Skip to main content

On Gardner–Hartenstine’s inequality

Abstract

In the paper, we give a new generalization of Gardner–Hartenstine inequality and establish its integral form. As applications, we combine an important inequality and give some broader improvements.

1 Introduction

In [1], Gardner and Hartenstine established an interesting inequality. This inequality is crucial in their proof (as it was in [2]).

Theorem A

For \(x_{0}, y_{0}>0\) and reals \(x_{i}\), \(y _{i}\), \(i = 1,\ldots ,n\), we have

$$ \frac{ (\sum_{i=1}^{n}(x_{i}+y_{i})^{2} )^{(n-1)/2}}{(x _{0}+y_{0})^{n-2}} \leq \frac{ (\sum_{i=1}^{n}x_{i}^{2} ) ^{(n-1)/2}}{x_{0}^{n-2}}+ \frac{ (\sum_{i=1}^{n}y_{i}^{2} ) ^{(n-1)/2}}{y_{0}^{n-2}}, $$
(1.1)

with equality if and only if either \(x_{i}=y_{i}=0\) for \(i=1,2,\ldots ,n\) or \(x_{i}=\alpha y_{i}\) for \(i=0,1,\ldots ,n\), and some \(\alpha >0\).

The first aim of this paper is to give a new generalization of the Gardner–Hartenstine inequality (1.1). Our result is given in the following theorem.

Theorem 1.1

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}(x_{ij}+y_{ij})^{r} ) ^{1/r}}{(x_{00}+y_{00})^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{1/r}}{x_{00}^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{1/r}}{y_{00}^{1/q}} \biggr)^{p}, $$
(1.2)

with equality if and only if either \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\), \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y_{ij}\) for \(i=0,1,\ldots ,n\), \(j=0,1, \ldots ,m\), and some \(\alpha >0\).

Remark 1.2

Let \(x_{ij}\) and \(y_{ij}\) change \(x_{i}\) and \(y_{i}\), respectively, with appropriate transformation, and putting \(m=1\), \(r=2\), \(p=n-1\), and \(q=(n-1)/(n-2)\) in (1.2), (1.2) becomes (1.1).

Another aim of this paper is to give an integral form of (1.2). Our result is given in the following theorem.

Theorem 1.3

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y)>0\) and \(f(x,y)\), \(g(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$ \begin{aligned}[b] &\biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}(f(x,y)+g(x,y))^{r}\,dx \,dy ) ^{1/r}}{(u(x,y)+v(x,y))^{1/q} } \biggr)^{p}\\ &\quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{1/r}}{u(x,y)^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)^{p}, \end{aligned} $$
(1.3)

with equality if and only if either \((\|f(x,y)\|_{r}^{r},\| g(x,y) \|_{r}^{r} )=\alpha (\|u(x,y)\|_{r}^{r},\|v(x,y)\|_{r}^{r} )\) for some \(\alpha >0\) or \(\|f(x,y)\|_{r}^{r}=\|g(x,y)\|_{r}^{r}=0\).

Let \(f(x,y)\) and \(g(x,y)\) change \(f(x)\) and \(g(x)\), respectively, with appropriate transformation, and putting \(r=2\), \(p=n-1\) and \(q=(n-1)/(n-2)\) in (1.3), (1.3) becomes the following result.

Corollary 1.4

If \(u(x), v(x)>0\) and \(f(x)\), \(g(x)\) are continuous functions on \([a,b]\), then

$$ \frac{ (\int _{a}^{b}(f(x)+g(x))^{2}\,dx )^{(n-1)/2}}{(u(x)+v(x))^{n-2} }\leq \frac{ (\int _{a}^{b}f(x)^{2}\,dx )^{(n-1)/2}}{u(x)^{n-2}}+ \frac{ (\int _{a}^{b}g(x)^{2}\,dx )^{(n-1)/2}}{v(x)^{n-2}}, $$
(1.4)

with equality if and only if either \(\|f(x)\|_{r}^{r}=\|g(x)\|_{r} ^{r}=0\) or \((\|f(x)\|_{r}^{r},\| g(x)\|_{r}^{r} )=\alpha (\|u(x)\|_{r}^{r}, \|v(x)\|_{r}^{r} )\) for some \(\alpha >0\).

This is just an integral form of (1.1) established by Gardner and Hartenstine [1].

