi (1-\gamma )}{c^{2}} \int _{\varOmega } \bigl(1+g(0)\bigr) \vert x \vert ^{-2\gamma }G^{2}\,dx +O \bigl((R\varepsilon ) ^{2-2\gamma } \bigr). \end{aligned} $$
(81)

Observe that

$$ O \bigl((R\varepsilon ) ^{2-2\gamma } \bigr)=O \bigl((R\varepsilon ) ^{2-2\gamma }\log ^{2}(R\varepsilon ) \bigr)=O\biggl( \frac{1}{R^{2-2\gamma }}\biggr). $$

This together with (80) and (81) yields

$$\begin{aligned} \begin{aligned}[b] &\int _{\varOmega }\bigl(1+g(\phi _{\varepsilon })\bigr) \frac{e^{4\pi (1-\gamma ) \phi _{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx \\ &\quad \geq \bigl(1+g(0)\bigr) \int _{ \varOmega } \vert x \vert ^{-2\gamma }\,dx + \frac{\pi }{(1-\gamma )}e^{4\pi (1-\gamma )A_{0}+1} \\ &\qquad {}+\frac{4\pi (1-\gamma )}{c^{2}} \int _{\varOmega } \frac{(1+g(0))G^{2}}{ \vert x \vert ^{2 \gamma }}\,dx+O\biggl(\frac{1}{R^{2-2\gamma }} \biggr)+o\biggl(\frac{1}{c^{2}}\biggr). \end{aligned} \end{aligned}$$
(82)

Recalling (77) and the choice \(R=-\log \varepsilon ^{1/(1- \gamma )}\), one can deduce that \(\frac{1}{R^{2-2\gamma }}=o(\frac{1}{c ^{2}})\). Therefore, we conclude from (82) that

$$ \int _{\varOmega }\bigl(1+g(\phi _{\varepsilon })\bigr) \frac{e^{4\pi (1-\gamma ) \phi _{\varepsilon }^{2}}}{ \vert x \vert ^{2\gamma }}\,dx>\bigl(1+g(0)\bigr) \int _{\varOmega } \vert x \vert ^{-2 \gamma }\,dx + \frac{\pi }{1-\gamma }e^{4\pi (1-\gamma )A_{0}+1}. $$

for sufficiently small \(\varepsilon >0\).

3.2 Completion of the proof of Theorem 2

Comparing (71) with (72), we arrive at the final conclusion that \(c_{\varepsilon }\) must be bounded. Then applying elliptic estimates to (16), we can get the desired extremal function. This ends the proof of Theorem 2.

References

  1. Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equ. 29, 295–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi, Struwe, M.: Global compactness properties of semilinear elliptic equation with critical exponential growth. J. Funct. Anal. 175, 125–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \(\mathbb{R}^{N}\) and its applications. Int. Math. Res. Not. 13, 2394–2426 (2010)

    Google Scholar 

  5. Carleson, L., Chang, A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Chang, S.-Y.A., Yang, P.C.: Conformal deformation of metrics on \(S^{2}\). J. Differ. Geom. 27, 259–296 (1988)

    Article  Google Scholar 

  7. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Li, C.: What kind of singular surfaces can admit constant curvature. Duke Math. J. 78, 437–451 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Csato, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in 2 dimensions. Calc. Var. 54, 2341–2366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Souza, M., do Ó, J.M.: A sharp Trudinger–Moser type inequality in \(\mathbb{R}^{2}\). Trans. Am. Math. Soc. 366, 4513–4549 (2014)

    Article  Google Scholar 

  11. Ding, W., Jost, J., Li, J., Wang, G.: The differential equation \(-\Delta u=8\pi -8\pi h e^{u}\) on a compact Riemann surface. Asian J. Math. 1, 230–248 (1997)

    Article  MathSciNet  Google Scholar 

  12. Flucher, M.: Extremal functions for Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iula, S., Mancini, G.: Extremal functions for singular Moser–Trudinger embeddings. Nonlinear Anal. 156, 215–248 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Yang, Y.: Extremal functions for singular Trudinger–Moser inequalities in the entire Euclidean space. J. Differ. Equ. 264, 4901–4943 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.: Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14, 163–192 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, P.L.: The concentration–compactness principle in the calculus of variation, the limit case, part I. Rev. Mat. Iberoam. 1, 145–201 (1985)

    Article  MATH  Google Scholar 

  18. Lu, G., Yang, Y.: The sharp constant and extremal functions for Moser–Trudinger inequalities involving \(L^{p}\) norms. Discrete Contin. Dyn. Syst. 25, 963–979 (2009)

    Article  MathSciNet  Google Scholar 

  19. Malchiodi, A., Martinazzi, L.: Critical points of the Moser–Trudinger functional on a disk. J. Eur. Math. Soc. 16, 893–908 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mancini, G., Martinazzi, L.: The Moser–Trudinger inequality and its extremals on a disk via energy estimates. Calc. Var. 56, 94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1091 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peetre, J.: Espaces d’interpolation et thereme de Soboleff. Ann. Inst. Fourier (Grenoble) 16, 279–317 (1996)

    Article  MATH  Google Scholar 

  23. Pohozaev, S.: The Sobolev embedding in the special case \(pl=n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965, Mathematics Sections, pp. 158–170. Moscov. Energet. Inst., Moscow (1965)

    Google Scholar 

  24. Struwe, M.: Critical points of embedding of \(H_{0}^{1}\) into Orlic spaces. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5, 425–464 (1988)

    Article  MathSciNet  Google Scholar 

  25. Struwe, M.: Positive solution of critical semilinear elliptic equations on non-contractible planar domain. J. Eur. Math. Soc. 2, 329–388 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trudinger, N.: On embeddings into Orlicz space and some applications. J. Math. Mech. 17, 473–483 (1967)

    MATH  Google Scholar 

  27. Yang, Y.: Trudinger–Moser inequalities on complete noncompact Riemannian manifolds. J. Funct. Anal. 263, 1894–1938 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Y.: Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differ. Equ. 258, 3161–3193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Y.: A remark on energy estimates concerning extremals for Trudinger–Moser inequalities on a disc. Arch. Math. 111, 215–223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, Y., Zhu, X.: Blow-up analysis concerning singular Trudinger–Moser inequalities in dimension two. J. Funct. Anal. 272, 3347–3374 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, A., Huang, Z.: An improved singular Trudinger–Moser inequality in dimension two. Turk. J. Math. 40, 874–883 (2016)

    Article  MathSciNet  Google Scholar 

  32. Yuan, A., Zhu, X.: An improved singular Trudinger–Moser inequality in unit ball. J. Math. Anal. Appl. 435, 244–252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of equations. Sov. Math. Dokl. 2, 746–749 (1961)

    MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Yamin Wang.

Ethics declarations

Competing interests

The author declares that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. A modified singular Trudinger–Moser inequality. J Inequal Appl 2019, 157 (2019). https://doi.org/10.1186/s13660-019-2111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2111-x

MSC

Keywords