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Abstract
Let Ω ⊂ R

2 be a smooth bounded domain,W1,2
0 (Ω ) be the standard Sobolev space.

Assuming certain conditions on a function g :R → R, we derive a modified singular
Trudinger–Moser inequality, which was originally established by Adimurthi and
Sandeep (Nonlinear Differ. Equ. Appl. 13:585–603, 2007), namely,

sup
u∈W1,2

0 (Ω ),‖∇u‖2≤1

∫
Ω

(1 + g(u))
e4π (1–γ )u2

|x|2γ dx, (1)

where 0 < γ < 1. Following Yang and Zhu (J. Funct. Anal. 272:3347–3374, 2017), we
prove that the extremal functions for the supremum in (1) exist. The proof is based on
a blow-up analysis.
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1 Introduction
Let Ω be a smooth bounded domain in R

2, and W 1,2
0 (Ω) be the completion of C∞

0 (Ω)
under the norm ‖u‖W 1,2

0 (Ω) = (
∫
Ω

|∇u|2 dx)1/2. For 1 ≤ p < 2, the standard Sobolev embed-

ding theorem states that W 1,p
0 (Ω) ↪→ Lq(Ω) for all 1 < q ≤ 2p/(2 – p); while if p > 2, we have

W 1,p
0 (Ω) ↪→ C0(Ω). As a borderline of the Sobolev embeddings, the classical Trudinger–

Moser inequality [21–23, 26, 33] says

sup
u∈W 1,2

0 (Ω),‖∇u‖2≤1

∫
Ω

eαu2
dx < +∞, ∀α ≤ 4π . (2)

Moreover, these integrals are still finite for any α > 4π , but the supremum is infinity. Here
and in the sequel, for any real number q ≥ 1, ‖ · ‖q denotes the Lq(Ω)-norm with respect
to the Lebesgue measure.

A function u0 is called an extremal function for the Trudinger–Moser inequality (2) if
u0 belongs to W 1,2

0 (Ω), ‖∇u0‖2 ≤ 1 and

∫
Ω

eαu2
0 dx = sup

u∈W 1,2
0 (Ω),‖∇u‖2≤1

∫
Ω

eαu2
dx.
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An interesting question on Trudinger–Moser inequalities is whether or not extremal func-
tions exist. The existence of extremal functions for (2) was obtained by Carleson–Chang
[5] when Ω is a unit ball, and by Struwe [24] when Ω is close to the ball in the sense of mea-
sure. Then Flucher [12] extended this result when Ω is a general bounded smooth domain
in R

2. Later, Lin [16] generalized the existence result when Ω is an arbitrary dimensional
domain. For recent developments, we refer the reader to Yang [28].

Using a rearrangement argument and a change of variables, Adimurthi–Sandeep [2]
generalized the Trudinger–Moser inequality (1) to a singular version as follows:

sup
u∈W 1,2

0 (Ω),‖∇u‖2≤1

∫
Ω

e4π (1–γ )u2

|x|2γ
dx < ∞. (3)

This inequality is also sharp in the sense that all integrals are still finite when α > 1 –γ , but
the supremum is infinity. Clearly, if γ = 0, (3) reduces to (1). Following the lines of Flucher
[12], in Csato and Roy [9], they adopt the concentration–compactness alternative by Li-
ons [17] and deduced that the existence of extremals for such singular functionals. Later,
(3) was extend to the entire R

N by Adimurthi and Yang [4]. Meanwhile, Souza and do Ó
modified the singular to another version in R

N in [10]. When Ω is the unit ball B, (3) was
improved by Yuan and Zhu [32]. Similarly, an analog is also be proved by Yuan and Huang
by using the method of symmetrization in [31]. Such singular Trudinger–Moser inequal-
ities play an important role in the study of partial differential equations and conformal
geometry; see [2, 4, 10, 14, 27] and [6] for details.

Recently, using a method of energy estimates in [19], Mancini–Martinazzi [20] reproved
Carleson–Chang’s result. For applications of this method, we refer the reader to Yang [29].
Using the same idea, they proved that the supremum

sup
u∈W 1,2

0 (B),‖∇u‖2≤1

∫
B

(
1 + g(u)

)
e4πu2

dx (4)

can be achieved for certain smooth function g : R →R, where B is a unit ball. On the other
hand, in Yang and Zhu [30], one studied the following singular form:

sup
u∈W 1,2

0 (Ω),‖∇u‖1,α≤1

∫
Ω

eβu2

|x|2γ
dx, (5)

and they verified there exists some function u0 to achieve this supremum for any β <
4π (1 – γ ), where

‖u‖1,α =
(∫

Ω

|∇u|2 dx – α

∫
Ω

u2 dx
)1/2

,

and α satisfies

α < inf
u∈W 1,2

0 (Ω),u�≡0

‖∇u‖2
2

‖u‖2
2

.

Motivated by the above results, in this paper, we make a combination of (4) and (5)
under the case α = 0 to discuss a new version of the singular Trudinger–Moser inequality.
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We are aim to prove two main results: One is to explain the new supremum is finite; the
other is to discuss the existence of extremals for such functionals. In our proof, unlike
the previous energy estimate procedure in [19, 20, 29], we mainly employ the method of
blow-up analysis as in [11, 14, 15, 18] to prove the supremum in the following (9) can be
achieved. Based on Mancini–Martinazzi [20] (see pages 3 and 4), we assume the function
g in (9) satisfies

g ∈ C1(R), inf
R

g > –1, g(–t) = g(t),

lim|t|→∞ t2g(t) = 0, g ′(t) > 0 (∀t > 0).
(6)

In the proof, we derive

–�uε =
1
λε

(
1 + g(uε) +

g ′(uε)
8π (1 – γ – ε)uε

)
uεe4π (1–γ –ε)u2

ε =
1
λε

(
1 + h(uε)

)
uεe4π (1–γ –ε)u2

ε

for some λε ∈R, where we set

h(t) := g(t) +
g ′(t)

8π (1 – γ – ε)t
, t ∈R \ {0}. (7)

We further assume

inf
(0,+∞)

h(t) > –1, sup
(0,+∞)

h(t) < +∞, and lim
t→∞ t2h(t) = 0. (8)

Comparing the conditions on the function g in Mancini–Martinazzi [20], one can see
some differences. In this note, we assume g ′(t) > 0 (∀t > 0), which is used in the Lemma 4.
Moreover, the assumptions in (6) and (8) implies that lim|t|→∞ g(t) = 0 in [20]. Our main
conclusion can be stated as the following two theorems, respectively.

Theorem 1 Let Ω be a smooth bounded domain in R
2 and W 1,2

0 (Ω) be the usual Sobolev
space. Let 0 < γ < 1 be fixed. Suppose g ∈ C1(R) satisfies the hypotheses in (6) and (8). Then
the supremum

Λ4π (1–γ ) := sup
u∈W 1,2

0 (Ω),‖∇u‖2≤1

∫
Ω

(
1 + g(u)

)e4π (1–γ )u2

|x|2γ
dx < ∞. (9)

Theorem 2 Let Ω be a smooth bounded domain in R
2 and W 1,2

0 (Ω) be the usual Sobolev
space. Let 0 < γ < 1 be fixed. Suppose g ∈ C1(R) satisfies the hypotheses in (6) and (8). Then,
for any β ≤ 4π (1 – γ ), the supremum

sup
u∈W 1,2

0 (Ω),‖∇u‖2≤1

∫
Ω

(
1 + g(u)

) eβu2

|x|2γ
dx

can be attained by some function u0 ∈ W 1,2
0 (Ω) ∩ C1

loc(Ω \ {0}) ∩ C0(Ω).