As applications, we combine another important inequality and give some broader improvements. Our results are given in the following theorems.

Theorem 1.5

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}, a_{00}, b_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(a_{ij}\), \(b_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$\begin{aligned}& \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}[(x_{ij}+y_{ij})^{r}+(a_{ij}+b _{ij})^{r}] )^{p}}{ [ (x_{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00} ^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \end{aligned}$$
(1.5)

with equality if and only if either \(x_{ij}=y_{ij}=0\) and \(a_{ij}=b _{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y _{ij}\) and \(a_{ij}=\beta b_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1, \ldots ,m\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x _{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{p/r}}{y_{00}^{p/q}} \biggr): \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1} ^{n}a_{ij}^{r} )^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1} ^{m}\sum_{i=1}^{n}b_{ij}^{r} )^{p/r}}{b_{00}^{p/q}} \biggr) \\& \quad =(x_{00}+y_{00}):(a_{00}+b_{00}). \end{aligned}$$

Theorem 1.6

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y), u'(x,y), v'(x,y)>0\) and \(f(x,y)\), \(g(x,y)\), \(f'(x,y)\), \(g'(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$\begin{aligned}& \frac{ (\int _{a}^{b}\int _{c}^{d}[(f(x,y)+g(x,y))^{r}+(f'(x,y)+g'(x,y))^{r}]\,dx \,dy ) ^{p}}{ [ (u(x,y)+v(x,y) )^{r}+ (u'(x,y)+v'(x,y) ) ^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d} f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad {} + \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \end{aligned}$$
(1.6)

with equality if and only if either \(f(x,y)=g(x,y)=0\) and \(f'(x,y)=g'(x,y)=0\) or \((f(x,y), g(x,y))=\alpha (u(x,y),v(x,y))\) and \((f'(x,y),g'(x,y))=\beta (u'(x,y),v'(x,y))\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy )^{p/r}}{v(x,y)^{p/q}} \biggr) \\& \qquad{} : \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r} ) ^{p/r}}{v'(x,y)^{p/q}} \biggr) \\& \quad =\bigl(u(x,y)+v(x,y)\bigr):\bigl(u'(x,y)+v'(x,y) \bigr). \end{aligned}$$

2 Generalizations

Our main results are given in the following theorems.

Theorem 2.1

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}(x_{ij}+y_{ij})^{r} ) ^{1/r}}{(x_{00}+y_{00})^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{1/r}}{x_{00}^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{1/r}}{y_{00}^{1/q}} \biggr)^{p}, $$
(2.1)

with equality if and only if either \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\), \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y_{ij}\) for \(i=0,1,\ldots ,n\), \(j=0,1, \ldots ,m\), and some \(\alpha >0\).

Proof

From Minkowski’s and Hölder’s inequalities, we obtain

$$\begin{aligned} \Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(x_{ij}+y_{ij})^{r} \Biggr)^{1/r} \leq & \Biggl(\sum_{j=1}^{m} \sum_{i=1}^{n}x_{ij}^{r} \Biggr)^{1/r}+ \Biggl(\sum_{j=1}^{m} \sum_{i=1}^{n}y_{ij}^{r} \Biggr)^{1/r} \\ =& \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{1/r}}{x_{00}^{1/q}} \biggr)x_{00}^{1/q} + \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{1/r}}{y_{00}^{1/q}} \biggr)y _{00}^{1/q} \\ \leq & \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} )^{1/r}}{x_{0}^{1/q}} \biggr)^{p}+ \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{1/r}}{y_{00}^{1/q}} \biggr) ^{p} \biggr\} ^{1/p} \\ &{}\times \bigl(\bigl(x_{00}^{1/q}\bigr)^{q}+ \bigl(y_{00}^{1/q}\bigr)^{q} \bigr)^{1/q} \\ =& \biggl\{ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ijj} ^{r} )^{p/r}}{y_{00}^{p/q}} \biggr\} ^{1/p} (x_{00}+y_{00} ) ^{1/q}. \end{aligned}$$

Rearranging, (2.1) follows.

