A modified singular Trudinger-Moser inequality

Yamin Wang ${ }^{1 *}$

Correspondence:
18811219726@163.com
${ }^{1}$ School of Mathematics, Renmin University of China, Beijing P.R. China

Abstract

Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded domain, $W_{0}^{1,2}(\Omega)$ be the standard Sobolev space. Assuming certain conditions on a function $g: \mathbb{R} \rightarrow \mathbb{R}$, we derive a modified singular Trudinger-Moser inequality, which was originally established by Adimurthi and Sandeep (Nonlinear Differ. Equ. Appl. 13:585-603, 2007), namely,

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega}(1+g(u)) \frac{e^{4 \pi(1-\gamma) u^{2}}}{|x|^{2 \gamma}} d x, \tag{1}
\end{equation*}
$$

where $0<\gamma<1$. Following Yang and Zhu (J. Funct. Anal. 272:3347-3374, 2017), we prove that the extremal functions for the supremum in (1) exist. The proof is based on a blow-up analysis.

MSC: 46E35
Keywords: Singular Trudinger-Moser inequality; Blow-up analysis; Extremal function

1 Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^{2}, and $W_{0}^{1,2}(\Omega)$ be the completion of $C_{0}^{\infty}(\Omega)$ under the norm $\|u\|_{W_{0}^{1,2}(\Omega)}=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}$. For $1 \leq p<2$, the standard Sobolev embedding theorem states that $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $1<q \leq 2 p /(2-p)$; while if $p>2$, we have $W_{0}^{1, p}(\Omega) \hookrightarrow C^{0}(\bar{\Omega})$. As a borderline of the Sobolev embeddings, the classical TrudingerMoser inequality [21-23, 26, 33] says

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega} e^{\alpha u^{2}} d x<+\infty, \quad \forall \alpha \leq 4 \pi . \tag{2}
\end{equation*}
$$

Moreover, these integrals are still finite for any $\alpha>4 \pi$, but the supremum is infinity. Here and in the sequel, for any real number $q \geq 1,\|\cdot\|_{q}$ denotes the $L^{q}(\Omega)$-norm with respect to the Lebesgue measure.
A function u_{0} is called an extremal function for the Trudinger-Moser inequality (2) if u_{0} belongs to $W_{0}^{1,2}(\Omega),\left\|\nabla u_{0}\right\|_{2} \leq 1$ and

$$
\int_{\Omega} e^{\alpha u_{0}^{2}} d x=\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega} e^{\alpha u^{2}} d x .
$$

An interesting question on Trudinger-Moser inequalities is whether or not extremal functions exist. The existence of extremal functions for (2) was obtained by Carleson-Chang [5] when Ω is a unit ball, and by Struwe [24] when Ω is close to the ball in the sense of measure. Then Flucher [12] extended this result when Ω is a general bounded smooth domain in \mathbb{R}^{2}. Later, Lin [16] generalized the existence result when Ω is an arbitrary dimensional domain. For recent developments, we refer the reader to Yang [28].
Using a rearrangement argument and a change of variables, Adimurthi-Sandeep [2] generalized the Trudinger-Moser inequality (1) to a singular version as follows:

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega} \frac{e^{4 \pi(1-\gamma) u^{2}}}{|x|^{2 \gamma}} d x<\infty . \tag{3}
\end{equation*}
$$

This inequality is also sharp in the sense that all integrals are still finite when $\alpha>1-\gamma$, but the supremum is infinity. Clearly, if $\gamma=0$, (3) reduces to (1). Following the lines of Flucher [12], in Csato and Roy [9], they adopt the concentration-compactness alternative by Lions [17] and deduced that the existence of extremals for such singular functionals. Later, (3) was extend to the entire \mathbb{R}^{N} by Adimurthi and Yang [4]. Meanwhile, Souza and do Ó modified the singular to another version in \mathbb{R}^{N} in [10]. When Ω is the unit ball \mathbb{B}, (3) was improved by Yuan and Zhu [32]. Similarly, an analog is also be proved by Yuan and Huang by using the method of symmetrization in [31]. Such singular Trudinger-Moser inequalities play an important role in the study of partial differential equations and conformal geometry; see [2, 4, 10, 14, 27] and [6] for details.
Recently, using a method of energy estimates in [19], Mancini-Martinazzi [20] reproved Carleson-Chang's result. For applications of this method, we refer the reader to Yang [29]. Using the same idea, they proved that the supremum

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\mathbb{B}),\|\nabla u\|_{2} \leq 1} \int_{\mathbb{B}}(1+g(u)) e^{4 \pi u^{2}} d x \tag{4}
\end{equation*}
$$

can be achieved for certain smooth function $g: \mathbb{R} \rightarrow \mathbb{R}$, where \mathbb{B} is a unit ball. On the other hand, in Yang and Zhu [30], one studied the following singular form:

$$
\begin{equation*}
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{1, \alpha} \leq 1} \int_{\Omega} \frac{e^{\beta u^{2}}}{|x|^{2 \gamma}} d x \tag{5}
\end{equation*}
$$

and they verified there exists some function u_{0} to achieve this supremum for any $\beta<$ $4 \pi(1-\gamma)$, where

$$
\|u\|_{1, \alpha}=\left(\int_{\Omega}|\nabla u|^{2} d x-\alpha \int_{\Omega} u^{2} d x\right)^{1 / 2}
$$

and α satisfies

$$
\alpha<\inf _{u \in W_{0}^{1,2}(\Omega), u \neq 0} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2}^{2}} .
$$

Motivated by the above results, in this paper, we make a combination of (4) and (5) under the case $\alpha=0$ to discuss a new version of the singular Trudinger-Moser inequality.

We are aim to prove two main results: One is to explain the new supremum is finite; the other is to discuss the existence of extremals for such functionals. In our proof, unlike the previous energy estimate procedure in [19, 20, 29], we mainly employ the method of blow-up analysis as in $[11,14,15,18]$ to prove the supremum in the following (9) can be achieved. Based on Mancini-Martinazzi [20] (see pages 3 and 4), we assume the function g in (9) satisfies

$$
\begin{align*}
& g \in C^{1}(\mathbb{R}), \quad \inf _{\mathbb{R}} g>-1, \quad g(-t)=g(t), \\
& \lim _{|t| \rightarrow \infty} t^{2} g(t)=0, \quad g^{\prime}(t)>0 \quad(\forall t>0) . \tag{6}
\end{align*}
$$

In the proof, we derive

$$
-\Delta u_{\varepsilon}=\frac{1}{\lambda_{\varepsilon}}\left(1+g\left(u_{\varepsilon}\right)+\frac{g^{\prime}\left(u_{\varepsilon}\right)}{8 \pi(1-\gamma-\varepsilon) u_{\varepsilon}}\right) u_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}=\frac{1}{\lambda_{\varepsilon}}\left(1+h\left(u_{\varepsilon}\right)\right) u_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}
$$

for some $\lambda_{\varepsilon} \in \mathbb{R}$, where we set

$$
\begin{equation*}
h(t):=g(t)+\frac{g^{\prime}(t)}{8 \pi(1-\gamma-\varepsilon) t}, \quad t \in \mathbb{R} \backslash\{0\} . \tag{7}
\end{equation*}
$$

We further assume

$$
\begin{equation*}
\inf _{(0,+\infty)} h(t)>-1, \quad \sup _{(0,+\infty)} h(t)<+\infty, \quad \text { and } \quad \lim _{t \rightarrow \infty} t^{2} h(t)=0 \tag{8}
\end{equation*}
$$

Comparing the conditions on the function g in Mancini-Martinazzi [20], one can see some differences. In this note, we assume $g^{\prime}(t)>0(\forall t>0)$, which is used in the Lemma 4. Moreover, the assumptions in (6) and (8) implies that $\lim _{|t| \rightarrow \infty} g(t)=0$ in [20]. Our main conclusion can be stated as the following two theorems, respectively.

Theorem 1 Let Ω be a smooth bounded domain in \mathbb{R}^{2} and $W_{0}^{1,2}(\Omega)$ be the usual Sobolev space. Let $0<\gamma<1$ be fixed. Suppose $g \in C^{1}(\mathbb{R})$ satisfies the hypotheses in (6) and (8). Then the supremum

$$
\begin{equation*}
\Lambda_{4 \pi(1-\gamma)}:=\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega}(1+g(u)) \frac{e^{4 \pi(1-\gamma) u^{2}}}{|x|^{2 \gamma}} d x<\infty . \tag{9}
\end{equation*}
$$

Theorem 2 Let Ω be a smooth bounded domain in \mathbb{R}^{2} and $W_{0}^{1,2}(\Omega)$ be the usual Sobolev space. Let $0<\gamma<1$ be fixed. Suppose $g \in C^{1}(\mathbb{R})$ satisfies the hypotheses in (6) and (8). Then, for any $\beta \leq 4 \pi(1-\gamma)$, the supremum

$$
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega}(1+g(u)) \frac{e^{\beta u^{2}}}{|x|^{2 \gamma}} d x
$$

can be attained by some function $u_{0} \in W_{0}^{1,2}(\Omega) \cap C_{\mathrm{loc}}^{1}(\bar{\Omega} \backslash\{0\}) \cap C^{0}(\bar{\Omega})$.

In order to prove the critical singular Trudinger-Moser inequality, we firstly discuss the existence of extremal functions for a subcritical one, which is based on a direct method
variation. We derive a different Euler-Lagrange equation on which the analysis is performed. The essential problem is the presence of the function g. To meet the necessary of our proof, we assume g satisfies certain conditions. Then following Yang and Zhu [30], we define maximizing sequences of functions by using a more delicate scaling. The existence of singular term $|x|^{-2 \gamma}$ with $0<\gamma<1$ causes exact asymptotic behavior of certain maximizing sequence near the blow-up point. Unlike in [28], we employ two different classification theorems of Chen and $\mathrm{Li}[7,8]$ to get the desired bubble. And our method in dealing with the bubble is also different from Yang-Zhu [30] because of the function g. We refer to Adimurthi and Druet [1], Carleson-Chang [5], Li [15], Struwe [24], Adimurthi and Struwe [3], Iula and Mancini [13], Yang [28], Lu and Yang [18], respectively.

2 Proof of Theorem 1

We divide the proof into several steps as follows.

2.1 Existence of maximizers for $\Lambda_{4 \pi(1-\gamma-\varepsilon)}$ and the Euler-Lagrange equation

In this subsection, we shall prove that maximizers for the subcritical singular TrudingerMoser functionals exist.