In order to prove the critical singular Trudinger–Moser inequality, we firstly discuss the
existence of extremal functions for a subcritical one, which is based on a direct method
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variation. We derive a different Euler–Lagrange equation on which the analysis is per-
formed. The essential problem is the presence of the function g . To meet the necessary
of our proof, we assume g satisfies certain conditions. Then following Yang and Zhu [30],
we define maximizing sequences of functions by using a more delicate scaling. The exis-
tence of singular term |x|–2γ with 0 < γ < 1 causes exact asymptotic behavior of certain
maximizing sequence near the blow-up point. Unlike in [28], we employ two different
classification theorems of Chen and Li [7, 8] to get the desired bubble. And our method
in dealing with the bubble is also different from Yang–Zhu [30] because of the function g .
We refer to Adimurthi and Druet [1], Carleson–Chang [5], Li [15], Struwe [24], Adimurthi
and Struwe [3], Iula and Mancini [13], Yang [28], Lu and Yang [18], respectively.

2 Proof of Theorem 1
We divide the proof into several steps as follows.

2.1 Existence of maximizers for Λ4π (1–γ –ε) and the Euler–Lagrange equation
In this subsection, we shall prove that maximizers for the subcritical singular Trudinger–
Moser functionals exist.

Proposition 3 For any 0 < ε < 1–β , there exists some uε ∈ W 1,2
0 (Ω)∩C1

loc(Ω \{0})∩C0(Ω)
satisfying ‖∇u‖2 = 1 and

∫
Ω

(
1+g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx = Λ4π (1–γ –ε) := sup

u∈W 1,2
0 (Ω),

‖∇u‖2≤1

∫
Ω

(
1+g(u)

) e4π (1–γ –ε)u2

|x|2γ
dx. (10)

Proof This is based on a direct method of variation. For any 0 < β < 1, let 0 < ε < 1 – γ be
fixed. We take a sequence of functions uj ∈ W 1,2

0 (Ω) satisfying ‖∇uj‖2 ≤ 1 and, as j → ∞,

lim
j→∞

∫
Ω

(
1 + g(uj)

)e4π (1–γ –ε)u2
j

|x|2γ
dx = Λ4π (1–γ –ε). (11)

Since uj is bounded in W 1,2
0 (Ω), there exists some uε ∈ W 1,2

0 (Ω) such that up to a subse-
quence, assuming

uj ⇀ uε weakly in W 1,2
0 (Ω),

uj → uε strongly in Lp(Ω),∀p ≥ 1,

uj → uε a.e. in Ω .

Since

0 ≤
∫

Ω

|∇uε|2 dx ≤ lim sup
j→∞

(∫
Ω

|∇uε|2 dx
) 1

2
(∫

Ω

|∇uj|2 dx
) 1

2
,

we have 0 ≤ ‖∇uε‖2 ≤ 1. Note that
∫

Ω

∣∣∇(uε – uj)
∣∣2 dx =

∫
Ω

|∇uε|2 dx –
∫

Ω

|∇uj|2 + oj(1)

≤ 1 –
∫

Ω

|∇uε|2 + oj(1). (12)
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Following Hölder’s inequality, for any 1 < p ≤ 1
γ

, δ > 0, w > 1 and w′ = w/(w – 1), we have

∫
Ω

(
1 + g(uj)

)p 1
|x|2γ p e4π (1–γ –ε)pu2

j dx ≤ C
(∫

Ω

1
|x|2γ p e4π (1–γ –ε)p(1+δ)w(uj–uε)2

dx
) 1

w

×
(∫

Ω

1
|x|2γ p e4π (1–γ –ε)p(1+ 1

4δ
)w′u2

ε dx
) 1

w′
. (13)

When p, 1 + δ and s are sufficiently close to 1, we have

(1 – γ – ε)p(1 + δ)w + γ wp < 1. (14)

Combining (12), (13) and (14), we have by the singular Trudinger–Moser inequality (3)

(
1 + g(uε)

)|x|–2γ e4π (1–γ –ε)u2
ε is bounded in Lp(Ω),

for some p > 1. Note that

∣∣∣∣
(
1 + g(uj)

)e4π (1–γ –ε)u2
j

|x|–2γ
–

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|–2γ

∣∣∣∣
≤ C|x|–2γ

(
e4π (1–γ –ε)u2

j + e4π (1–γ –ε)u2
ε
)∣∣u2

j – u2
ε

∣∣,
+ |x|–2γ max

{
g ′(uj), g ′(uε)

}|uj – uε|e4π (1–γ –ε)u2
j . (15)

Since uj → uε strongly in Lp(Ω) for any p > 1, in view of (6) and (8), we can conclude
from (15) that

∫
Ω

(
1 + g(uj)

)|x|–2γ e4π (1–γ –ε)u2
j dx →

∫
Ω

(
1 + g(uε)

)|x|–2γ e4π (1–γ –ε)u2
ε dx,

as j → ∞. This together with (11) immediately leads to (10). Obviously uε �≡ 0. If ‖∇uε‖2 <
1, set ũε = uε

‖∇uε‖2
, then we obtain ‖∇ũε‖2 = 1. Since 0 ≤ uε < ũε and uε �≡ 0, it follows from

(6) that

∫
Ω

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx <

∫
Ω

(
1 + g(ũε)

)e4π (1–γ –ε)̃u2
ε

|x|2γ
dx ≤ Λ4π (1–γ –ε),

which contradicts (10). Consequently, ‖∇uε‖2 = 1 holds. Furthermore, one can also check
that |uε| attains the supremum Λ4π (1–γ –ε). Thus, uε can be chosen so that uε ≥ 0. It is not
difficult to see that uε satisfies the following Euler–Lagrange equation:

⎧⎪⎪⎨
⎪⎪⎩

–�uε = λ–1
ε |x|–2γ (1 + h(uε))uεe4π (1–γ –ε)u2

ε in Ω ⊂R
2,

uε ≥ 0, ‖∇uε‖2 = 1 in Ω ⊂R
2,

λε =
∫
Ω

|x|–2γ (1 + h(uε))u2
εe4π (1–γ –ε)u2

ε dx,

(16)

where h(x) is defined as in (7). �
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2.1.1 The case when uε is uniformly bounded in Ω

The proof of Theorem 2 will be ended if we can find some u0 ∈ W 1,2
0 (Ω) ∩ C1

loc(Ω \ {0}) ∩
C0(Ω) satisfying ‖∇u0‖2 = 1 and

∫
Ω

(
1 + g(u0)

)e4π (1–γ )u2
0

|x|2γ
dx = sup

u∈W 1,2
0 (Ω),‖∇u‖2≤1

∫
Ω

(
1 + g(u)

)e4π (1–γ )u2

|x|2γ
dx. (17)

Since uε is bounded in W 1,2
0 (Ω), we assume without loss of generality

uε ⇀ u0 weakly in W 1,2
0 (Ω),

uε → u0 strongly in Lp(Ω),∀p ≥ 1,

uε → u0 a.e. in Ω .