The following is a discussion of the conditions for this equal sign to hold. Suppose that equality holds in (2.1). Then equality holds in Minkowski’s inequality, which implies that \(x_{ij}=\alpha y_{ij}\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) and some \(\alpha \geq 0\). Equality also holds in Hölder’s inequality, implying that there are constants β and γ with \(\beta ^{2}+\gamma ^{2}>0\) such that

$$ \beta \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{1/r}}{x_{00}^{1/q}} \biggr)^{p} =\gamma \bigl(x_{00}^{1/q}\bigr)^{q}, $$

or equivalently

$$ \beta \Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}x_{ij}^{r} \Biggr)^{p/r}= \gamma x_{00}^{p}, $$

and the same equation with \(y_{ij}\) instead of \(x_{ij}\), \(i=0,1,\ldots ,n\); \(j=0,1,\ldots ,m\). Therefore

$$\begin{aligned} \gamma x_{00}^{p} =&\beta \Biggl(\sum _{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} \Biggr)^{p/r} \\ =&\beta \Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(\alpha y_{ij})^{r} \Biggr) ^{p/r} \\ =&\gamma (\alpha y_{00})^{p}. \end{aligned}$$

Obviously, if \(\gamma =0\), then \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\); \(j=1,\ldots ,m\). If \(\gamma \neq 0\), then \(\alpha >0\) and \(x_{ij}= \alpha y_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1,\ldots ,m\).

This proof is complete. □

Let \(x_{ij}\) become \(x_{i}\) with appropriate transformation, and \(m=1\), (2.2) reduces to the following result.

Corollary 2.2

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{0}, y_{0}>0\) and reals \(x_{i}\), \(y_{i}\), \(i=1,2,\ldots ,n\), then

$$ \biggl(\frac{ (\sum_{i=1}^{n}(x_{i}+y_{i})^{r} )^{1/r}}{(x _{0}+y_{0})^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\sum_{i=1} ^{n}x_{i}^{r} )^{1/r}}{x_{0}^{1/q}} \biggr)^{p}+ \biggl(\frac{ (\sum_{i=1}^{n}y_{i}^{r} )^{1/r}}{y_{0}^{1/q}} \biggr) ^{p}, $$

with equality if and only if either \(x_{i}=y_{i}=0\) for \(i=1,\ldots ,n\) or \(x_{i}=\alpha y_{i}\) for \(i=0,1,\ldots ,n\), for some \(\alpha >0\).

Theorem 2.3

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y)>0\) and \(f(x,y)\), \(g(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$ \begin{aligned}[b] &\biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}(f(x,y)+g(x,y))^{r}\,dx \,dy ) ^{1/r}}{(u(x,y)+v(x,y))^{1/q} } \biggr)^{p}\\ &\quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{1/r}}{u(x,y)^{1/q}} \biggr) ^{p}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)^{p}, \end{aligned} $$
(2.2)

with equality if and only if either \((\|f(x,y)\|_{r}^{r},\| g(x,y) \|_{r}^{r} )=\alpha (\|u(x,y)\|_{r}^{r},\|v(x,y)\|_{r}^{r} )\) for some \(\alpha >0\) or \(\|f(x,y)\|_{r}^{r}=\|g(x,y)\|_{r}^{r}=0\).

Proof

From Minkowski’s and Hölder’s integral inequalities, we obtain

$$\begin{aligned}& \biggl( \int _{a}^{b} \int _{c}^{d}\bigl(f(x,y)+g(x,y) \bigr)^{r}\,dx \,dy \biggr)^{1/r} \\& \quad \leq \biggl( \int _{a}^{b} \int _{c}^{d}f(x,y)^{r}\,dx \,dy \biggr)^{1/r}+ \biggl( \int _{a}^{b} \int _{c}^{d}g(x,y)^{r}\,dx \,dy \biggr)^{1/r} \\& \quad = \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{1/r}}{u(x,y)^{1/q}} \biggr)u(x,y)^{1/q} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r} \,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)v(x,y)^{1/q} \\& \quad \leq \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{1/r}}{u(x,y)^{1/q}} \biggr)^{p} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{1/r}}{v(x,y)^{1/q}} \biggr)^{p} \biggr\} ^{1/p} \\& \qquad {}\times \bigl(\bigl(u(x,y) ^{1/q}\bigr)^{q}+ \bigl(v(x,y)^{1/q}\bigr)^{q} \bigr)^{1/q} \\& \quad = \biggl\{ \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr\} ^{1/p} \\& \qquad {}\times \bigl(u(x,y)+v(x,y) \bigr)^{1/q}. \end{aligned}$$

Rearranging, (2.2) follows.