Proposition 3 For any $0<\varepsilon<1-\beta$, there exists some $u_{\varepsilon} \in W_{0}^{1,2}(\Omega) \cap C_{\mathrm{loc}}^{1}(\bar{\Omega} \backslash\{0\}) \cap C^{0}(\bar{\Omega})$ satisfying $\|\nabla u\|_{2}=1$ and

$$
\begin{equation*}
\int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x=\Lambda_{4 \pi(1-\gamma-\varepsilon)}:=\sup _{\substack{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1}} \int_{\Omega}(1+g(u)) \frac{e^{4 \pi(1-\gamma-\varepsilon) u^{2}}}{|x|^{2 \gamma}} d x \tag{10}
\end{equation*}
$$

Proof This is based on a direct method of variation. For any $0<\beta<1$, let $0<\varepsilon<1-\gamma$ be fixed. We take a sequence of functions $u_{j} \in W_{0}^{1,2}(\Omega)$ satisfying $\left\|\nabla u_{j}\right\|_{2} \leq 1$ and, as $j \rightarrow \infty$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\Omega}\left(1+g\left(u_{j}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{j}^{2}}}{|x|^{2 \gamma}} d x=\Lambda_{4 \pi(1-\gamma-\varepsilon)} \tag{11}
\end{equation*}
$$

Since u_{j} is bounded in $W_{0}^{1,2}(\Omega)$, there exists some $u_{\varepsilon} \in W_{0}^{1,2}(\Omega)$ such that up to a subsequence, assuming

$$
\begin{array}{ll}
u_{j} \rightharpoonup u_{\varepsilon} & \text { weakly in } W_{0}^{1,2}(\Omega), \\
u_{j} \rightarrow u_{\varepsilon} & \text { strongly in } L^{p}(\Omega), \forall p \geq 1, \\
u_{j} \rightarrow u_{\varepsilon} & \text { a.e. in } \Omega .
\end{array}
$$

Since

$$
0 \leq \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x \leq \limsup _{j \rightarrow \infty}\left(\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|\nabla u_{j}\right|^{2} d x\right)^{\frac{1}{2}},
$$

we have $0 \leq\left\|\nabla u_{\varepsilon}\right\|_{2} \leq 1$. Note that

$$
\begin{align*}
\int_{\Omega}\left|\nabla\left(u_{\varepsilon}-u_{j}\right)\right|^{2} d x & =\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x-\int_{\Omega}\left|\nabla u_{j}\right|^{2}+o_{j}(1) \\
& \leq 1-\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}+o_{j}(1) \tag{12}
\end{align*}
$$

Following Hölder's inequality, for any $1<p \leq \frac{1}{\gamma}, \delta>0, w>1$ and $w^{\prime}=w /(w-1)$, we have

$$
\begin{align*}
\int_{\Omega}\left(1+g\left(u_{j}\right)\right)^{p} \frac{1}{|x|^{2 \gamma p}} e^{4 \pi(1-\gamma-\varepsilon) p u_{j}^{2}} d x \leq & C\left(\int_{\Omega} \frac{1}{|x|^{2 \gamma p}} e^{4 \pi(1-\gamma-\varepsilon) p(1+\delta) w\left(u_{j}-u_{\varepsilon}\right)^{2}} d x\right)^{\frac{1}{w}} \\
& \times\left(\int_{\Omega} \frac{1}{|x|^{2 \gamma p}} e^{4 \pi(1-\gamma-\varepsilon) p\left(1+\frac{1}{4 \delta}\right) w^{\prime} u_{\varepsilon}^{2}} d x\right)^{\frac{1}{w^{\prime}}} \tag{13}
\end{align*}
$$

When $p, 1+\delta$ and s are sufficiently close to 1 , we have

$$
\begin{equation*}
(1-\gamma-\varepsilon) p(1+\delta) w+\gamma w p<1 . \tag{14}
\end{equation*}
$$

Combining (12), (13) and (14), we have by the singular Trudinger-Moser inequality (3)

$$
\left(1+g\left(u_{\varepsilon}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} \quad \text { is bounded in } L^{p}(\Omega)
$$

for some $p>1$. Note that

$$
\begin{align*}
\mid(1 & \left.+g\left(u_{j}\right)\right) \left.\frac{e^{4 \pi(1-\gamma-\varepsilon) u_{j}^{2}}}{|x|^{-2 \gamma}}-\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{-2 \gamma}} \right\rvert\, \\
\leq & C|x|^{-2 \gamma}\left(e^{4 \pi(1-\gamma-\varepsilon) u_{j}^{2}}+e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}\right)\left|u_{j}^{2}-u_{\varepsilon}^{2}\right| \\
& +|x|^{-2 \gamma} \max \left\{g^{\prime}\left(u_{j}\right), g^{\prime}\left(u_{\varepsilon}\right)\right\}\left|u_{j}-u_{\varepsilon}\right| e^{4 \pi(1-\gamma-\varepsilon) u_{j}^{2}} . \tag{15}
\end{align*}
$$

Since $u_{j} \rightarrow u_{\varepsilon}$ strongly in $L^{p}(\Omega)$ for any $p>1$, in view of (6) and (8), we can conclude from (15) that

$$
\int_{\Omega}\left(1+g\left(u_{j}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{j}^{2}} d x \rightarrow \int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x
$$

as $j \rightarrow \infty$. This together with (11) immediately leads to (10). Obviously $u_{\varepsilon} \not \equiv 0$. If $\left\|\nabla u_{\varepsilon}\right\|_{2}<$ 1 , set $\widetilde{u}_{\varepsilon}=\frac{u_{\varepsilon}}{\left\|\nabla u_{\varepsilon}\right\|_{2}}$, then we obtain $\left\|\nabla \widetilde{u}_{\varepsilon}\right\|_{2}=1$. Since $0 \leq u_{\varepsilon}<\widetilde{u}_{\varepsilon}$ and $u_{\varepsilon} \not \equiv 0$, it follows from (6) that

$$
\int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x<\int_{\Omega}\left(1+g\left(\widetilde{u}_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) \widetilde{u}_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \leq \Lambda_{4 \pi(1-\gamma-\varepsilon)}
$$

which contradicts (10). Consequently, $\left\|\nabla u_{\varepsilon}\right\|_{2}=1$ holds. Furthermore, one can also check that $\left|u_{\varepsilon}\right|$ attains the supremum $\Lambda_{4 \pi(1-\gamma-\varepsilon)}$. Thus, u_{ε} can be chosen so that $u_{\varepsilon} \geq 0$. It is not difficult to see that u_{ε} satisfies the following Euler-Lagrange equation:

$$
\begin{cases}-\Delta u_{\varepsilon}=\lambda_{\varepsilon}^{-1}|x|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) u_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} & \text { in } \Omega \subset \mathbb{R}^{2} \tag{16}\\ u_{\varepsilon} \geq 0, \quad\left\|\nabla u_{\varepsilon}\right\|_{2}=1 & \text { in } \Omega \subset \mathbb{R}^{2} \\ \lambda_{\varepsilon}=\int_{\Omega}|x|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) u_{\varepsilon}^{2} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x, & \end{cases}
$$

where $h(x)$ is defined as in (7).

2.1.1 The case when u_{ε} is uniformly bounded in Ω

The proof of Theorem 2 will be ended if we can find some $u_{0} \in W_{0}^{1,2}(\Omega) \cap C_{\text {loc }}^{1}(\bar{\Omega} \backslash\{0\}) \cap$ $C^{0}(\bar{\Omega})$ satisfying $\left\|\nabla u_{0}\right\|_{2}=1$ and

$$
\begin{equation*}
\int_{\Omega}\left(1+g\left(u_{0}\right)\right) \frac{e^{4 \pi(1-\gamma) u_{0}^{2}}}{|x|^{2 \gamma}} d x=\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega}(1+g(u)) \frac{e^{4 \pi(1-\gamma) u^{2}}}{|x|^{2 \gamma}} d x . \tag{17}
\end{equation*}
$$

Since u_{ε} is bounded in $W_{0}^{1,2}(\Omega)$, we assume without loss of generality

$$
\begin{array}{ll}
u_{\varepsilon} \rightharpoonup u_{0} & \text { weakly in } W_{0}^{1,2}(\Omega), \\
u_{\varepsilon} \rightarrow u_{0} & \text { strongly in } L^{p}(\Omega), \forall p \geq 1, \tag{18}\\
u_{\varepsilon} \rightarrow u_{0} & \text { a.e. in } \Omega .
\end{array}
$$

Let $c_{\varepsilon}=u_{\varepsilon}\left(x_{\varepsilon}\right)=\max _{\Omega} u_{\varepsilon}$. If c_{ε} is bounded, for any $u \in W_{0}^{1,2}(\Omega)$ with $u \geq 0,\left\|\nabla u_{0}\right\|_{2}=1$, together with Lebesgue dominated convergence theorem gives

$$
\begin{align*}
\int_{\Omega}(1+g(u)) \frac{e^{4 \pi(1-\gamma) u^{2}}}{|x|^{2 \gamma}} d x & =\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u^{2}}}{|x|^{2 \gamma}} d x \\
& \leq \lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \\
& =\int_{\Omega}\left(1+g\left(u_{0}\right)\right) \frac{e^{4 \pi(1-\gamma) u_{0}^{2}}}{|x|^{2 \gamma}} d x . \tag{19}
\end{align*}
$$

By the arbitrariness of $u \in W_{0}^{1,2}(\Omega)$, we conclude that u_{0} is the desired maximizer when u_{ε} is uniformly bounded in Ω. Applying elliptic estimates to its Euler-Lagrange equation, one can deduce that $u_{0} \in W_{0}^{1,2}(\Omega) \cap C_{\text {loc }}^{1}(\bar{\Omega} \backslash\{0\}) \cap C^{0}(\bar{\Omega})$. And then (17) follows immediately.

2.2 Blowing up analysis

In this subsection, as in $[1,17]$, we will use the blow-up analysis to understand the asymptotic behavior of the maximizers u_{ε}. Assume $c_{\varepsilon}=u_{\varepsilon}\left(x_{\varepsilon}\right) \rightarrow \infty$ and we distinguish two cases to proceed.
Case 1. If $u_{0} \not \equiv 0$, the supremum in (9) can be attained by u_{0} without difficulty. And the proof will just be divided into several simple steps.
Step 1. A similar estimate as in (13), one can easily check that $\frac{\left(1+g\left(u_{\varepsilon}\right)\right)}{|x|^{2 \gamma}} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}$ is bounded in $L^{p}(\Omega)(p>1)$.
Step 2. By the mean value theorem and the Hölder inequality, we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x=\int_{\Omega}|x|^{-2 \gamma} e^{4 \pi(1-\gamma) u_{0}^{2}} d x
$$

Step 3. Based on the above steps, one can easily check that

$$
\begin{aligned}
&\left.\int_{\Omega}\left|\left(1+g\left(u_{\varepsilon}\right)\right)\right| x\right|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}-\left(1+g\left(u_{0}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma) u_{0}^{2}} \mid d x \\
& \quad \leq\left|g\left(u_{0}\right)+1\right| \int_{\Omega}\left(|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}-|x|^{-2 \gamma} e^{4 \pi(1-\gamma) u_{0}^{2}}\right) d x \\
&+\int_{\Omega}|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}\left|g\left(u_{\varepsilon}\right)-g\left(u_{0}\right)\right| d x \\
& \quad=o_{\varepsilon}(1) .
\end{aligned}
$$

Thus, we arrive at the conclusion that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x=\int_{\Omega}\left(1+g\left(u_{0}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma) u_{0}^{2}} d x
$$

This together with (17) gives the desired result.
Case 2. If $u_{0} \equiv 0$, in view of Eq. (16), it is important to figure out whether λ_{ε} has a positive lower bound or not. For this purpose, we have the following.