(18)

Let cε = uε(xε) = maxΩ uε . If cε is bounded, for any u ∈ W 1,2
0 (Ω) with u ≥ 0, ‖∇u0‖2 = 1,

together with Lebesgue dominated convergence theorem gives

∫
Ω

(
1 + g(u)

)e4π (1–γ )u2

|x|2γ
dx = lim

ε→0

∫
Ω

(
1 + g(uε)

)e4π (1–γ –ε)u2

|x|2γ
dx

≤ lim
ε→0

∫
Ω

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx

=
∫

Ω

(
1 + g(u0)

)e4π (1–γ )u2
0

|x|2γ
dx. (19)

By the arbitrariness of u ∈ W 1,2
0 (Ω), we conclude that u0 is the desired maximizer when

uε is uniformly bounded in Ω . Applying elliptic estimates to its Euler–Lagrange equa-
tion, one can deduce that u0 ∈ W 1,2

0 (Ω) ∩ C1
loc(Ω \ {0}) ∩ C0(Ω). And then (17) follows

immediately.

2.2 Blowing up analysis
In this subsection, as in [1, 17], we will use the blow-up analysis to understand the asymp-
totic behavior of the maximizers uε . Assume cε = uε(xε) → ∞ and we distinguish two
cases to proceed.

Case 1. If u0 �≡ 0, the supremum in (9) can be attained by u0 without difficulty. And the
proof will just be divided into several simple steps.

Step 1. A similar estimate as in (13), one can easily check that (1+g(uε))
|x|2γ e4π (1–γ –ε)u2

ε is
bounded in Lp(Ω) (p > 1).

Step 2. By the mean value theorem and the Hölder inequality, we have

lim
ε→0

∫
Ω

|x|–2γ e4π (1–γ –ε)u2
ε dx =

∫
Ω

|x|–2γ e4π (1–γ )u2
0 dx.
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Step 3. Based on the above steps, one can easily check that

∫
Ω

∣∣(1 + g(uε)
)|x|–2γ e4π (1–γ –ε)u2

ε –
(
1 + g(u0)

)|x|–2γ e4π (1–γ )u2
0
∣∣dx

≤ ∣∣g(u0) + 1
∣∣
∫

Ω

(|x|–2γ e4π (1–γ –ε)u2
ε – |x|–2γ e4π (1–γ )u2

0
)

dx

+
∫

Ω

|x|–2γ e4π (1–γ –ε)u2
ε
∣∣g(uε) – g(u0)

∣∣dx

= oε(1).

Thus, we arrive at the conclusion that

lim
ε→0

∫
Ω

(
1 + g(uε)

)|x|–2γ e4π (1–γ –ε)u2
ε dx =

∫
Ω

(
1 + g(u0)

)|x|–2γ e4π (1–γ )u2
0 dx.

This together with (17) gives the desired result.
Case 2. If u0 ≡ 0, in view of Eq. (16), it is important to figure out whether λε has a positive

lower bound or not. For this purpose, we have the following.

Lemma 4 Let λε be as in (16). Then we have lim infε→0 λε > 0.

Proof By an inequality et2 ≤ 1 + t2et2 for t ≥ 0, it follows from (6) and (7) that

λε ≥ 1
4π (1 – γ – ε)

∫
Ω

(
1 + h(uε)

) (e4π (1–γ –ε)u2
ε – 1)

|x|2γ
dx

≥ 1
4π (1 – γ – ε)

(∫
Ω

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx –

∫
Ω

(1 + g(uε))
|x|2γ

dx

+
∫

Ω

g ′(uε)
8π (1 – γ – ε)|x|2γ uε

(
e4π (1–γ –ε)u2

ε – 1
)

dx
)

≥ 1
4π (1 – γ – ε)

(∫
Ω

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx –

∫
Ω

(1 + g(uε))
|x|2γ

dx
)

.

This together with (10) leads to

lim inf
ε→0

λε ≥ 1
4π (1 – γ )

(
Λ4π (1–γ ) –

∫
Ω

(1 + g(0))
|x|2γ

dx
)

> 0.

Or equivalently, we have

1
λε

≤ C. (20)

Therefore, 1
λε

is uniformly bounded in Ω . This ends the proof of the lemma. �

2.2.1 Energy concentration phenomenon
Using the same argument as the one in step 2 of [28], we get the following concentration
phenomenon, which is crucial in our blow-up analysis.
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Proposition 5 For the function sequence {uε}, we have uε ⇀ 0 weakly in W 1,2
0 (Ω) and

uε → 0 strongly in Lq(Ω) for any q > 1. Moreover, |∇uε|2 dx ⇀ δ0 weakly in a sense of mea-
sure, where δ0 is the usual Dirac measure centered at the point 0.

Proof Since ‖∇uε‖2 = 1, we have the same assumptions as in (18). Observe that

∫
Ω

∣∣∇(uε – u0)
∣∣2 dx = 1 –

∫
Ω

|∇u0|2 dx + o(1). (21)

Suppose u0 �≡ 0. In view of (21) and an obvious analog of (13), it follows that

(
1 + g(uε)

)|x|–2γ e4π (1–γ –ε)u2
ε is bounded in Lq(Ω),

for some q > 1. Then applying elliptic estimates to (18), one can deduce that uε is bounded
in W 2,q

0 (Ω). Together with Sobolev embedding results, we conclude uε is bounded in
C0(Ω), which contradicts cε → ∞. Therefore u0 ≡ 0 and (21) becomes

∫
Ω

|∇uε|2 dx = 1 + oε(1). (22)

We next prove |∇uε|2 dx ⇀ δx0 . If the statements were false, suppose |∇uε|2 dx ⇀ η in a
sense of measure. In view of η �= δx0 , there exists r0 > 0 such that

lim
ε→0

∫
Br0 (x0)

|∇uε|2 dx ≤ η + 1
2

< 1.

In view of (22) and u0 ≡ 0, we can choose a cut-off function φ ∈ C1
0(Br0 (x0)), which is equal

to 1 on Br0/2(x0), then it follows that

lim sup
ε→0

∫
Br0 (x0)

∣∣∇(φuε)
∣∣2 dx < 1.

By the singular Trudinger–Moser inequality (3), one sees that (1 + g(φuε)) e4π (1–γ –ε)(φuε )2

|x|2γ is
bounded in Lr(Br0 (x0)) for some r > 1. Applying elliptic estimates to (16), one gets uε is
uniformly bounded in Ω , which contradicts cε → ∞ again. Therefore |∇uε|2 dx ⇀ δx0 .
Moreover, we get uε → 0 in C1

loc(Ω \ {0, x0}) ∩ C0
loc(Ω \ {x0}).