The following is a discussion of the conditions for this equal sign to hold. Suppose that equality holds in (2.2). Then equality holds in Minkowski’s inequality, which implies that \(f(x,y)=\alpha g(x,y)\) and some \(\alpha \geq 0\). Equality also holds in Hölder’s inequality, implying that there are constants β and γ with \(\beta ^{2}+\gamma ^{2}>0\) such that

$$ \beta \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx ) ^{1/r}}{u(x,y)^{1/q}} \biggr)^{p}=\gamma \bigl(u(x,y)^{1/q}\bigr)^{q}, $$

or equivalently

$$ \beta \biggl( \int _{a}^{b} \int _{c}^{d}f(x,y)^{r}\,dx \,dy \biggr)^{p/r}= \gamma u(x,y)^{p}, $$

and the same equation with \(g(x,y)\) instead of \(f(x,y)\). Therefore

$$\begin{aligned} \gamma u(x,y)^{p} =&\beta \biggl( \int _{a}^{b} \int _{c}^{d}f(x,y)^{r}\,dx \,dy \biggr) ^{p/r} \\ =&\beta \biggl( \int _{a}^{b} \int _{c}^{d}\bigl(\alpha g(x,y) \bigr)^{r}\,dx \,dy \biggr) ^{p/r} \\ =&\gamma \bigl(\alpha v(x,y)\bigr)^{p}. \end{aligned}$$

Obviously, if \(\gamma =0\), then \(\|f(x,y)\|_{r}^{r}=\|g(x,y)\|_{r} ^{r}=0\). If \(\gamma \neq 0\), then \(\alpha >0\) and \((\|f(x,y)\| _{r}^{r}, \| g(x,y)\|_{r}^{r} )=\alpha (\|u(x,y)\|_{r}^{r},\|v(x,y) \|_{r}^{r} )\).

This proof is complete. □

Let \(f(x,y)\) become \(f(x)\) with appropriate transformation, (2.2) reduces to the following result.

Corollary 2.4

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x), v(x)>0\) and \(f(x)\), \(g(x)\) are continuous functions on \([a,b]\), then

$$ \biggl(\frac{ (\int _{a}^{b}(f(x)+g(x))^{r}\,dx )^{1/r}}{(u(x)+v(x))^{1/q} } \biggr)^{p}\leq \biggl(\frac{ (\int _{a}^{b}f(x)^{r}\,dx ) ^{1/r}}{u(x)^{1/q}} \biggr)^{p}+ \biggl(\frac{ (\int _{a}^{b}g(x)^{r}\,dx ) ^{1/r}}{v(x)^{1/q}} \biggr)^{p}, $$
(2.3)

with equality if and only if either \(\|f(x)\|_{r}^{r}=\|g(x)\|_{r} ^{r}=0\) or \((\|f(x)\|_{r}^{r},\| g(x)\|_{r}^{r} )=\alpha (\|u(x)\|_{r}^{r}, \| v(x)\|_{r}^{r} )\) for some \(\alpha >0\).

3 Improvements

We need the following lemma to prove our main results.

Lemma 3.1

([3] p.39)

If \(a_{i}\geq 0\), \(b_{i}>0\), \(i=1, \ldots ,m\), and \(\sum_{i=1}^{m}\alpha _{i}=1\), then

$$ \Biggl(\prod_{i=1}^{m}(a_{i}+b_{i}) \Biggr)^{\alpha _{i}}\geq \Biggl(\prod_{i=1}^{m}a_{i} \Biggr)^{\alpha _{i}} + \Biggl(\prod_{i=1}^{m}b_{i} \Biggr) ^{\alpha _{i}}, $$
(3.1)

with equality if and only if \(a_{1}/b_{1}=\cdots =a_{m}/b_{m}\).