Lemma 4 Let λ_{ε} be as in (16). Then we have $\liminf _{\varepsilon \rightarrow 0} \lambda_{\varepsilon}>0$.
Proof By an inequality $e^{t^{2}} \leq 1+t^{2} e^{t^{2}}$ for $t \geq 0$, it follows from (6) and (7) that

$$
\begin{aligned}
\lambda_{\varepsilon} \geq & \frac{1}{4 \pi(1-\gamma-\varepsilon)} \int_{\Omega}\left(1+h\left(u_{\varepsilon}\right)\right) \frac{\left(e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}-1\right)}{|x|^{2 \gamma}} d x \\
\geq & \frac{1}{4 \pi(1-\gamma-\varepsilon)}\left(\int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x-\int_{\Omega} \frac{\left(1+g\left(u_{\varepsilon}\right)\right)}{|x|^{2 \gamma}} d x\right. \\
& \left.+\int_{\Omega} \frac{g^{\prime}\left(u_{\varepsilon}\right)}{8 \pi(1-\gamma-\varepsilon)|x|^{2 \gamma} u_{\varepsilon}}\left(e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}-1\right) d x\right) \\
\geq & \frac{1}{4 \pi(1-\gamma-\varepsilon)}\left(\int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x-\int_{\Omega} \frac{\left(1+g\left(u_{\varepsilon}\right)\right)}{|x|^{2 \gamma}} d x\right) .
\end{aligned}
$$

This together with (10) leads to

$$
\liminf _{\varepsilon \rightarrow 0} \lambda_{\varepsilon} \geq \frac{1}{4 \pi(1-\gamma)}\left(\Lambda_{4 \pi(1-\gamma)}-\int_{\Omega} \frac{(1+g(0))}{|x|^{2 \gamma}} d x\right)>0 .
$$

Or equivalently, we have

$$
\begin{equation*}
\frac{1}{\lambda_{\varepsilon}} \leq C \tag{20}
\end{equation*}
$$

Therefore, $\frac{1}{\lambda_{\varepsilon}}$ is uniformly bounded in Ω. This ends the proof of the lemma.

2.2.1 Energy concentration phenomenon

Using the same argument as the one in step 2 of [28], we get the following concentration phenomenon, which is crucial in our blow-up analysis.

Proposition 5 For the function sequence $\left\{u_{\varepsilon}\right\}$, we have $u_{\varepsilon} \rightharpoonup 0$ weakly in $W_{0}^{1,2}(\Omega)$ and $u_{\varepsilon} \rightarrow 0$ strongly in $L^{q}(\Omega)$ for any $q>1$. Moreover, $\left|\nabla u_{\varepsilon}\right|^{2} d x \rightharpoonup \delta_{0}$ weakly in a sense of measure, where δ_{0} is the usual Dirac measure centered at the point 0 .

Proof Since $\left\|\nabla u_{\varepsilon}\right\|_{2}=1$, we have the same assumptions as in (18). Observe that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(u_{\varepsilon}-u_{0}\right)\right|^{2} d x=1-\int_{\Omega}\left|\nabla u_{0}\right|^{2} d x+o(1) . \tag{21}
\end{equation*}
$$

Suppose $u_{0} \not \equiv 0$. In view of (21) and an obvious analog of (13), it follows that

$$
\left(1+g\left(u_{\varepsilon}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} \quad \text { is bounded in } L^{q}(\Omega)
$$

for some $q>1$. Then applying elliptic estimates to (18), one can deduce that u_{ε} is bounded in $W_{0}^{2, q}(\Omega)$. Together with Sobolev embedding results, we conclude u_{ε} is bounded in $C^{0}(\bar{\Omega})$, which contradicts $c_{\varepsilon} \rightarrow \infty$. Therefore $u_{0} \equiv 0$ and (21) becomes

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x=1+o_{\varepsilon}(1) . \tag{22}
\end{equation*}
$$

We next prove $\left|\nabla u_{\varepsilon}\right|^{2} d x \rightharpoonup \delta_{x_{0}}$. If the statements were false, suppose $\left|\nabla u_{\varepsilon}\right|^{2} d x \rightharpoonup \eta$ in a sense of measure. In view of $\eta \neq \delta_{x_{0}}$, there exists $r_{0}>0$ such that

$$
\lim _{\varepsilon \rightarrow 0} \int_{B_{r_{0}\left(x_{0}\right)}}\left|\nabla u_{\varepsilon}\right|^{2} d x \leq \frac{\eta+1}{2}<1 .
$$

In view of (22) and $u_{0} \equiv 0$, we can choose a cut-off function $\phi \in C_{0}^{1}\left(B_{r_{0}}\left(x_{0}\right)\right)$, which is equal to 1 on $B_{r_{0} / 2}\left(x_{0}\right)$, then it follows that

$$
\limsup _{\varepsilon \rightarrow 0} \int_{B_{r_{0}}\left(x_{0}\right)}\left|\nabla\left(\phi u_{\varepsilon}\right)\right|^{2} d x<1 .
$$

By the singular Trudinger-Moser inequality (3), one sees that $\left(1+g\left(\phi u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon)\left(\phi u_{\varepsilon}\right)^{2}}}{|x|^{2} \gamma^{2}}$ is bounded in $L^{r}\left(B_{r_{0}}\left(x_{0}\right)\right)$ for some $r>1$. Applying elliptic estimates to (16), one gets u_{ε} is uniformly bounded in Ω, which contradicts $c_{\varepsilon} \rightarrow \infty$ again. Therefore $\left|\nabla u_{\varepsilon}\right|^{2} d x \rightharpoonup \delta_{x_{0}}$. Moreover, we get $u_{\varepsilon} \rightarrow 0$ in $C_{\text {loc }}^{1}\left(\bar{\Omega} \backslash\left\{0, x_{0}\right\}\right) \cap C_{\text {loc }}^{0}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$.
In fact, we have $x_{0}=0$. Set $r_{0}=\left|x_{0}\right| / 2$. Note that $\lambda_{\varepsilon}^{-1}|x|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) u_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}$ is bounded in $L^{q_{1}}\left(B_{r_{0}}(0)\right)$ for some $q_{1}>1$. When $|x|>r_{0}$, by the classical TrudingerMoser inequality (2), we recognize $\lambda_{\varepsilon}^{-1}|x|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) u_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}$ is bounded in $L^{q_{2}}(\Omega \backslash$ $\left.B_{r_{0}}(0)\right)$ for some $q_{2}>1$. Choose $q=\min \left\{q_{1}, q_{2}\right\}>1$, and we conclude $\lambda_{\varepsilon}^{-1}|x|^{-2 \gamma}(1+$ $\left.h\left(u_{\varepsilon}\right)\right) u_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}$ is bounded in $L^{q}(\Omega)$. Then the elliptic estimate on the Euler-Lagrange equation (16) implies that c_{ε} is bounded, which also makes a contradiction. Thus, we complete the proof of the proposition.

2.2.2 Asymptotic behavior of u_{ε} near the concentration point

Let

$$
\begin{equation*}
r_{\varepsilon}=\sqrt{\lambda_{\varepsilon}} c_{\varepsilon}^{-1} e^{-2 \pi(1-\gamma-\varepsilon) c_{\varepsilon}^{2}} \tag{23}
\end{equation*}
$$

For any $0<\delta<1-\gamma$, in view of (8), we have by using the Hölder inequality and the singular Trudinger-Moser inequality (3),

$$
\begin{aligned}
\lambda_{\varepsilon} & =\int_{\Omega}|x|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) u_{\varepsilon}^{2} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x \\
& \leq e^{4 \pi \delta c_{\varepsilon}^{2}} \int_{\Omega}|x|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) u_{\varepsilon}^{2} e^{4 \pi(1-\gamma-\varepsilon-\delta) u_{\varepsilon}^{2}} d x \\
& \leq C e^{4 \pi \delta c_{\varepsilon}^{2}}
\end{aligned}
$$

for some constant C depending only on δ. This leads to

$$
\begin{equation*}
r_{\varepsilon}^{2} e^{4 \pi \mu c_{\varepsilon}^{2}} \leq C c_{\varepsilon}^{-2} e^{4 \pi(\delta+\mu)} e^{-4 \pi(1-\gamma-\varepsilon) c_{\varepsilon}^{2}} \rightarrow 0, \quad \text { for } \forall 0<\mu<1-\gamma, \tag{24}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. To characterize the blow-up behavior more exactly, we need to divide the process into two cases as in [30].

Case 1. $r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon} \leq C$.
Let $\Omega_{\varepsilon}=\left\{x \in \mathbb{R}^{2}: x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)} x \in \Omega\right\}$. Define two blow-up sequences of function on Ω_{ε} as

$$
\zeta_{\varepsilon}(x)=c_{\varepsilon}^{-1} u_{\varepsilon}\left(x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)} x\right), \quad \vartheta_{\varepsilon}(x)=c_{\varepsilon}\left(u_{\varepsilon}\left(x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)} x\right)-c_{\varepsilon}\right) .
$$

A direct computation shows

$$
\begin{align*}
& -\Delta \zeta_{\varepsilon}(x)=c_{\varepsilon}^{-2}\left|x+r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon}\right|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) \zeta_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon)\left(u_{\varepsilon}^{2}-c_{\varepsilon}^{2}\right)} \quad \text { in } \Omega_{\varepsilon}, \tag{25}\\
& -\Delta \vartheta_{\varepsilon}(x)=\left|x+r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon}\right|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) \zeta_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon)\left(1+\zeta_{\varepsilon}\right) \vartheta_{\varepsilon}} \quad \text { in } \Omega_{\varepsilon} . \tag{26}
\end{align*}
$$

We now investigate the convergence behavior of $\zeta_{\varepsilon}(x)$ and $\vartheta_{\varepsilon}(x)$. Assume $\lim _{\varepsilon \rightarrow 0} r_{\varepsilon}^{-1 /(1-\gamma)} \times$ $x_{\varepsilon}=-\bar{x}$. From (24), we have $r_{\varepsilon} \rightarrow 0$ obviously. Thus $\Omega_{\varepsilon} \rightarrow \mathbb{R}^{2}$ as $\varepsilon \rightarrow 0$. In view of $\left|\zeta_{\varepsilon}(x)\right| \leq$ 1 and $\Delta \zeta_{\varepsilon}(x) \rightarrow 0$ in $x \in \Omega_{\varepsilon} \backslash\{\bar{x}\}$ as $\varepsilon \rightarrow 0$, we have by elliptic estimates that $\zeta_{\varepsilon}(x) \rightarrow \zeta(x)$ in $C_{\text {loc }}^{1}\left(\mathbb{R}^{2} \backslash\{\bar{x}\}\right) \cap C_{\text {loc }}^{0}\left(\mathbb{R}^{2}\right)$, where ζ is a bounded harmonic function in \mathbb{R}^{2}. Observe that $\zeta(x) \leq \lim \sup _{\varepsilon \rightarrow 0} \zeta_{\varepsilon}(x) \leq 1$ and $\zeta(0)=1$. It follows from the Liouville theorem that $\zeta \equiv 1$ on \mathbb{R}^{2}. Thus, we have

$$
\begin{equation*}
\zeta_{\varepsilon} \rightarrow 1 \quad \text { in } C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2} \backslash\{\bar{x}\}\right) \cap C_{\mathrm{loc}}^{0}\left(\mathbb{R}^{2}\right) \tag{27}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. Note also that

$$
\vartheta_{\varepsilon}(x) \leq \vartheta_{\varepsilon}(0)=0 \quad \text { for all } x \in \Omega_{\varepsilon}(x) .
$$