In fact, we have x0 = 0. Set r0 = |x0|/2. Note that λ–1
ε |x|–2γ (1 + h(uε))uεe4π (1–γ –ε)u2

ε

is bounded in Lq1 (Br0 (0)) for some q1 > 1. When |x| > r0, by the classical Trudinger–
Moser inequality (2), we recognize λ–1

ε |x|–2γ (1 + h(uε))uεe4π (1–γ –ε)u2
ε is bounded in Lq2 (Ω \

Br0 (0)) for some q2 > 1. Choose q = min{q1, q2} > 1, and we conclude λ–1
ε |x|–2γ (1 +

h(uε))uεe4π (1–γ –ε)u2
ε is bounded in Lq(Ω). Then the elliptic estimate on the Euler–Lagrange

equation (16) implies that cε is bounded, which also makes a contradiction. Thus, we com-
plete the proof of the proposition. �

2.2.2 Asymptotic behavior of uε near the concentration point
Let

rε =
√

λεc–1
ε e–2π (1–γ –ε)c2

ε . (23)
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For any 0 < δ < 1 –γ , in view of (8), we have by using the Hölder inequality and the singular
Trudinger–Moser inequality (3),

λε =
∫

Ω

|x|–2γ
(
1 + h(uε)

)
u2

εe4π (1–γ –ε)u2
ε dx

≤ e4πδc2
ε

∫
Ω

|x|–2γ
(
1 + h(uε)

)
u2

εe4π (1–γ –ε–δ)u2
ε dx

≤ Ce4πδc2
ε

for some constant C depending only on δ. This leads to

r2
εe4πμc2

ε ≤ Cc–2
ε e4π (δ+μ)e–4π (1–γ –ε)c2

ε → 0, for ∀0 < μ < 1 – γ , (24)

as ε → 0. To characterize the blow-up behavior more exactly, we need to divide the process
into two cases as in [30].

Case 1. r–1/(1–γ )
ε xε ≤ C.

Let Ωε = {x ∈ R
2 : xε + r1/(1–γ )

ε x ∈ Ω}. Define two blow-up sequences of function on Ωε

as

ζε(x) = c–1
ε uε

(
xε + r1/(1–γ )

ε x
)
, ϑε(x) = cε

(
uε

(
xε + r1/(1–γ )

ε x
)

– cε

)
.

A direct computation shows

–�ζε(x) = c–2
ε

∣∣x + r–1/(1–γ )
ε xε

∣∣–2γ (
1 + h(uε)

)
ζεe4π (1–γ –ε)(u2

ε–c2
ε ) in Ωε , (25)

–�ϑε(x) =
∣∣x + r–1/(1–γ )

ε xε

∣∣–2γ (
1 + h(uε)

)
ζεe4π (1–γ –ε)(1+ζε)ϑε in Ωε . (26)

We now investigate the convergence behavior of ζε(x) and ϑε(x). Assume limε→0 r–1/(1–γ )
ε ×

xε = –x̄. From (24), we have rε → 0 obviously. Thus Ωε →R
2 as ε → 0. In view of |ζε(x)| ≤

1 and �ζε(x) → 0 in x ∈ Ωε \ {x̄} as ε → 0, we have by elliptic estimates that ζε(x) → ζ (x)
in C1

loc(R2 \ {x̄}) ∩ C0
loc(R2), where ζ is a bounded harmonic function in R

2. Observe that
ζ (x) ≤ lim supε→0 ζε(x) ≤ 1 and ζ (0) = 1. It follows from the Liouville theorem that ζ ≡ 1
on R

2. Thus, we have

ζε → 1 in C1
loc

(
R

2 \ {x̄}) ∩ C0
loc

(
R

2) (27)

as ε → 0. Note also that

ϑε(x) ≤ ϑε(0) = 0 for all x ∈ Ωε(x).

In view of (27), we conclude by applying elliptic estimates to (26) that

ϑε → ϑ in C1
loc

(
R

2 \ {x̄}) ∩ C0
loc

(
R

2), (28)

where ϑ is a distributional solution to

–�ϑ = |x – x̄|–2γ e8π (1–γ )ϑ in R
2 \ {x̄}.
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Observe that

ζε(x) =
uε(xε + r1/(1–γ )

ε x)
cε

→ 1 in C1
loc(BR \B1/R), (29)

as ε → 0. Set y = xε + r1/(1–γ )
ε x with |x – x̄| ≤ R, and then we have

|y| ≤ r1/(1–γ )
ε |x – x̄| +

∣∣xε + r1/(1–γ )
ε x̄

∣∣ ≤ 2Rr1/(1–γ )
ε .

Since r–1/(1–γ )
ε xε ≤ C, choose R big enough such that

∣∣x – r–1/(1–γ )
ε xε

∣∣ ≤ R.

This together with (29) leads to

lim
ε→0

∥∥∥∥uε(r1/(1–γ )
ε x)
cε

∥∥∥∥
L∞(BR\B1/R(x̄))

= lim
ε→0

∥∥∥∥uε(xε + r1/(1–γ )
ε (x – r–1/(1–γ )

ε xε))
cε

∥∥∥∥
L∞(BR\B1/R(x̄))

= 1.

Combining with Fatou’s lemma, we obtain

∫
BR\B1/R(x̄)

|x – x̄|–2γ e8π (1–γ )ϑ dx

≤ lim sup
ε→0

∫
BR\B1/R(x̄)

∣∣x + r–1/(1–γ )
ε xε

∣∣–2γ e4π (1–γ –ε)(1+ζε)ϑε dx

≤ lim sup
ε→0

1
λε

∫
B

2Rr1/(1–γ )
ε

\B 1
2 Rr–1/(1–γ )

ε
(0)

(
1 + h(uε)

)u2
ε(y)

|y|2γ
e4π (1–γ –ε)u2

ε (y) dy

≤ 1. (30)

Passing to the limit R → ∞, we have

∫
R2

|x – x̄|–2γ e8π (1–γ )ϑ dx ≤ 1.

The uniqueness theorem obtained in [3] implies that

ϑ(x) = –
1

4π (1 – γ )
log

(
1 +

1
1 – γ

|x – x̄|2(1–γ )
)

. (31)

Let x = 0, and then

ϑ(0) = lim
ε→0

ϑε(0) = 0.
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Thus, it follows from (31) that x̄ = 0. Namely,

ϑ(x) = –
1

4π (1 – γ )
log

(
1 +

1
1 – γ

|x|2(1–γ )
)

. (32)

Furthermore, we can get

∫
R2

|x|–2γ e8π (1–γ )ϑ dx = 1. (33)

Case 2. r–1/(1–γ )
ε xε → +∞. Set

Ω̃ε =
{

x ∈R
2 : xε + rε|xε|γ x ∈ Ω

}
.

Denote the blowing up functions on Ωε

αε(x) = c–1
ε uε

(
xε + rε|xε|γ x

)
, βε(x) = cε

(
uε

(
xε + rε|xε|γ x

)
– cε

)
.

In view of (16), αε(x) is a distributional solution to the equation

–�αε(x) = fε(u) in Ωε , (34)

where

fε = c–2
ε |xε|2γ

∣∣xε + rε|xε|γ x
∣∣–2γ (

1 + h(uε)
)
αεe4π (1–γ –ε)c2

ε (α2
ε –1).