Theorem 3.2

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(x_{00}, y_{00}, a_{00}, b_{00}>0\) and reals \(x_{ij}\), \(y_{ij}\), \(a_{ij}\), \(b_{ij}\), \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,m\), then

$$\begin{aligned}& \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}[(x_{ij}+y_{ij})^{r}+(a_{ij}+b _{ij})^{r}] )^{p}}{ [ (x_{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00} ^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \end{aligned}$$
(3.2)

with equality if and only if either \(x_{ij}=y_{ij}=0\) and \(a_{ij}=b _{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y _{ij}\) and \(a_{ij}=\beta b_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1, \ldots ,m\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x _{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{p/r}}{y_{00}^{p/q}} \biggr): \biggl( \frac{ (\sum_{j=1}^{m}\sum_{i=1} ^{n}a_{ij}^{r} )^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1} ^{m}\sum_{i=1}^{n}b_{ij}^{r} )^{p/r}}{b_{00}^{p/q}} \biggr) \\& \quad =(x_{00}+y_{00}):(a_{00}+b_{00}). \end{aligned}$$

Proof

From (2.1), we have

$$ \begin{aligned}[b] &\Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(x_{ij}+y_{ij})^{r} \Biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} ) ^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij} ^{r} )^{p/r}}{y_{00}^{p/q}} \biggr\} ^{1/p} (x_{00}+y_{00} ) ^{1/q}, \end{aligned} $$
(3.3)

with equality if and only if either \(x_{ij}=y_{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(x_{ij}=\alpha y_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1,\ldots ,m\) and some \(\alpha >0\), and

$$ \begin{aligned}[b] &\Biggl(\sum_{j=1}^{m}\sum _{i=1}^{n}(a_{ij}+b_{ij})^{r} \Biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr\} ^{1/p} (a_{00}+b_{00} ) ^{1/q}, \end{aligned} $$
(3.4)

with equality if and only if either \(a_{ij}=b_{ij}=0\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m\) or \(a_{ij}=\alpha b_{ij}\) for \(i=0,1,\ldots ,n\) and \(j=0,1,\ldots ,m\) and some \(\alpha >0\).

From (3.1), (3.3), and (3.4), we obtain

$$\begin{aligned}& \sum_{j=1}^{m}\sum _{i=1}^{n}\bigl[(x_{ij}+y_{ij})^{r}+(a_{ij}+b_{ij})^{r} \bigr] \\& \quad \leq \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00}^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl( (x_{00}+y_{00} )^{r} \bigr)^{1/q} \\& \qquad {}+ \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl( (a _{00}+b_{00} )^{r} \bigr)^{1/q} \\& \quad \leq \biggl\{ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij} ^{r} )^{p/r}}{x_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} )^{p/r}}{y_{00}^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl[ (x _{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} \bigr]^{1/q}. \end{aligned}$$

Hence

$$\begin{aligned} \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}[(x_{ij}+y_{ij})^{r}+(a_{ij}+b _{ij})^{r}] )^{p}}{ [ (x_{00}+y_{00} )^{r}+ (a_{00}+b_{00} )^{r} ]^{p/q}} \leq & \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}x_{ij}^{r} )^{p/r}}{x_{00} ^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}y_{ij}^{r} ) ^{p/r}}{y_{00}^{p/q}} \biggr)^{r} \\ &{}+ \biggl(\frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}a_{ij}^{r} ) ^{p/r}}{a_{00}^{p/q}}+ \frac{ (\sum_{j=1}^{m}\sum_{i=1}^{n}b_{ij} ^{r} )^{p/r}}{b_{00}^{p/q}} \biggr)^{r}. \end{aligned}$$

From the equality conditions of (3.3), (3.4), and (3.1), we easily get the equality in (3.2). □

Remark 3.3

Let \(a_{ij}=b_{ij}=0\), (3.2) becomes a similar form of (2.1). Putting \(x_{ij}=a_{ij}\), \(y_{ij}=b_{ij}\) in (3.2), where \(i=0,1,\ldots,n\) and \(j=0,1,\ldots,m\), (3.2) reduces to (2.1).

Theorem 3.4

For \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(r>1\). If \(u(x,y), v(x,y), u'(x,y), v'(x,y)>0\) and \(f(x,y)\), \(g(x,y)\), \(f'(x,y)\), \(g'(x,y)\) are continuous functions on \([a,b]\times [c,d]\), then

$$\begin{aligned}& \frac{ (\int _{a}^{b}\int _{c}^{d}[(f(x,y)+g(x,y))^{r}+(f'(x,y)+g'(x,y))^{r}]\,dx \,dy ) ^{p}}{ [ (u(x,y)+v(x,y) )^{r}+ (u'(x,y)+v'(x,y) ) ^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d} f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad{} + \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \end{aligned}$$
(3.5)