In view of (27), we conclude by applying elliptic estimates to (26) that

$$
\begin{equation*}
\vartheta_{\varepsilon} \rightarrow \vartheta \quad \text { in } C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2} \backslash\{\bar{x}\}\right) \cap C_{\mathrm{loc}}^{0}\left(\mathbb{R}^{2}\right), \tag{28}
\end{equation*}
$$

where ϑ is a distributional solution to

$$
-\Delta \vartheta=|x-\bar{x}|^{-2 \gamma} e^{8 \pi(1-\gamma) \vartheta} \quad \text { in } \mathbb{R}^{2} \backslash\{\bar{x}\} .
$$

Observe that

$$
\begin{equation*}
\zeta_{\varepsilon}(x)=\frac{u_{\varepsilon}\left(x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)} x\right)}{c_{\varepsilon}} \rightarrow 1 \quad \text { in } C_{\mathrm{loc}}^{1}\left(\mathbb{B}_{R} \backslash \mathbb{B}_{1 / R}\right) \tag{29}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. Set $y=x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)} x$ with $|x-\bar{x}| \leq R$, and then we have

$$
|y| \leq r_{\varepsilon}^{1 /(1-\gamma)}|x-\bar{x}|+\left|x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)} \bar{x}\right| \leq 2 \operatorname{Rr}_{\varepsilon}^{1 /(1-\gamma)} .
$$

Since $r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon} \leq C$, choose R big enough such that

$$
\left|x-r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon}\right| \leq R .
$$

This together with (29) leads to

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}\left\|\frac{u_{\varepsilon}\left(r_{\varepsilon}^{1 /(1-\gamma)} x\right)}{c_{\varepsilon}}\right\|_{L^{\infty}\left(\mathbb{B}_{R} \backslash \mathbb{B}_{1 / \mathbb{R}}(\bar{x})\right)} \\
& \quad=\lim _{\varepsilon \rightarrow 0}\left\|\frac{u_{\varepsilon}\left(x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)}\left(x-r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon}\right)\right)}{c_{\varepsilon}}\right\|_{L^{\infty}\left(\mathbb{B}_{R} \backslash \mathbb{B}_{1 / R}(\bar{x})\right)} \\
& \quad=1 .
\end{aligned}
$$

Combining with Fatou's lemma, we obtain

$$
\begin{aligned}
& \int_{\mathbb{B}_{R} \backslash \mathbb{B}_{1 / R}(\bar{x})}|x-\bar{x}|^{-2 \gamma} e^{8 \pi(1-\gamma) \vartheta} d x \\
& \leq \limsup _{\varepsilon \rightarrow 0} \int_{\mathbb{B}_{R} \backslash \mathbb{B}_{1 / R}(\bar{x})}\left|x+r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon}\right|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon)\left(1+\zeta_{\varepsilon}\right) \vartheta_{\varepsilon}} d x
\end{aligned}
$$

$$
\begin{align*}
& \leq 1 . \tag{30}
\end{align*}
$$

Passing to the limit $R \rightarrow \infty$, we have

$$
\int_{\mathbb{R}^{2}}|x-\bar{x}|^{-2 \gamma} e^{8 \pi(1-\gamma) \vartheta} d x \leq 1
$$

The uniqueness theorem obtained in [3] implies that

$$
\begin{equation*}
\vartheta(x)=-\frac{1}{4 \pi(1-\gamma)} \log \left(1+\frac{1}{1-\gamma}|x-\bar{x}|^{2(1-\gamma)}\right) . \tag{31}
\end{equation*}
$$

Let $x=0$, and then

$$
\vartheta(0)=\lim _{\varepsilon \rightarrow 0} \vartheta_{\varepsilon}(0)=0 .
$$

Thus, it follows from (31) that $\bar{x}=0$. Namely,

$$
\begin{equation*}
\vartheta(x)=-\frac{1}{4 \pi(1-\gamma)} \log \left(1+\frac{1}{1-\gamma}|x|^{2(1-\gamma)}\right) . \tag{32}
\end{equation*}
$$

Furthermore, we can get

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|x|^{-2 \gamma} e^{8 \pi(1-\gamma) \vartheta} d x=1 \tag{33}
\end{equation*}
$$

Case 2. $r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon} \rightarrow+\infty$. Set

$$
\widetilde{\Omega}_{\varepsilon}=\left\{x \in \mathbb{R}^{2}: x_{\varepsilon}+r_{\varepsilon}\left|x_{\varepsilon}\right|^{\gamma} x \in \Omega\right\} .
$$

Denote the blowing up functions on $\bar{\Omega}_{\varepsilon}$

$$
\alpha_{\varepsilon}(x)=c_{\varepsilon}^{-1} u_{\varepsilon}\left(x_{\varepsilon}+r_{\varepsilon}\left|x_{\varepsilon}\right|^{\gamma} x\right), \quad \beta_{\varepsilon}(x)=c_{\varepsilon}\left(u_{\varepsilon}\left(x_{\varepsilon}+r_{\varepsilon}\left|x_{\varepsilon}\right|^{\gamma} x\right)-c_{\varepsilon}\right) .
$$

In view of (16), $\alpha_{\varepsilon}(x)$ is a distributional solution to the equation

$$
\begin{equation*}
-\Delta \alpha_{\varepsilon}(x)=f_{\varepsilon}(u) \quad \text { in } \bar{\Omega}_{\varepsilon}, \tag{34}
\end{equation*}
$$

where

$$
f_{\varepsilon}=\left.\left.c_{\varepsilon}^{-2}\left|x_{\varepsilon}\right|^{2 \gamma}\left|x_{\varepsilon}+r_{\varepsilon}\right| x_{\varepsilon}\right|^{\gamma} x\right|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) \alpha_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) c_{\varepsilon}^{2}\left(\alpha_{\varepsilon}^{2}-1\right)} .
$$

Since $r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon} \rightarrow+\infty$, we have $\left.\left.\left|x_{\varepsilon}\right|^{2 \gamma}\left|x_{\varepsilon}+r_{\varepsilon}\right| x_{\varepsilon}\right|^{\gamma} x\right|^{-2 \gamma}=1+o_{\varepsilon}(1)$ clearly. Since $\left|\alpha_{\varepsilon}(x)\right| \leq$ 1, we obtain f_{ε} is bounded in $L^{p}(p>1)$ according to (8). Elliptic estimates and embedding theorem lead to $\alpha_{\varepsilon} \rightarrow \alpha$ in $C_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$, where α satisfies

$$
-\Delta \alpha(x)=0 \quad \text { in } \mathbb{R}^{2} .
$$

Note that $\alpha \leq 1$ and $\alpha(0)=1$. Thus, together with the Liouville theorem, we obtain $\alpha \equiv 1$. Also we have

$$
\begin{equation*}
-\Delta \beta_{\varepsilon}=\left.\left.\left|x_{\varepsilon}\right|^{2 \gamma}\left|x_{\varepsilon}+r_{\varepsilon}\right| x_{\varepsilon}\right|^{\gamma} x\right|^{-2 \gamma}\left(1+h\left(u_{\varepsilon}\right)\right) \alpha_{\varepsilon} e^{4 \pi(1-\gamma-\varepsilon) \beta_{\varepsilon}\left(\alpha_{\varepsilon}+1\right)} \quad \text { in } \bar{\Omega}_{\varepsilon} . \tag{35}
\end{equation*}
$$

Applying elliptic estimates to (35), we conclude that $\beta_{\varepsilon} \rightarrow \beta$ in $C_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$, where β is a distributional solution to

$$
\left\{\begin{array}{l}
\beta(0)=0=\sup \beta \tag{36}\\
\Delta \beta=-e^{8 \pi(1-\gamma) \beta} \quad \text { in } \mathbb{R}^{2} .
\end{array}\right.
$$

For $0<\beta<1$, (36) follows from Chen and Li [6] that β satisfies

$$
\int_{\mathbb{R}^{2}} e^{8 \pi(1-\gamma) \beta} d x \geq \frac{1}{1-\beta}>1
$$

Using a suitable change of variable $y=x_{\varepsilon}+r_{\varepsilon}\left|x_{\varepsilon}\right|^{\gamma} x$, for any $R>0$, we have

$$
\begin{align*}
\int_{\mathbb{B}_{R}(\bar{x})} e^{8 \pi(1-\gamma) \beta} d x & =\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{B}_{R}(0)}\left(1+h\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon)\left(u_{\varepsilon}^{2}\left(x_{\varepsilon}+r_{\varepsilon}\left|x_{\varepsilon}\right|^{\gamma} x\right)-c_{\varepsilon}^{2}\right)} d x \\
& \leq \lim _{\varepsilon \rightarrow 0} \frac{1}{\lambda_{\varepsilon}} \int_{\mathbb{B}_{R r_{\varepsilon}\left|x_{\varepsilon}\right| \gamma\left(x_{\varepsilon}\right)}}\left(1+h\left(u_{\varepsilon}\right)\right) \frac{u_{\varepsilon}^{2}(y)}{|y|^{2 \gamma}} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}(\gamma)} d y \\
& \leq 1 \tag{37}
\end{align*}
$$

which leads to a contradiction. Thus, it is impossible for Case 2 to happen.

2.2.3 Convergence away from the concentration point

To understand the convergence behavior away from the blow-up point $x_{0}=0$, we need to investigate how $c_{\varepsilon} u_{\varepsilon}$ converges. Similar to [1,15], define $u_{\varepsilon, \tau}=\min \left\{\tau c_{\varepsilon}, u_{\varepsilon}\right\}$, then we have the following.

Lemma 6 For any $0<\tau<1$, we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon, \tau}\right|^{2} d x=\tau
$$

Proof Observe that $u_{\varepsilon} / c_{\varepsilon}=1+o_{\varepsilon}(1)$ in $B_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)$. For any $0<\tau<1$, it follows from Eq. (16) and the divergence theorem that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{\varepsilon, \tau}\right|^{2} d x & =\frac{1}{\lambda_{\varepsilon}} \int_{\Omega} \frac{u_{\varepsilon, \tau} u_{\varepsilon}}{|x|^{2 \gamma}}\left(1+h\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x \\
& \geq \frac{1}{\lambda_{\varepsilon}} \int_{B_{R r_{\varepsilon}}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)} \frac{u_{\varepsilon, \tau} u_{\varepsilon}}{|x|^{2 \gamma}}\left(1+h\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x+o_{\varepsilon}(1) \\
& =\tau \int_{B_{R}(0)} \frac{\left(1+h\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon)\left(u_{\varepsilon}^{2}\left(x_{\varepsilon}+r_{\varepsilon}^{1 /(1-\gamma)} y\right)-c_{\varepsilon}^{2}\right)}}{\left|y+r_{\varepsilon}^{-1 /(1-\gamma)} x_{\varepsilon}\right|^{2 \gamma}} d y+o_{\varepsilon}(1) .
\end{aligned}
$$

Hence

$$
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon, \tau}\right|^{2} d x \geq \tau \int_{B_{R}(0)} e^{8 \pi(1-\gamma) \vartheta} d y, \quad \forall R>0
$$

In view of (33), passing to the limit $R \rightarrow+\infty$, we obtain

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon, \tau}\right|^{2} d x \geq \tau \tag{38}
\end{equation*}
$$

Note that

$$
\left|\nabla\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+}\right|^{2}=\nabla\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+} \cdot \nabla u_{\varepsilon} \quad \text { on } \Omega
$$

and

$$
\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+}=\left(1+o_{\varepsilon}(1)\right)(1-\tau) c_{\varepsilon} \quad \text { in } B_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{0}\right) .
$$

Testing Eq. (16) by $\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+}$, for any fixed $R>0$, simple computation shows that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+}\right|^{2} d x & =\int_{\Omega}\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+} \frac{u_{\varepsilon}}{\lambda_{\varepsilon}|x|^{2 \gamma}}\left(1+h\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x \\
& \geq \int_{B_{R r_{\varepsilon}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)}}\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+} \frac{u_{\varepsilon}\left(1+h\left(u_{\varepsilon}\right)\right)}{\lambda_{\varepsilon}|x|^{2 \gamma}} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x \\
& =\left(1+o_{\varepsilon}(1)\right)(1-\tau) \int_{B_{R(0)}} \zeta_{\varepsilon}\left(1+h\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) \vartheta_{\varepsilon}^{2}} d x .
\end{aligned}
$$

By passing to the limit $\varepsilon \rightarrow 0$, we get

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+}\right|^{2} d x \geq(1-\tau) \int_{B_{R(0)}} e^{8 \pi(1-\gamma) \vartheta} d x=1-\tau \tag{39}
\end{equation*}
$$

Since $\left|\nabla u_{\varepsilon, \tau}\right|^{2}+\left|\nabla\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+}\right|^{2}=\left|\nabla u_{\varepsilon}\right|^{2}$ almost everywhere, it follows that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(u_{\varepsilon}-\tau c_{\varepsilon}\right)^{+}\right|^{2} d x+\int_{\Omega}\left|\nabla u_{\varepsilon, \tau}\right|^{2} d x=\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x=1+o_{\varepsilon}(1) . \tag{40}
\end{equation*}
$$

Therefore, we end the proof of this lemma together with (38), (39) and (40).