Since r–1/(1–γ )
ε xε → +∞, we have |xε|2γ |xε + rε|xε|γ x|–2γ = 1 + oε(1) clearly. Since |αε(x)| ≤

1, we obtain fε is bounded in Lp (p > 1) according to (8). Elliptic estimates and embedding
theorem lead to αε → α in C1

loc(R2), where α satisfies

–�α(x) = 0 in R
2.

Note that α ≤ 1 and α(0) = 1. Thus, together with the Liouville theorem, we obtain α ≡ 1.
Also we have

–�βε = |xε|2γ
∣∣xε + rε|xε|γ x

∣∣–2γ (
1 + h(uε)

)
αεe4π (1–γ –ε)βε(αε+1) in Ωε . (35)

Applying elliptic estimates to (35), we conclude that βε → β in C1
loc(R2), where β is a

distributional solution to
⎧⎨
⎩

β(0) = 0 = supβ ,

�β = –e8π (1–γ )β in R
2.

(36)

For 0 < β < 1, (36) follows from Chen and Li [6] that β satisfies

∫
R2

e8π (1–γ )β dx ≥ 1
1 – β

> 1.
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Using a suitable change of variable y = xε + rε|xε|γ x, for any R > 0, we have

∫
BR(x̄)

e8π (1–γ )β dx = lim
ε→0

∫
BR(0)

(
1 + h(uε)

)
e4π (1–γ –ε)(u2

ε (xε+rε |xε |γ x)–c2
ε ) dx

≤ lim
ε→0

1
λε

∫
BRrε |xε |γ (xε)

(
1 + h(uε)

)u2
ε(y)

|y|2γ
e4π (1–γ –ε)u2

ε (y) dy

≤ 1, (37)

which leads to a contradiction. Thus, it is impossible for Case 2 to happen.

2.2.3 Convergence away from the concentration point
To understand the convergence behavior away from the blow-up point x0 = 0, we need to
investigate how cεuε converges. Similar to [1, 15], define uε,τ = min{τcε , uε}, then we have
the following.

Lemma 6 For any 0 < τ < 1, we have

lim
ε→0

∫
Ω

|∇uε,τ |2 dx = τ .

Proof Observe that uε/cε = 1 + oε(1) in BRr1/(1–γ )
ε

(xε). For any 0 < τ < 1, it follows from
Eq. (16) and the divergence theorem that

∫
Ω

|∇uε,τ |2 dx =
1
λε

∫
Ω

uε,τ uε

|x|2γ

(
1 + h(uε)

)
e4π (1–γ –ε)u2

ε dx

≥ 1
λε

∫
B

Rr1/(1–γ )
ε

(xε)

uε,τ uε

|x|2γ

(
1 + h(uε)

)
e4π (1–γ –ε)u2

ε dx + oε(1)

= τ

∫
BR(0)

(1 + h(uε))e4π (1–γ –ε)(u2
ε (xε+r1/(1–γ )

ε y)–c2
ε )

|y + r–1/(1–γ )
ε xε|2γ

dy + oε(1).

Hence

lim inf
ε→0

∫
Ω

|∇uε,τ |2 dx ≥ τ

∫
BR(0)

e8π (1–γ )ϑ dy, ∀R > 0.

In view of (33), passing to the limit R → +∞, we obtain

lim inf
ε→0

∫
Ω

|∇uε,τ |2 dx ≥ τ . (38)

Note that

∣∣∇(uε – τcε)+∣∣2 = ∇(uε – τcε)+ · ∇uε on Ω

and

(uε – τcε)+ =
(
1 + oε(1)

)
(1 – τ )cε in BRr1/(1–γ )

ε
(x0).
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Testing Eq. (16) by (uε – τcε)+, for any fixed R > 0, simple computation shows that

∫
Ω

∣∣∇(uε – τcε)+∣∣2 dx =
∫

Ω

(uε – τcε)+ uε

λε|x|2γ

(
1 + h(uε)

)
e4π (1–γ –ε)u2

ε dx

≥
∫

B
Rr1/(1–γ )

ε (xε )

(uε – τcε)+ uε(1 + h(uε))
λε|x|2γ

e4π (1–γ –ε)u2
ε dx

=
(
1 + oε(1)

)
(1 – τ )

∫
BR(0)

ζε

(
1 + h(uε)

)
e4π (1–γ –ε)ϑ2

ε dx.

By passing to the limit ε → 0, we get

lim inf
ε→0

∫
Ω

∣∣∇(uε – τcε)+∣∣2 dx ≥ (1 – τ )
∫

BR(0)

e8π (1–γ )ϑ dx = 1 – τ . (39)

Since |∇uε,τ |2 + |∇(uε – τcε)+|2 = |∇uε|2 almost everywhere, it follows that

∫
Ω

∣∣∇(uε – τcε)+∣∣2 dx +
∫

Ω

|∇uε,τ |2 dx =
∫

Ω

|∇uε|2 dx = 1 + oε(1). (40)

Therefore, we end the proof of this lemma together with (38), (39) and (40). �

The following estimate is a byproduct of Lemma 6 and will be employed in the next
section.

Lemma 7 We have

lim
ε→0

∫
Ω

|x|–2γ
(
1 + g(uε)

)
e4π (1–γ –ε)u2

ε dx =
(
1 + g(0)

)∫
Ω

|x|–2γ dx + lim
ε→0

λε

c2
ε

. (41)

Proof Let 0 < τ < 1 be fixed. By the definition of uε,τ , we can get

∫
uε≤τcε

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx –

(
1 + g(0)

) ∫
Ω

1
|x|2γ

dx

≤
∫

Ω

(
1 + g(uε,τ )

)e4π (1–γ –ε)u2
ε,τ

|x|2γ
dx –

(
1 + g(0)

)∫
Ω

1
|x|2γ

dx

≤
∫

Ω

∣∣g(uε,τ ) – g(0)
∣∣e4π (1–γ –ε)u2

ε,τ

|x|2γ
dx +

∣∣1 + g(0)
∣∣ ∫

Ω

(e4π (1–γ –ε)u2
ε,τ – 1)

|x|2γ
dx. (42)

Combining Lemma 6 and Proposition 5, we see that uε,σ converges to 0 in C1
loc(Ω \ {0}) as

ε → 0. Then from (3), one can deduce that

∫
Ω

e4π (1–γ –ε)u2
ε,τ

|x|2γ

∣∣g(uε,τ ) – g(0)
∣∣dx = oε(1). (43)

According to the Hölder inequality and the Lagrange theorem, we have

∫
Ω

1
|x|2γ

(
e4π (1–γ –ε)u2

ε,τ – 1
)

dx = oε(1). (44)
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Inserting (43) and (44) into (42), one has

lim
ε→0

∫
uε≤τcε

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx =

(
1 + g(0)

)∫
Ω

1
|x|2γ

dx. (45)

Moreover, we calculate

∫
uε>τcε

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx

≤ 1
τ 2

∫
uε>τcε

u2
ε

c2
ε

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx

≤ 1
τ 2

λ2
ε

c2
ε

. (46)

Combining (45) and (46), we obtain

lim
ε→0

∫
Ω

(1 + g(uε))e4π (1–γ –ε)u2
ε

|x|2γ
dx ≤ (

1 + g(0)
)∫

Ω

1
|x|2γ

dx +
1
τ 2 lim inf

ε→0

λ2
ε

c2
ε

.

It follows by letting τ → 1 that

lim
ε→0

∫
Ω

(1 + g(uε))e4π (1–γ –ε)u2
ε

|x|2γ
dx –

(
1 + g(0)

)∫
Ω

1
|x|2γ

dx ≤ lim inf
ε→0

λ2
ε

c2
ε

. (47)

On the other hand, in view of (16), we estimate

∫
Ω

(
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
dx –

(
1 + g(0)

)∫
Ω

1
|x|2γ

dx

≥
∫

Ω

u2
ε

c2
ε

((
1 + g(uε)

)e4π (1–γ –ε)u2
ε

|x|2γ
–

(
1 + g(0)

) 1
|x|2γ

)
dx

=
λε

c2
ε

–
1
c2
ε

∫
Ω

(1 + g(0))u2
ε

|x|2γ
dx –

1
c2
ε

∫
Ω

uεg ′(uε)
8π (1 – γ – ε)|x|2γ

e4π (1–γ –ε)u2
ε dx.

Thus, by Proposition 5 and (6), (8), one can check that

lim sup
ε→0

λ2
ε

c2
ε

≤ lim
ε→0

∫
Ω

|x|–2γ
(
1 + g(uε)

)
e4π (1–γ –ε)u2

ε dx –
(
1 + g(0)

)∫
Ω

|x|–2γ dx. (48)

In view of (47) and (48), we complete the proof of Lemma 7. �

Corollary 8 If θ < 2, then λε

cθε
→ ∞ as ε → 0.

Proof In contrast, we have λε/c2
ε → 0 as ε → 0. For any ν ∈ W 1,2

0 (Ω) with ‖∇ν‖2 ≤ 1,
clearly, it is impossible for (41) to hold since ν �≡ 0. �

Lemma 9 For any function φ ∈ C1
0(Ω), we have

lim
ε→0

∫
Ω

(
1 + h(uε)

)
λ–1

ε cεuε|x|–2γ e4π (1–γ –ε)u2
εφ dx = φ(0). (49)
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Proof To see this, let φ ∈ C1
0(Ω) be fixed. Write for simplicity

ωε =
(
1 + h(uε)

)
λ–1

ε cεuε|x|–2γ e4π (1–γ –ε)u2
ε .

Clearly

∫
Ω

ωεφ dx =
∫

{uε<τcε}
ωεφ dx +

∫
{uε≥τcε}\B

R1/(1–γ )
rε

(xε )
ωεφ dx

+
∫

{uε≥τcε}∩B
R1/(1–γ )

rε
(xε)

ωεφ dx. (50)

Given 0 < τ < 1, we estimate the three integrals on the right hand of (50), respectively.
Note that uε → 0 in Lq (∀q > 1). This together with Lemma 6 and Corollary 8 gives

∫
{uε<τcε}

ωεφ dx ≤ λ–1
ε cε

(
sup
Ω

∣∣φ(
1 + h(uε)

)∣∣)∫
{uε<τcε}

uε|x|–2γ e4π (1–γ –ε)u2
ε,τ dx

≤ Cλ–1
ε cε

∫
{uε<τcε}

uε|x|–2γ e4π (1–γ –ε)u2
ε,τ dx

= oε(1). (51)

Now we consider in BR1/(1–γ )
rε

(xε) ⊂ {x ∈ Ω | uε ≥ τcε} for sufficiently small ε > 0. One can
deduce from (33) that

∫
{uε≥τcε}∩B

R1/(1–γ )
rε

(xε)
ωεφ dx = φ(0)

(
1 + oε(1)

)∫
BR\1/R(0)

|x|–2γ e8πϑ dx

= φ(0)
(
1 + oε(1) + oR(1)

)
. (52)

On the other hand, we calculate

∫
{uε≥τcε}\B

R1/(1–γ )
rε

(xε)
ωεφ dx ≤ C

τ

(
1 –

∫
B

R1/(1–γ )
rε

(xε)

u2
ε

λε

e4π (1–γ –ε)u2
ε

|x|2γ
dx

)

=
C
τ

(
1 –

∫
BR(0)

e8π (1–γ )ϑ

|x|2γ
dx

)
.

Hence, we derive by (33) that

lim
R→∞ lim

ε→0

∫
{uε≥τcε}\B

R1/(1–γ )
rε

(xε)
ωεφ dx = 0. (53)

Inserting (51)–(53) to (50), we conclude (49) finally. �

In particular, we propose, by letting φ = 1,

ωε(x) =
(
1 + h(uε)

)
λ–1

ε cεuε|x|–2γ e4π (1–γ –ε)u2
ε is bounded in L1(Ω), (54)

which will be used in the following proof.
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We now prove that cεuε converges to a Green function in distributional sense when
ε → 0, where δ0 stands for the Dirac measure centered at 0. More precisely, we have

Lemma 10 cεuε → G in C1
loc(Ω \ {0}) and weakly in W 1,q

0 (Ω) for all 1 < q < 2, where
G ∈ C1(Ω \ {0}) is a distributional solution satisfying the following:

⎧⎨
⎩

–�G = δ0 in Ω ,

G = 0 on ∂Ω .
(55)

Moreover, G takes the form

G(x) = –
1

2π
log |x| + A0 + ξ (x), (56)

where ξ (x) ∈ C1(Ω) and A0 is a constant depending on 0.

Proof By Eq. (16), cεuε is a distributional solution to

–�(cεuε) = ωε in Ω . (57)

It follows from (54) that ωε is bounded in L1(Ω). Using the argument in Struwe ([25],
Theorem 2.2), one concludes that cεuε is bounded in W 1,q

0 (Ω) for all 1 < q < 2. Hence, we
can assume, for any 1 < q < 2, r > 1, that

cεuε ⇀ G weakly in W 1,q
0 (Ω),

cεuε → G strongly in Lr(Ω).

Testing (57) by φ ∈ C1
0(Ω), we deduce

∫
Ω

∇(cεuε)∇φ dx =
∫

Ω

φλ–1
ε cεuε

(
1 + h(uε)

)|x|–2γ e4π (1–γ –ε)u2
ε .

Let ε → 0 and it yields by (55)

∫
Ω

∇G∇φ dx = φ(0),

which implies that –�G = δ0 in a distributional sense. Since �(G + 1
2π

log |x|) ∈ Lp(Ω) for
any p > 2, (56) follows from the elliptic solution immediately. Applying elliptic estimates
to Eq. (57), we arrive at the conclusion

cεuε → G in C1
loc

(
Ω \ {0}). (58)

Thus, the two assertions holds. �
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2.3 Upper bound calculates by means of capacity estimate
In this subsection, we aim to derive an upper bound of the integrals

∫
Ω

(1 + g(uε))|x|–2γ ×
e4π (1–γ –ε)u2

ε dx. Analogous to the one obtained in [15], we mainly use the capacity estimate.
Now choose a proper δ to ensure that B2δ ⊂ Ω , and then construct a new function space

Mε(ρε ,σε) =
{

u|u ∈ W 1,2(
Bδ(xε) \BRr1/(1–γ )

ε
(xε)

)
: u|∂Bδ (xε) = ρε , u|∂B

Rr1/(1–γ )
ε

(xε) = σε

}

where

ρε = sup
∂Bδ (xε)

uε , σε = inf
∂B

Rr1/(1–γ )
ε

(xε)
uε .