The following estimate is a byproduct of Lemma 6 and will be employed in the next section.

Lemma 7 We have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}|x|^{-2 \gamma}\left(1+g\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x=(1+g(0)) \int_{\Omega}|x|^{-2 \gamma} d x+\lim _{\varepsilon \rightarrow 0} \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}} \tag{41}
\end{equation*}
$$

Proof Let $0<\tau<1$ be fixed. By the definition of $u_{\varepsilon, \tau}$, we can get

$$
\begin{align*}
& \int_{u_{\varepsilon} \leq \tau c_{\varepsilon}}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x-(1+g(0)) \int_{\Omega} \frac{1}{|x|^{2 \gamma}} d x \\
& \quad \leq \int_{\Omega}\left(1+g\left(u_{\varepsilon, \tau}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon, \tau}^{2}}}{|x|^{2 \gamma}} d x-(1+g(0)) \int_{\Omega} \frac{1}{|x|^{2 \gamma}} d x \\
& \quad \leq \int_{\Omega}\left|g\left(u_{\varepsilon, \tau}\right)-g(0)\right| \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon, \tau}^{2}}}{|x|^{2 \gamma}} d x+|1+g(0)| \int_{\Omega} \frac{\left(e^{\left.4 \pi(1-\gamma-\varepsilon) u_{\varepsilon, \tau}^{2}-1\right)}\right.}{|x|^{2 \gamma}} d x . \tag{42}
\end{align*}
$$

Combining Lemma 6 and Proposition 5, we see that $u_{\varepsilon, \sigma}$ converges to 0 in $C_{\mathrm{loc}}^{1}(\bar{\Omega} \backslash\{0\})$ as $\varepsilon \rightarrow 0$. Then from (3), one can deduce that

$$
\begin{equation*}
\int_{\Omega} \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon, \tau}^{2}}}{|x|^{2 \gamma}}\left|g\left(u_{\varepsilon, \tau}\right)-g(0)\right| d x=o_{\varepsilon}(1) . \tag{43}
\end{equation*}
$$

According to the Hölder inequality and the Lagrange theorem, we have

$$
\begin{equation*}
\int_{\Omega} \frac{1}{|x|^{2 \gamma}}\left(e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon, \tau}^{2}}-1\right) d x=o_{\varepsilon}(1) . \tag{44}
\end{equation*}
$$

Inserting (43) and (44) into (42), one has

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{u_{\varepsilon} \leq \tau c_{\varepsilon}}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x=(1+g(0)) \int_{\Omega} \frac{1}{|x|^{2 \gamma}} d x . \tag{45}
\end{equation*}
$$

Moreover, we calculate

$$
\begin{align*}
& \int_{u_{\varepsilon}>\tau c_{\varepsilon}}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \\
& \quad \leq \frac{1}{\tau^{2}} \int_{u_{\varepsilon}>\tau c_{\varepsilon}} \frac{u_{\varepsilon}^{2}}{c_{\varepsilon}^{2}}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \\
& \quad \leq \frac{1}{\tau^{2}} \frac{\lambda_{\varepsilon}^{2}}{c_{\varepsilon}^{2}} . \tag{46}
\end{align*}
$$

Combining (45) and (46), we obtain

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \frac{\left(1+g\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \leq(1+g(0)) \int_{\Omega} \frac{1}{|x|^{2 \gamma}} d x+\frac{1}{\tau^{2}} \liminf _{\varepsilon \rightarrow 0} \frac{\lambda_{\varepsilon}^{2}}{c_{\varepsilon}^{2}} .
$$

It follows by letting $\tau \rightarrow 1$ that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \frac{\left(1+g\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x-(1+g(0)) \int_{\Omega} \frac{1}{|x|^{2 \gamma}} d x \leq \liminf _{\varepsilon \rightarrow 0} \frac{\lambda_{\varepsilon}^{2}}{c_{\varepsilon}^{2}} \tag{47}
\end{equation*}
$$

On the other hand, in view of (16), we estimate

$$
\begin{aligned}
& \int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x-(1+g(0)) \int_{\Omega} \frac{1}{|x|^{2 \gamma}} d x \\
& \quad \geq \int_{\Omega} \frac{u_{\varepsilon}^{2}}{c_{\varepsilon}^{2}}\left(\left(1+g\left(u_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}}-(1+g(0)) \frac{1}{|x|^{2 \gamma}}\right) d x \\
& \quad=\frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}}-\frac{1}{c_{\varepsilon}^{2}} \int_{\Omega} \frac{(1+g(0)) u_{\varepsilon}^{2}}{|x|^{2 \gamma}} d x-\frac{1}{c_{\varepsilon}^{2}} \int_{\Omega} \frac{u_{\varepsilon} g^{\prime}\left(u_{\varepsilon}\right)}{8 \pi(1-\gamma-\varepsilon)|x|^{2 \gamma}} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x .
\end{aligned}
$$

Thus, by Proposition 5 and (6), (8), one can check that

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \frac{\lambda_{\varepsilon}^{2}}{c_{\varepsilon}^{2}} \leq \lim _{\varepsilon \rightarrow 0} \int_{\Omega}|x|^{-2 \gamma}\left(1+g\left(u_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x-(1+g(0)) \int_{\Omega}|x|^{-2 \gamma} d x . \tag{48}
\end{equation*}
$$

In view of (47) and (48), we complete the proof of Lemma 7.
Corollary 8 If $\theta<2$, then $\frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{\theta}} \rightarrow \infty$ as $\varepsilon \rightarrow 0$.
Proof In contrast, we have $\lambda_{\varepsilon} / c_{\varepsilon}^{2} \rightarrow 0$ as $\varepsilon \rightarrow 0$. For any $v \in W_{0}^{1,2}(\Omega)$ with $\|\nabla v\|_{2} \leq 1$, clearly, it is impossible for (41) to hold since $\nu \not \equiv 0$.

Lemma 9 For any function $\phi \in C_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(1+h\left(u_{\varepsilon}\right)\right) \lambda_{\varepsilon}^{-1} c_{\varepsilon} u_{\varepsilon}|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} \phi d x=\phi(0) . \tag{49}
\end{equation*}
$$

Proof To see this, let $\phi \in C_{0}^{1}(\Omega)$ be fixed. Write for simplicity

$$
\omega_{\varepsilon}=\left(1+h\left(u_{\varepsilon}\right)\right) \lambda_{\varepsilon}^{-1} c_{\varepsilon} u_{\varepsilon}|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}
$$

Clearly

$$
\begin{align*}
\int_{\Omega} \omega_{\varepsilon} \phi d x= & \int_{\left\{u_{\varepsilon}<\tau c_{\varepsilon}\right\}} \omega_{\varepsilon} \phi d x+\int_{\left\{u_{\varepsilon} \geq \tau c_{\varepsilon}\right\} \backslash B_{R_{r_{\varepsilon}}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)} \omega_{\varepsilon} \phi d x \\
& +\int_{\left\{u_{\varepsilon} \geq \tau c_{\varepsilon}\right\} \cap B_{R_{r_{\varepsilon}}^{1 /(1-\gamma)\left(x_{\varepsilon}\right)}} \omega_{\varepsilon} \phi d x .} \tag{50}
\end{align*}
$$

Given $0<\tau<1$, we estimate the three integrals on the right hand of (50), respectively. Note that $u_{\varepsilon} \rightarrow 0$ in $L^{q}(\forall q>1)$. This together with Lemma 6 and Corollary 8 gives

$$
\begin{align*}
\int_{\left\{u_{\varepsilon}<\tau c_{\varepsilon}\right\}} \omega_{\varepsilon} \phi d x & \leq \lambda_{\varepsilon}^{-1} c_{\varepsilon}\left(\sup _{\Omega}\left|\phi\left(1+h\left(u_{\varepsilon}\right)\right)\right|\right) \int_{\left\{u_{\varepsilon}<\tau c_{\varepsilon}\right\}} u_{\varepsilon}|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon, \tau}^{2}} d x \\
& \leq C \lambda_{\varepsilon}^{-1} c_{\varepsilon} \int_{\left\{u_{\varepsilon}<\tau \tau_{\varepsilon}\right\}} u_{\varepsilon}|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon, \tau}^{2}} d x \\
& =o_{\varepsilon}(1) \tag{51}
\end{align*}
$$

Now we consider in $B_{R_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right) \subset\left\{x \in \Omega \mid u_{\varepsilon} \geq \tau c_{\varepsilon}\right\}$ for sufficiently small $\varepsilon>0$. One can deduce from (33) that

$$
\begin{align*}
\int_{\left\{u_{\varepsilon} \geq \tau c_{\varepsilon}\right\} \cap B_{R_{r_{\varepsilon}}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)} \omega_{\varepsilon} \phi d x & =\phi(0)\left(1+o_{\varepsilon}(1)\right) \int_{B_{R \backslash 1 / R}(0)}|x|^{-2 \gamma} e^{8 \pi \vartheta} d x \\
& =\phi(0)\left(1+o_{\varepsilon}(1)+o_{R}(1)\right) . \tag{52}
\end{align*}
$$

On the other hand, we calculate

$$
\begin{aligned}
\int_{\left\{u_{\varepsilon} \geq \tau c_{\varepsilon} \backslash \backslash B_{R_{\varepsilon}}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)\right.} \omega_{\varepsilon} \phi d x & \leq \frac{C}{\tau}\left(1-\int_{B_{R_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)} \frac{u_{\varepsilon}^{2}}{\lambda_{\varepsilon}} \frac{e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x\right) \\
& =\frac{C}{\tau}\left(1-\int_{B_{R}(0)} \frac{e^{8 \pi(1-\gamma) \vartheta}}{|x|^{2 \gamma}} d x\right) .
\end{aligned}
$$

Hence, we derive by (33) that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{\left\{u_{\varepsilon} \geq \tau c_{\varepsilon}\right\} \backslash B_{R_{\varepsilon}}^{1 /(1-\gamma)}} \omega_{\varepsilon}\left(x_{\varepsilon}\right), ~ \omega_{\varepsilon} \phi d x=0 . \tag{53}
\end{equation*}
$$

Inserting (51)-(53) to (50), we conclude (49) finally.
In particular, we propose, by letting $\phi=1$,

$$
\begin{equation*}
\omega_{\varepsilon}(x)=\left(1+h\left(u_{\varepsilon}\right)\right) \lambda_{\varepsilon}^{-1} c_{\varepsilon} u_{\varepsilon}|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} \quad \text { is bounded in } L^{1}(\Omega), \tag{54}
\end{equation*}
$$

which will be used in the following proof.

We now prove that $c_{\varepsilon} u_{\varepsilon}$ converges to a Green function in distributional sense when $\varepsilon \rightarrow 0$, where δ_{0} stands for the Dirac measure centered at 0 . More precisely, we have

Lemma $10 \quad c_{\varepsilon} u_{\varepsilon} \rightarrow G$ in $C_{\text {loc }}^{1}(\bar{\Omega} \backslash\{0\})$ and weakly in $W_{0}^{1, q}(\Omega)$ for all $1<q<2$, where $G \in C^{1}(\bar{\Omega} \backslash\{0\})$ is a distributional solution satisfying the following:

$$
\begin{cases}-\Delta G=\delta_{0} & \text { in } \Omega \tag{55}\\ G=0 & \text { on } \partial \Omega\end{cases}
$$

Moreover, G takes the form

$$
\begin{equation*}
G(x)=-\frac{1}{2 \pi} \log |x|+A_{0}+\xi(x) \tag{56}
\end{equation*}
$$

where $\xi(x) \in C^{1}(\bar{\Omega})$ and A_{0} is a constant depending on 0 .

Proof By Eq. (16), $c_{\varepsilon} u_{\varepsilon}$ is a distributional solution to

$$
\begin{equation*}
-\Delta\left(c_{\varepsilon} u_{\varepsilon}\right)=\omega_{\varepsilon} \quad \text { in } \Omega \tag{57}
\end{equation*}
$$

It follows from (54) that ω_{ε} is bounded in $L^{1}(\Omega)$. Using the argument in Struwe ([25], Theorem 2.2), one concludes that $c_{\varepsilon} u_{\varepsilon}$ is bounded in $W_{0}^{1, q}(\Omega)$ for all $1<q<2$. Hence, we can assume, for any $1<q<2, r>1$, that

$$
\begin{array}{ll}
c_{\varepsilon} u_{\varepsilon} \rightharpoonup G & \text { weakly in } W_{0}^{1, q}(\Omega) \\
c_{\varepsilon} u_{\varepsilon} \rightarrow G & \text { strongly in } L^{r}(\Omega)
\end{array}
$$

Testing (57) by $\phi \in C_{0}^{1}(\Omega)$, we deduce

$$
\int_{\Omega} \nabla\left(c_{\varepsilon} u_{\varepsilon}\right) \nabla \phi d x=\int_{\Omega} \phi \lambda_{\varepsilon}^{-1} c_{\varepsilon} u_{\varepsilon}\left(1+h\left(u_{\varepsilon}\right)\right)|x|^{-2 \gamma} e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}}
$$

Let $\varepsilon \rightarrow 0$ and it yields by (55)

$$
\int_{\Omega} \nabla G \nabla \phi d x=\phi(0)
$$

which implies that $-\Delta G=\delta_{0}$ in a distributional sense. Since $\Delta\left(G+\frac{1}{2 \pi} \log |x|\right) \in L^{p}(\Omega)$ for any $p>2$, (56) follows from the elliptic solution immediately. Applying elliptic estimates to Eq. (57), we arrive at the conclusion

$$
\begin{equation*}
c_{\varepsilon} u_{\varepsilon} \rightarrow G \quad \text { in } C_{\mathrm{loc}}^{1}(\bar{\Omega} \backslash\{0\}) . \tag{58}
\end{equation*}
$$

Thus, the two assertions holds.

2.3 Upper bound calculates by means of capacity estimate

In this subsection, we aim to derive an upper bound of the integrals $\int_{\Omega}\left(1+g\left(u_{\varepsilon}\right)\right)|x|^{-2 \gamma} \times$ $e^{4 \pi(1-\gamma-\varepsilon) u_{\varepsilon}^{2}} d x$. Analogous to the one obtained in [15], we mainly use the capacity estimate. Now choose a proper δ to ensure that $B_{2 \delta} \subset \Omega$, and then construct a new function space

$$
\mathcal{M}_{\varepsilon}\left(\rho_{\varepsilon}, \sigma_{\varepsilon}\right)=\left\{u\left|u \in W^{1,2}\left(\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)\right): u\right|_{\partial \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)}=\rho_{\varepsilon},\left.u\right|_{\partial \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}=\sigma_{\varepsilon}\right\}
$$

where

$$
\rho_{\varepsilon}=\sup _{\partial \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)} u_{\varepsilon}, \quad \sigma_{\varepsilon}=\inf _{\partial \mathbb{B}_{R r_{\varepsilon}}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)} u_{\varepsilon} .
$$

Define

$$
\Lambda_{\varepsilon}=\inf _{u \in \mathcal{M}_{\varepsilon}\left(\rho_{\varepsilon}, \sigma_{\varepsilon}\right)} \int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)}|\nabla u|^{2} d x .
$$

Clearly, the infimum Λ_{ε} can be attained by the sequence $u_{k} \in \mathcal{M}$ as $k \rightarrow \infty$. By the proof of the Poincare inequality, we infer that u_{k} is bounded in $W_{0}^{1,2}(\Omega)$. Without loss of generality, there exists some function $t \in W^{1,2}(\Omega)$ such that up to a subsequence. As $k \rightarrow \infty$, we have $u_{k} \rightharpoonup t$ weakly in $W^{1,2}(\Omega), u_{k} \rightarrow t$ in $L_{\mathrm{loc}}^{p}(\Omega)$ for any $p>0$ and $u_{k} \rightarrow t$ a.e. in Ω. Besides, for $t \in \mathcal{M}_{\varepsilon}\left(\rho_{\varepsilon}, \sigma_{\varepsilon}\right)$, we have

$$
\int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}|\nabla t|^{2} d x \leq \lim _{k \rightarrow \infty} \int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}\left|\nabla u_{k}\right|^{2} d x=\Lambda_{\varepsilon}
$$

and

$$
\Lambda_{\varepsilon} \leq \int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}|\nabla t|^{2} d x .
$$

Through the method of variation, we see that there exists some harmonic function $t(x)$ to reach the Λ_{ε} which satisfies the following:

$$
\left\{\begin{array}{l}
\Delta t=0 \quad \text { in } \mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right) \tag{59}\\
\left.t\right|_{\partial \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)}=\rho_{\varepsilon} \\
\left.t\right|_{\partial \mathbb{B}_{R r_{\varepsilon}}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)=\sigma_{\varepsilon}
\end{array}\right.
$$

Obviously, the solution of (59) can be expressed as

$$
t(x)=a \log \left|x-x_{0}\right|+b
$$

One can check that

$$
\left\{\begin{array}{l}
a=\frac{\sigma_{\varepsilon}-\rho_{\varepsilon}}{\log \delta-\log R r_{\varepsilon}^{1 /(1-\gamma)}}, \tag{60}\\
b=\frac{\sigma_{\varepsilon} \log R r_{\varepsilon}^{1 /(1-\gamma)}-\rho_{\varepsilon} \log \delta}{\log R r_{\varepsilon}^{1 /(1-\gamma)}-\log \delta} .
\end{array}\right.
$$

Thus, $t(x)$ can be expressed as

$$
t(x)=\frac{\sigma_{\varepsilon}\left(\log \delta-\log \left|x-x_{\varepsilon}\right|\right)-\rho_{\varepsilon}\left(\log R r_{\varepsilon}^{1 /(1-\gamma)}-\log \left|x-x_{\varepsilon}\right|\right)}{\log \delta-\log R r_{\varepsilon}^{1 /(1-\gamma)}} .
$$

With a direct computation, it is easy to check that

$$
\begin{equation*}
\int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)}}|\nabla t|^{2} d x=\frac{2 \pi\left(\sigma_{\varepsilon}-\rho_{\varepsilon}\right)^{2}}{\log \delta-\log R r_{\varepsilon}^{1 /(1-\gamma)}} \tag{61}
\end{equation*}
$$

According to (23), we have

$$
\begin{equation*}
\log \delta-\log R r_{\varepsilon}^{1 /(1-\gamma)}=\log \delta-\log R+\frac{2 \pi(1-\gamma-\varepsilon) c_{\varepsilon}^{2}}{1-\gamma}-\frac{1}{2(1-\gamma)} \log \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}} . \tag{62}
\end{equation*}
$$

Furthermore, Lemma 10 and (31) show that

$$
\begin{equation*}
\sigma_{\varepsilon}=c_{\varepsilon}+\frac{1}{c_{\varepsilon}}\left(-\frac{1}{4 \pi(1-\gamma)} \log \left(1+\frac{\pi}{1-\gamma} R^{2(1-\gamma)}\right)+o(1)\right) \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{\varepsilon}=\frac{1}{c_{\varepsilon}}\left(-\frac{1}{2 \pi} \log \delta+A_{0}+o(1)\right), \tag{64}
\end{equation*}
$$

where $o(1) \rightarrow 0$ by letting $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$ in succession. Set $u_{\varepsilon}^{*}=\max \left\{\rho_{\varepsilon}, \min \left\{u_{\varepsilon}, \sigma_{\varepsilon}\right\}\right\}$. From $u_{\varepsilon}^{*} \in \mathcal{M}_{\varepsilon}\left(\rho_{\varepsilon}, \sigma_{\varepsilon}\right)$, one can easily check that

$$
\begin{equation*}
\int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)}|\nabla t|^{2} d x=\Lambda_{\varepsilon} \leq \int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)}\left|\nabla u_{\varepsilon}^{*}\right|^{2} d x . \tag{65}
\end{equation*}
$$

Observe that $\left|\nabla u_{\varepsilon}^{*}\right| \leq\left|\nabla u_{\varepsilon}\right|$ a.e. in $\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)$ if ε is sufficiently small. Thus, it follows

$$
\begin{equation*}
\int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}\left|\nabla u_{\varepsilon}^{*}\right|^{2} d x \leq \int_{\mathbb{B}_{\delta}\left(x_{\varepsilon}\right) \backslash \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}\left|\nabla u_{\varepsilon}\right|^{2} d x . \tag{66}
\end{equation*}
$$

In view of (61), (65) and (66), it can be inferred that

$$
\begin{align*}
2 \pi\left(\sigma_{\varepsilon}-\rho_{\varepsilon}\right)^{2} \leq & \left(1-\int_{\Omega \backslash \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)}\left|\nabla u_{\varepsilon}\right|^{2} d x-\int_{\mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}\left(x_{\varepsilon}\right)}}\left|\nabla u_{\varepsilon}\right|^{2} d x\right) \\
& \times\left(\log \delta-\log R r_{\varepsilon}^{1 /(1-\gamma)}\right) . \tag{67}
\end{align*}
$$