Define

Λε = inf
u∈Mε(ρε ,σε)

∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε )
|∇u|2 dx.

Clearly, the infimum Λε can be attained by the sequence uk ∈ M as k → ∞. By the proof of
the Poincaré inequality, we infer that uk is bounded in W 1,2

0 (Ω). Without loss of generality,
there exists some function t ∈ W 1,2(Ω) such that up to a subsequence. As k → ∞, we have
uk ⇀ t weakly in W 1,2(Ω), uk → t in Lp

loc(Ω) for any p > 0 and uk → t a.e. in Ω . Besides,
for t ∈ Mε(ρε ,σε), we have

∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)
|∇t|2 dx ≤ lim

k→∞

∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)
|∇uk|2 dx = Λε

and

Λε ≤
∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)
|∇t|2 dx.

Through the method of variation, we see that there exists some harmonic function t(x) to
reach the Λε which satisfies the following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�t = 0 in Bδ(xε) \BRr1/(1–γ )
ε

(xε),

t|∂Bδ (xε) = ρε ,

t|∂B
Rr1/(1–γ )

ε
(xε) = σε .

(59)

Obviously, the solution of (59) can be expressed as

t(x) = a log |x – x0| + b.

One can check that

⎧⎪⎨
⎪⎩

a = σε–ρε

log δ–log Rr1/(1–γ )
ε

,

b = σε log Rr1/(1–γ )
ε –ρε log δ

log Rr1/(1–γ )
ε –log δ

.
(60)
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Thus, t(x) can be expressed as

t(x) =
σε(log δ – log |x – xε|) – ρε(log Rr1/(1–γ )

ε – log |x – xε|)
log δ – log Rr1/(1–γ )

ε

.

With a direct computation, it is easy to check that

∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)
|∇t|2 dx =

2π (σε – ρε)2

log δ – log Rr1/(1–γ )
ε

. (61)

According to (23), we have

log δ – log Rr1/(1–γ )
ε = log δ – log R +

2π (1 – γ – ε)c2
ε

1 – γ
–

1
2(1 – γ )

log
λε

c2
ε

. (62)

Furthermore, Lemma 10 and (31) show that

σε = cε +
1
cε

(
–

1
4π (1 – γ )

log

(
1 +

π

1 – γ
R2(1–γ )

)
+ o(1)

)
(63)

and

ρε =
1
cε

(
–

1
2π

log δ + A0 + o(1)
)

, (64)

where o(1) → 0 by letting ε → 0 and δ → 0 in succession. Set u∗
ε = max{ρε , min{uε ,σε}}.

From u∗
ε ∈ Mε(ρε ,σε), one can easily check that

∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)
|∇t|2 dx = Λε ≤

∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)

∣∣∇u∗
ε

∣∣2 dx. (65)

Observe that |∇u∗
ε | ≤ |∇uε| a.e. in Bδ(xε) \ BRr1/(1–γ )

ε
(xε) if ε is sufficiently small. Thus, it

follows

∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)

∣∣∇u∗
ε

∣∣2 dx ≤
∫
Bδ (xε)\B

Rr1/(1–γ )
ε

(xε)
|∇uε|2 dx. (66)

In view of (61), (65) and (66), it can be inferred that

2π (σε – ρε)2 ≤
(

1 –
∫

Ω\Bδ (xε)
|∇uε|2 dx –

∫
B

Rr1/(1–γ )
ε

(xε)
|∇uε|2 dx

)

× (
log δ – log Rr1/(1–γ )

ε

)
. (67)
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Since cεuε → G in C1
loc(Ω\{0}), we obtain the conclusion through integrating by parts:

∫
Ω\Bδ (xε)

|∇uε|2 dx =
1
c2
ε

∫
Ω\Bδ (xε)

|∇Gε|2 dx

= –
1
c2
ε

(∫
Ω\Bδ (xε)

G�G dx +
∫

∂Bδ (xε)
G

∂G
∂ν

ds
)

= –
1
c2
ε

(
1

2π
log δ – A0 + oε(1) + oδ(1)

)
. (68)

Observe that ϑε → ϑ in C1
loc(R2 \ {0}), and

uε =
ϑε(x)

cε

+ cε in BRr1/(1–γ )
ε

(xε). (69)

A direct computation shows that

∫
BR(0)

|∇ϑ |2 dx =
∫ R

0

2π

4(1 – γ )2(1 + π
1–γ

|r|2(1–γ ))2 r–4γ dr

=
1

4π (1 – γ )
log

π

1 – γ
+

1
2π

log R –
1

4π (1 – γ )
+ O

(
1

R2(1–γ )

)
. (70)

Then it follows from (69) and (70) that

∫
B

Rr1/(1–γ )
ε

(xε)
|∇uε|2 dx =

1
c2
ε

∫
B

Rr1/(1–γ )
ε

(xε)

∣∣∇ϑε(x)
∣∣2 dx

=
1
c2
ε

(∫
BR(0)

∣∣∇ϑ(y)
∣∣2 dy + oε(1)

)

=
1

4πc2
ε(1 – γ )

log
π

1 – γ
+

1
2πc2

ε

log R –
1

4πc2
ε(1 – γ )

+
o(1)
c2
ε

.

This together with (62)–(64) and (68), we obtain

–2πA0 –
log(1 + π

1–γ
R2(1–γ ))

1 – γ
≤ –2 log R +

(1 – log λε

c2
ε

– log π
1–γ

)

2(1 – γ )
+ o(1).

Hence,

lim sup
ε→0

λε

c2
ε

≤ π

1 – γ
e4π (1–γ )A0+1.

In view of Lemma 7, we arrive at the conclusion

Λ4π (1–γ ) ≤ (
1 + g(0)

)∫
Ω

|x|–2γ dx +
π

1 – γ
e4π (1–γ )A0+1. (71)
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2.4 Completion of the proof of Theorem 1
As a consequence, if cε → ∞, it follows from (71) that Λ4π (1–γ ) is bounded. Otherwise, we
can find the extremal function u0 which satisfies (17). Therefore, necessarily

sup
u∈W 1,2

0 (Ω),‖∇u‖2≤1

∫
Ω

(
1 + g(u)

)e4π (1–γ )u2

|x|2γ
dx < ∞.

3 Proof of Theorem 2
3.1 Test function computation
Similar to [30], we construct a blow-up sequence φε ∈ W 1,2

0 (Ω) with ‖∇φε‖2 = 1. For suf-
ficiently small ε > 0, there exists

∫
Ω

|x|–2γ
(
1 + g(φε)

)
e4π (1–γ )φ2

ε dx >
(
1 + g(0)

)∫
Ω

|x|–2γ dx +
π

1 – γ
e4π (1–γ )A0+1. (72)

Then we will find (72) is a contradiction to (71), so that cε has to be bounded, which means
the blow-up cannot take place. Furthermore, Theorem 2 follows immediately from what
we have proved according to the elliptic estimates. For this purpose we set

φε(x) =

⎧⎪⎪⎨
⎪⎪⎩

c + 1
c (– 1

4π (1–γ ) log(1 + π
1–γ

|x|2(1–γ )

ε2(1–γ ) ) + b), for x ∈ BRε ,
G–ξη

c , for x ∈ B2Rε \BRε ,
G
c , for x ∈ Ω \B2Rε ,

(73)

where η ∈ C1
0(B2Rε) is a cut-off function satisfying η = 1 on BRε , and |∇η| ≤ 2

Rε
. And G is

given as in (56). b and c are constants which depend only on ε, to be determined later. To
ensure φε ∈ W 1,2

0 (Ω), we let

c +
1
c

(
–

1
4π (1 – γ )

log

(
1 +

π

1 – γ

|x|2(1–γ )

ε2(1–γ )

)
+ b

)
=

1
c

(
–

1
2π

log Rε + A0

)
,

which leads to

2πc2 = – log ε – 2πb + 2πA0 +
1

2(1 – γ )
log

π

1 – γ
+ O

(
1

R2(1–γ )

)
. (74)

Now we calculate

∫
BRε

|∇φε|2 dx =
∫
BR

|x|2–4γ

4c2(1 – γ )2(1 + π
1–γ

|x|2–4γ )2 dx

=
∫ π

1–γ R2–2γ

0

t dt
4πc2(1 – γ )(1 + t)2 dt

=
1

4πc2(1 – γ )

(
log

π

1 – γ
– 1 + log R2–2γ + O

(
1

R2–2γ

))
. (75)
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On the other hand
∫

Ω\BRε

|∇φε|2 dx =
1
c2

(∫
Ω\BRε

|∇G|2 dx +
∫
B2Rε\BRε

∣∣∇(ξη)
∣∣2 dx

– 2
∫
B2Rε\BRε

∇G∇(ξη) dx
)

=
1
c2

(
–

∫
Ω\BRε

G�G dx –
∫

∂BRε

G
∂G
∂ν

ds

+
∫
B2Rε\BRε

∣∣∇(ξη)
∣∣2 dx – 2

∫
B2Rε\BRε

∇G∇(ξη) dx
)

.

Observe that ξ (x) = O(|x|) as x → 0. Since η is a cut-off function, it yields |∇(ξη)| = O(1)
as ε → 0. Then we have

∫
B2Rε\BRε

∣∣∇(ξη)
∣∣2 dx = O

(
R2ε2),

∫
B2Rε\BRε

∇G∇(ξη) dx = O(Rε),

which together with (56) leads to

∫
Ω\BRε

|∇φε|2 dx =
1
c2

(
–

1
2π

log(Rε) + A0 + O(Rε)
)

. (76)

Combining (75) and (76), a delicate but straightforward calculation shows

∫
Ω

|∇φε|2 dx =
1
c2

(
–

log ε

2π
–

1
4π (1 – γ )

+
1

4π (1 – γ )
log

π

1 – γ
+ A0 + O

(
1

R2–2γ

))
.

Put ‖∇φε‖2 = 1. It yields

c2 = A0 –
1

2π
log ε +

1
4π (1 – γ )

log
π

1 – γ
–

1
4π (1 – γ )

+ O
(

1
R2–2γ

)
. (77)

Together with (74) and (77), we are led to

b =
1

4π (1 – γ )
+ O

(
1

R2–2γ

)
. (78)

For all x ∈ BRε , it follows from (77) and (78) that

4π (1 – γ )φ2
ε ≥ 4π (1 – γ )c2 + 8π (1 – γ )b – 2 log

(
1 +

π |x|2(1–γ )

(1 – γ )ε2(1–γ )

)

= 1 + 4π (1 – γ )A0 + log
π

1 – γ
– 2(1 – γ ) log ε

– 2 log

(
1 +

π |x|2(1–γ )

(1 – γ )ε2(1–γ )

)
+ O

(
1

R2–2γ

)
. (79)

Note that ‖ φε (x)
c ‖L∞(BRε) → 1 by passing to the limit ε → 0. When r ≤ Rε, there exists

∣∣∣∣φε(x)
c

∣∣∣∣ =
∣∣∣∣1 +

– log(1 + π r2

ε2 ) + b
c2

∣∣∣∣ → 1.
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as ε → 0. Since φε(x) ∼ c in BRε and g(c) = o( 1
c2 ), we conclude g(φε(ξε)) = o( 1

c2 ) as ε → 0,
where ξε ∈ BRε . Combining with the mean value theorem, it follows from (79) that

∫
BRε

(
1 + g(φε)

)e4π (1–γ )φ2
ε

|x|2γ
dx =

(
1 + g

(
φε(ξε)

))∫
BRε

e4π (1–γ )φ2
ε

|x|2γ
dx

≥
(

1 + o
(

1
c2

))
π

1 – γ
e1+4π (1–γ )A0+O( 1

R2–2γ )

×
∫ R

0

2πr1–2γ

(1 + π
1–γ

r2–2γ )2 dr

=
π

(1 – γ )
e1+4π (1–γ )A0 + O

(
1

R2–2γ

)
+ o

(
1
c2

)
. (80)

Furthermore, G
cε ≥ 0 a.e. in Ω \BRε , by using the inequality et ≥ t + 1, ∀t ≥ 0, we estimate

∫
Ω\BRε

(
1 + g(φε)

)e4π (1–γ )φ2
ε

|x|2γ
dx

≥
∫

Ω\B2Rε

(
1 + g(φε)

)1 + 4π (1 – γ )φ2
ε

|x|2γ
dx

≥
∫

Ω

(
1 + g(0)

)|x|–2γ dx + O
(
(Rε)2–2γ log2(Rε)

)

+
4π (1 – γ )

c2

∫
Ω

(
1 + g(0)

)|x|–2γ G2 dx + O
(
(Rε)2–2γ

)
. (81)

Observe that

O
(
(Rε)2–2γ

)
= O

(
(Rε)2–2γ log2(Rε)

)
= O

(
1

R2–2γ

)
.

This together with (80) and (81) yields

∫
Ω

(
1 + g(φε)

)e4π (1–γ )φ2
ε

|x|2γ
dx

≥ (
1 + g(0)

)∫
Ω

|x|–2γ dx +
π

(1 – γ )
e4π (1–γ )A0+1

+
4π (1 – γ )

c2

∫
Ω

(1 + g(0))G2

|x|2γ
dx + O

(
1

R2–2γ

)
+ o

(
1
c2

)
. (82)

Recalling (77) and the choice R = – log ε1/(1–γ ), one can deduce that 1
R2–2γ = o( 1

c2 ). There-
fore, we conclude from (82) that

∫
Ω

(
1 + g(φε)

)e4π (1–γ )φ2
ε

|x|2γ
dx >

(
1 + g(0)

)∫
Ω

|x|–2γ dx +
π

1 – γ
e4π (1–γ )A0+1.

for sufficiently small ε > 0.
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3.2 Completion of the proof of Theorem 2
Comparing (71) with (72), we arrive at the final conclusion that cε must be bounded. Then
applying elliptic estimates to (16), we can get the desired extremal function. This ends the
proof of Theorem 2.
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