Since $c_{\varepsilon} u_{\varepsilon} \rightarrow G$ in $C_{\mathrm{loc}}^{1}(\bar{\Omega} \backslash\{0\})$, we obtain the conclusion through integrating by parts:

$$
\begin{align*}
\int_{\Omega \backslash \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)}\left|\nabla u_{\varepsilon}\right|^{2} d x & =\frac{1}{c_{\varepsilon}^{2}} \int_{\Omega \backslash \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)}\left|\nabla G_{\varepsilon}\right|^{2} d x \\
& =-\frac{1}{c_{\varepsilon}^{2}}\left(\int_{\Omega \backslash \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)} G \Delta G d x+\int_{\partial \mathbb{B}_{\delta}\left(x_{\varepsilon}\right)} G \frac{\partial G}{\partial v} d s\right) \\
& =-\frac{1}{c_{\varepsilon}^{2}}\left(\frac{1}{2 \pi} \log \delta-A_{0}+o_{\varepsilon}(1)+o_{\delta}(1)\right) . \tag{68}
\end{align*}
$$

Observe that $\vartheta_{\varepsilon} \rightarrow \vartheta$ in $C_{\text {loc }}^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$, and

$$
\begin{equation*}
u_{\varepsilon}=\frac{\vartheta_{\varepsilon}(x)}{c_{\varepsilon}}+c_{\varepsilon} \quad \text { in } \mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right) . \tag{69}
\end{equation*}
$$

A direct computation shows that

$$
\begin{align*}
\int_{\mathbb{B}_{R}(0)}|\nabla \vartheta|^{2} d x & =\int_{0}^{R} \frac{2 \pi}{4(1-\gamma)^{2}\left(1+\frac{\pi}{1-\gamma}|r|^{2(1-\gamma)}\right)^{2}} r^{-4 \gamma} d r \\
& =\frac{1}{4 \pi(1-\gamma)} \log \frac{\pi}{1-\gamma}+\frac{1}{2 \pi} \log R-\frac{1}{4 \pi(1-\gamma)}+O\left(\frac{1}{R^{2(1-\gamma)}}\right) . \tag{70}
\end{align*}
$$

Then it follows from (69) and (70) that

$$
\begin{aligned}
\int_{\mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}\left|\nabla u_{\varepsilon}\right|^{2} d x & =\frac{1}{c_{\varepsilon}^{2}} \int_{\mathbb{B}_{R r_{\varepsilon}^{1 /(1-\gamma)}}\left(x_{\varepsilon}\right)}\left|\nabla \vartheta_{\varepsilon}(x)\right|^{2} d x \\
& =\frac{1}{c_{\varepsilon}^{2}}\left(\int_{\mathbb{B}_{R}(0)}|\nabla \vartheta(y)|^{2} d y+o_{\varepsilon}(1)\right) \\
& =\frac{1}{4 \pi c_{\varepsilon}^{2}(1-\gamma)} \log \frac{\pi}{1-\gamma}+\frac{1}{2 \pi c_{\varepsilon}^{2}} \log R-\frac{1}{4 \pi c_{\varepsilon}^{2}(1-\gamma)}+\frac{o(1)}{c_{\varepsilon}^{2}} .
\end{aligned}
$$

This together with (62)-(64) and (68), we obtain

$$
-2 \pi A_{0}-\frac{\log \left(1+\frac{\pi}{1-\gamma} R^{2(1-\gamma)}\right)}{1-\gamma} \leq-2 \log R+\frac{\left(1-\log \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{\varepsilon}}-\log \frac{\pi}{1-\gamma}\right)}{2(1-\gamma)}+o(1)
$$

Hence,

$$
\limsup _{\varepsilon \rightarrow 0} \frac{\lambda_{\varepsilon}}{c_{\varepsilon}^{2}} \leq \frac{\pi}{1-\gamma} e^{4 \pi(1-\gamma) A_{0}+1}
$$

In view of Lemma 7, we arrive at the conclusion

$$
\begin{equation*}
\Lambda_{4 \pi(1-\gamma)} \leq(1+g(0)) \int_{\Omega}|x|^{-2 \gamma} d x+\frac{\pi}{1-\gamma} e^{4 \pi(1-\gamma) A_{0}+1} \tag{71}
\end{equation*}
$$

2.4 Completion of the proof of Theorem 1

As a consequence, if $c_{\varepsilon} \rightarrow \infty$, it follows from (71) that $\Lambda_{4 \pi(1-\gamma)}$ is bounded. Otherwise, we can find the extremal function u_{0} which satisfies (17). Therefore, necessarily

$$
\sup _{u \in W_{0}^{1,2}(\Omega),\|\nabla u\|_{2} \leq 1} \int_{\Omega}(1+g(u)) \frac{e^{4 \pi(1-\gamma) u^{2}}}{|x|^{2 \gamma}} d x<\infty .
$$

3 Proof of Theorem 2

3.1 Test function computation

Similar to [30], we construct a blow-up sequence $\phi_{\varepsilon} \in W_{0}^{1,2}(\Omega)$ with $\left\|\nabla \phi_{\varepsilon}\right\|_{2}=1$. For sufficiently small $\varepsilon>0$, there exists

$$
\begin{equation*}
\int_{\Omega}|x|^{-2 \gamma}\left(1+g\left(\phi_{\varepsilon}\right)\right) e^{4 \pi(1-\gamma) \phi_{\varepsilon}^{2}} d x>(1+g(0)) \int_{\Omega}|x|^{-2 \gamma} d x+\frac{\pi}{1-\gamma} e^{4 \pi(1-\gamma) A_{0}+1} \tag{72}
\end{equation*}
$$

Then we will find (72) is a contradiction to (71), so that c_{ε} has to be bounded, which means the blow-up cannot take place. Furthermore, Theorem 2 follows immediately from what we have proved according to the elliptic estimates. For this purpose we set

$$
\phi_{\varepsilon}(x)= \begin{cases}c+\frac{1}{c}\left(-\frac{1}{4 \pi(1-\gamma)} \log \left(1+\frac{\pi}{1-\gamma} \frac{|x|^{2(1-\gamma)}}{\varepsilon^{2(1-\gamma)}}\right)+b\right), & \text { for } x \in \overline{\mathbb{B}}_{R \varepsilon} \tag{73}\\ \frac{G-\xi \eta}{c}, & \text { for } x \in \mathbb{B}_{2 R \varepsilon} \backslash \overline{\mathbb{B}}_{R \varepsilon} \\ \frac{G}{c}, & \text { for } x \in \Omega \backslash \mathbb{B}_{2 R \varepsilon}\end{cases}
$$

where $\eta \in C_{0}^{1}\left(\mathbb{B}_{2 R \varepsilon}\right)$ is a cut-off function satisfying $\eta=1$ on $\mathbb{B}_{R \varepsilon}$, and $|\nabla \eta| \leq \frac{2}{R \varepsilon}$. And G is given as in (56). b and c are constants which depend only on ε, to be determined later. To ensure $\phi_{\varepsilon} \in W_{0}^{1,2}(\Omega)$, we let

$$
c+\frac{1}{c}\left(-\frac{1}{4 \pi(1-\gamma)} \log \left(1+\frac{\pi}{1-\gamma} \frac{|x|^{2(1-\gamma)}}{\varepsilon^{2(1-\gamma)}}\right)+b\right)=\frac{1}{c}\left(-\frac{1}{2 \pi} \log R \varepsilon+A_{0}\right)
$$

which leads to

$$
\begin{equation*}
2 \pi c^{2}=-\log \varepsilon-2 \pi b+2 \pi A_{0}+\frac{1}{2(1-\gamma)} \log \frac{\pi}{1-\gamma}+O\left(\frac{1}{R^{2(1-\gamma)}}\right) . \tag{74}
\end{equation*}
$$

Now we calculate

$$
\begin{align*}
\int_{\mathbb{B}_{R \varepsilon}}\left|\nabla \phi_{\varepsilon}\right|^{2} d x & =\int_{\mathbb{B}_{R}} \frac{|x|^{2-4 \gamma}}{4 c^{2}(1-\gamma)^{2}\left(1+\frac{\pi}{1-\gamma}|x|^{2-4 \gamma}\right)^{2}} d x \\
& =\int_{0}^{\frac{\pi}{1-\gamma} R^{2-2 \gamma}} \frac{t d t}{4 \pi c^{2}(1-\gamma)(1+t)^{2}} d t \\
& =\frac{1}{4 \pi c^{2}(1-\gamma)}\left(\log \frac{\pi}{1-\gamma}-1+\log R^{2-2 \gamma}+O\left(\frac{1}{R^{2-2 \gamma}}\right)\right) \tag{75}
\end{align*}
$$

On the other hand

$$
\begin{aligned}
\int_{\Omega \backslash \mathbb{B}_{R \varepsilon}}\left|\nabla \phi_{\varepsilon}\right|^{2} d x= & \frac{1}{c^{2}}\left(\int_{\Omega \backslash \mathbb{B}_{R \varepsilon}}|\nabla G|^{2} d x+\int_{\mathbb{B}_{2 R \varepsilon} \backslash \mathbb{B}_{R \varepsilon}}|\nabla(\xi \eta)|^{2} d x\right. \\
& \left.-2 \int_{\mathbb{B}_{2 R \varepsilon} \backslash \mathbb{B}_{R \varepsilon}} \nabla G \nabla(\xi \eta) d x\right) \\
= & \frac{1}{c^{2}}\left(-\int_{\Omega \backslash \mathbb{B}_{R \varepsilon}} G \Delta G d x-\int_{\partial \mathbb{B}_{R \varepsilon}} G \frac{\partial G}{\partial v} d s\right. \\
& \left.+\int_{\mathbb{B}_{2 R \varepsilon} \backslash \mathbb{B}_{R \varepsilon}}|\nabla(\xi \eta)|^{2} d x-2 \int_{\mathbb{B}_{2 R \varepsilon} \backslash \mathbb{B}_{R \varepsilon}} \nabla G \nabla(\xi \eta) d x\right) .
\end{aligned}
$$

Observe that $\xi(x)=O(|x|)$ as $x \rightarrow 0$. Since η is a cut-off function, it yields $|\nabla(\xi \eta)|=O(1)$ as $\varepsilon \rightarrow 0$. Then we have

$$
\int_{\mathbb{B}_{2 R \varepsilon} \backslash \mathbb{B}_{R \varepsilon}}|\nabla(\xi \eta)|^{2} d x=O\left(R^{2} \varepsilon^{2}\right), \quad \int_{\mathbb{B}_{2 R \varepsilon} \backslash \mathbb{B}_{R \varepsilon}} \nabla G \nabla(\xi \eta) d x=O(R \varepsilon),
$$

which together with (56) leads to

$$
\begin{equation*}
\int_{\Omega \backslash \mathbb{B}_{R \varepsilon}}\left|\nabla \phi_{\varepsilon}\right|^{2} d x=\frac{1}{c^{2}}\left(-\frac{1}{2 \pi} \log (R \varepsilon)+A_{0}+O(R \varepsilon)\right) . \tag{76}
\end{equation*}
$$

Combining (75) and (76), a delicate but straightforward calculation shows

$$
\int_{\Omega}\left|\nabla \phi_{\varepsilon}\right|^{2} d x=\frac{1}{c^{2}}\left(-\frac{\log \varepsilon}{2 \pi}-\frac{1}{4 \pi(1-\gamma)}+\frac{1}{4 \pi(1-\gamma)} \log \frac{\pi}{1-\gamma}+A_{0}+O\left(\frac{1}{R^{2-2 \gamma}}\right)\right) .
$$

Put $\left\|\nabla \phi_{\varepsilon}\right\|_{2}=1$. It yields

$$
\begin{equation*}
c^{2}=A_{0}-\frac{1}{2 \pi} \log \varepsilon+\frac{1}{4 \pi(1-\gamma)} \log \frac{\pi}{1-\gamma}-\frac{1}{4 \pi(1-\gamma)}+O\left(\frac{1}{R^{2-2 \gamma}}\right) . \tag{77}
\end{equation*}
$$

Together with (74) and (77), we are led to

$$
\begin{equation*}
b=\frac{1}{4 \pi(1-\gamma)}+O\left(\frac{1}{R^{2-2 \gamma}}\right) . \tag{78}
\end{equation*}
$$

For all $x \in \mathbb{B}_{R \varepsilon}$, it follows from (77) and (78) that

$$
\begin{align*}
4 \pi(1-\gamma) \phi_{\varepsilon}^{2} \geq & 4 \pi(1-\gamma) c^{2}+8 \pi(1-\gamma) b-2 \log \left(1+\frac{\pi|x|^{2(1-\gamma)}}{(1-\gamma) \varepsilon^{2(1-\gamma)}}\right) \\
= & 1+4 \pi(1-\gamma) A_{0}+\log \frac{\pi}{1-\gamma}-2(1-\gamma) \log \varepsilon \\
& -2 \log \left(1+\frac{\pi|x|^{2(1-\gamma)}}{(1-\gamma) \varepsilon^{2(1-\gamma)}}\right)+O\left(\frac{1}{R^{2-2 \gamma}}\right) . \tag{79}
\end{align*}
$$

Note that $\left\|\frac{\phi_{\varepsilon}(x)}{c}\right\|_{L^{\infty}\left(B_{R \varepsilon}\right)} \rightarrow 1$ by passing to the limit $\varepsilon \rightarrow 0$. When $r \leq R \varepsilon$, there exists

$$
\left|\frac{\phi_{\varepsilon}(x)}{c}\right|=\left|1+\frac{-\log \left(1+\pi \frac{r^{2}}{\varepsilon^{2}}\right)+b}{c^{2}}\right| \rightarrow 1 .
$$

as $\varepsilon \rightarrow 0$. Since $\phi_{\varepsilon}(x) \sim c$ in $\mathbb{B}_{R \varepsilon}$ and $g(c)=o\left(\frac{1}{c^{2}}\right)$, we conclude $g\left(\phi_{\varepsilon}\left(\xi_{\varepsilon}\right)\right)=o\left(\frac{1}{c^{2}}\right)$ as $\varepsilon \rightarrow 0$, where $\xi_{\varepsilon} \in \mathbb{B}_{R \varepsilon}$. Combining with the mean value theorem, it follows from (79) that

$$
\begin{align*}
\int_{\mathbb{B}_{R \varepsilon}}\left(1+g\left(\phi_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma) \phi_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x= & \left(1+g\left(\phi_{\varepsilon}\left(\xi_{\varepsilon}\right)\right)\right) \int_{\mathbb{B}_{R \varepsilon}} \frac{e^{4 \pi(1-\gamma) \phi_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \\
\geq & \left(1+o\left(\frac{1}{c^{2}}\right)\right) \frac{\pi}{1-\gamma} e^{1+4 \pi(1-\gamma) A_{0}+O\left(\frac{1}{R^{2-2 \gamma}}\right)} \\
& \times \int_{0}^{R} \frac{2 \pi r^{1-2 \gamma}}{\left(1+\frac{\pi}{1-\gamma} r^{2-2 \gamma}\right)^{2}} d r \\
= & \frac{\pi}{(1-\gamma)} e^{1+4 \pi(1-\gamma) A_{0}}+O\left(\frac{1}{R^{2-2 \gamma}}\right)+o\left(\frac{1}{c^{2}}\right) . \tag{80}
\end{align*}
$$

Furthermore, $\frac{G}{c_{\varepsilon}} \geq 0$ a.e. in $\Omega \backslash \mathbb{B}_{R \varepsilon}$, by using the inequality $e^{t} \geq t+1, \forall t \geq 0$, we estimate

$$
\begin{align*}
& \int_{\Omega \backslash \mathbb{B}_{R \varepsilon}}\left(1+g\left(\phi_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma) \phi_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \\
& \geq \int_{\Omega \backslash \mathbb{B}_{2 R \varepsilon}}\left(1+g\left(\phi_{\varepsilon}\right)\right) \frac{1+4 \pi(1-\gamma) \phi_{\varepsilon}^{2}}{|x|^{2 \gamma}} d x \\
& \geq \int_{\Omega}(1+g(0))|x|^{-2 \gamma} d x+O\left((R \varepsilon)^{2-2 \gamma} \log ^{2}(R \varepsilon)\right) \\
& \quad+\frac{4 \pi(1-\gamma)}{c^{2}} \int_{\Omega}(1+g(0))|x|^{-2 \gamma} G^{2} d x+O\left((R \varepsilon)^{2-2 \gamma}\right) \tag{81}
\end{align*}
$$

Observe that

$$
O\left((R \varepsilon)^{2-2 \gamma}\right)=O\left((R \varepsilon)^{2-2 \gamma} \log ^{2}(R \varepsilon)\right)=O\left(\frac{1}{R^{2-2 \gamma}}\right)
$$

This together with (80) and (81) yields

$$
\begin{align*}
& \int_{\Omega}\left(1+g\left(\phi_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma) \phi_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x \\
& \quad \geq(1+g(0)) \int_{\Omega}|x|^{-2 \gamma} d x+\frac{\pi}{(1-\gamma)} e^{4 \pi(1-\gamma) A_{0}+1} \\
& \quad+\frac{4 \pi(1-\gamma)}{c^{2}} \int_{\Omega} \frac{(1+g(0)) G^{2}}{|x|^{2 \gamma}} d x+O\left(\frac{1}{R^{2-2 \gamma}}\right)+o\left(\frac{1}{c^{2}}\right) . \tag{82}
\end{align*}
$$

Recalling (77) and the choice $R=-\log \varepsilon^{1 /(1-\gamma)}$, one can deduce that $\frac{1}{R^{2-2 \gamma}}=o\left(\frac{1}{c^{2}}\right)$. Therefore, we conclude from (82) that

$$
\int_{\Omega}\left(1+g\left(\phi_{\varepsilon}\right)\right) \frac{e^{4 \pi(1-\gamma) \phi_{\varepsilon}^{2}}}{|x|^{2 \gamma}} d x>(1+g(0)) \int_{\Omega}|x|^{-2 \gamma} d x+\frac{\pi}{1-\gamma} e^{4 \pi(1-\gamma) A_{0}+1}
$$

for sufficiently small $\varepsilon>0$.

3.2 Completion of the proof of Theorem 2

Comparing (71) with (72), we arrive at the final conclusion that c_{ε} must be bounded. Then
applying elliptic estimates to (16), we can get the desired extremal function. This ends the
proof of Theorem 2 .

Funding

Not applicable

Competing interests

The author declares that they have no competing interests.
Authors' contributions
The author read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 December 2018 Accepted: 28 May 2019 Published online: 04 June 2019

References

1. Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Commun. Partial Differ. Equ. 29, 295-322 (2004)
2. Adimurthi, Sandeep, K.: A singular Moser-Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585-603 (2007)
3. Adimurthi, Struwe, M.: Global compactness properties of semilinear elliptic equation with critical exponential growth. J. Funct. Anal. 175, 125-167 (2000)
4. Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger-Moser inequality in \mathbb{R}^{N} and its applications. Int. Math. Res. Not. 13, 2394-2426 (2010)
5. Carleson, L., Chang, A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113-127 (1986)
6. Chang, S.-Y.A., Yang, P.C.: Conformal deformation of metrics on S². J. Differ. Geom. 27, 259-296 (1988)
7. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615-622 (1991)
8. Chen, W., Li, C.: What kind of singular surfaces can admit constant curvature. Duke Math. J. 78, 437-451 (1995)
9. Csato, G., Roy, P.: Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions. Calc. Var. 54, 2341-2366 (2015)
10. de Souza, M., do Ó, J.M.: A sharp Trudinger-Moser type inequality in \mathbb{R}^{2}. Trans. Am. Math. Soc. 366, 4513-4549 (2014)
11. Ding, W., Jost, J., Li, J., Wang, G.: The differential equation $-\Delta u=8 \pi-8 \pi$ he e^{u} on a compact Riemann surface. Asian J. Math. 1, 230-248 (1997)
12. Flucher, M.: Extremal functions for Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471-497 (1992)
13. Iula, S., Mancini, G.: Extremal functions for singular Moser-Trudinger embeddings. Nonlinear Anal. 156, 215-248 (2017)
14. Li, X., Yang, Y.: Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space. J. Differ. Equ. 264, 4901-4943 (2018)
15. Li, Y.: Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14, 163-192 (2001)
16. Lin, K.: Extremal functions for Moser's inequality. Trans. Am. Math. Soc. 348, 2663-2671 (1996)
17. Lions, P.L.: The concentration-compactness principle in the calculus of variation, the limit case, part I. Rev. Mat. Iberoam. 1, 145-201 (1985)
18. Lu, G., Yang, Y.: The sharp constant and extremal functions for Moser-Trudinger inequalities involving L^{p} norms. Discrete Contin. Dyn. Syst. 25, 963-979 (2009)
19. Malchiodi, A., Martinazzi, L.: Critical points of the Moser-Trudinger functional on a disk. J. Eur. Math. Soc. 16, 893-908 (2014)
20. Mancini, G., Martinazzi, L.: The Moser-Trudinger inequality and its extremals on a disk via energy estimates. Calc. Var. 56, 94 (2017)
21. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1091 (1971)
22. Peetre, J.: Espaces d'interpolation et thereme de Soboleff. Ann. Inst. Fourier (Grenoble) 16, 279-317 (1996)
23. Pohozaev, S.: The Sobolev embedding in the special case $p /=n$. In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964-1965, Mathematics Sections, pp. 158-170. Moscov. Energet Inst., Moscow (1965)
24. Struwe, M.: Critical points of embedding of H_{0}^{1} into Orlic spaces. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5, 425-464 (1988)
25. Struwe, M.: Positive solution of critical semilinear elliptic equations on non-contractible planar domain. J. Eur. Math. Soc. 2, 329-388 (2000)
26. Trudinger, N.: On embeddings into Orlicz space and some applications. J. Math. Mech. 17, 473-483 (1967)
27. Yang, Y.: Trudinger-Moser inequalities on complete noncompact Riemannian manifolds. J. Funct. Anal. 263, 1894-1938 (2012)
28. Yang, Y.: Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two. J. Differ Equ. 258, 3161-3193 (2015)
29. Yang, Y:: A remark on energy estimates concerning extremals for Trudinger-Moser inequalities on a disc. Arch. Math. 111, 215-223 (2018)
30. Yang, Y., Zhu, X.: Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two. J. Funct. Anal. 272, 3347-3374 (2017)
31. Yuan, A., Huang, Z.: An improved singular Trudinger-Moser inequality in dimension two. Turk. J. Math. 40, 874-883 (2016)
32. Yuan, A., Zhu, X.: An improved singular Trudinger-Moser inequality in unit ball. J. Math. Anal. Appl. 435, 244-252 (2016)
33. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of equations. Sov. Math. Dokl. 2, 746-749 (1961)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