with equality if and only if either \(f(x,y)=g(x,y)=0\) and \(f'(x,y)=g'(x,y)=0\) or \((f(x,y), g(x,y))=\alpha (u(x,y),v(x,y))\) and \((f'(x,y), g'(x,y))=\beta (u'(x,y),v'(x,y))\) and some \(\alpha , \beta >0\), and

$$\begin{aligned}& \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy )^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy )^{p/r}}{v(x,y)^{p/q}} \biggr)\\& \qquad {}: \biggl( \frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r} ) ^{p/r}}{v'(x,y)^{p/q}} \biggr) \\& \quad =\bigl(u(x,y)+v(x,y)\bigr):\bigl(u'(x,y)+v'(x,y) \bigr). \end{aligned}$$

Proof

From (2.1), we have

$$\begin{aligned} &\biggl( \int _{a}^{b} \int _{c}^{d}\bigl(f(x,y)+g(x,y) \bigr)^{r}\,dx \,dy \biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr\} ^{1/p} \\ &\qquad {}\times \bigl(u(x,y)+v(x,y) \bigr)^{1/q}, \end{aligned}$$
(3.6)

with equality if and only if either \(f(x,y)=g(x,y)=0\) or \((f(x,y),g(x,y))= \alpha (u(x,y),v(x,y)) \) for some \(\alpha >0\). And

$$\begin{aligned} &\biggl( \int _{a}^{b} \int _{c}^{d}\bigl(f'(x,y)+g'(x,y) \bigr)^{r}\,dx \,dy \biggr)^{1/r} \\ &\quad \leq \biggl\{ \frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr\} ^{1/p} \\ &\qquad {}\times \bigl(u'(x,y)+v'(x,y) \bigr)^{1/q}, \end{aligned}$$
(3.7)

with equality if and only if either \(f'(x,y)=g'(x,y)=0\) or \((f'(x,y),g'(x,y))= \beta (u'(x,y),v'(x,y))\) and for some \(\beta >0\),

From (3.1), (3.6), and (3.7), we obtain

$$\begin{aligned}& \int _{a}^{b} \int _{c}^{d}\bigl[\bigl(f(x,y)+g(x,y) \bigr)^{r}+\bigl(f'(x,y)+g'(x,y) \bigr)^{r}\bigr]\,dx \,dy \\& \quad \leq \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \bigl( \bigl(u(x,y)+v(x,y) \bigr) ^{r} \bigr)^{1/q} \\& \qquad {}+ \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \biggr\} ^{1/p}\\& \qquad {}\times \bigl( \bigl(u'(x,y)+v'(x,y) \bigr) ^{r} \bigr)^{1/q} \\& \quad \leq \biggl\{ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r} \biggr\} ^{1/p} \\& \qquad {}\times \bigl[ \bigl(u(x,y)+v(x,y) \bigr)^{r}+ \bigl(u'(x,y)+v'(x,y) \bigr) ^{r} \bigr]^{1/q}. \end{aligned}$$

Hence

$$\begin{aligned}& \frac{ (\int _{a}^{b}\int _{c}^{d}[(f(x,y)+g(x,y))^{r}+(f'(x,y)+g'(x,y))^{r}]\,dx \,dy ) ^{p}}{ [ (u(x,y)+v(x,y) )^{r}+ (u'(x,y)+v'(x,y) ) ^{r} ]^{p/q}} \\& \quad \leq \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d} f(x,y)^{r}\,dx \,dy ) ^{p/r}}{u(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g(x,y)^{r}\,dx \,dy ) ^{p/r}}{v(x,y)^{p/q}} \biggr)^{r} \\& \qquad {}+ \biggl(\frac{ (\int _{a}^{b}\int _{c}^{d}f'(x,y)^{r}\,dx \,dy ) ^{p/r}}{u'(x,y)^{p/q}}+ \frac{ (\int _{a}^{b}\int _{c}^{d}g'(x,y)^{r}\,dx \,dy ) ^{p/r}}{v'(x,y)^{p/q}} \biggr)^{r}. \end{aligned}$$

From the equality conditions of (3.6), (3.7), and (3.1), we easily get the equality in (3.2). □

Remark 3.5

Let \(f'(x,y)=g'(x,y)=0\), (3.3) becomes a similar form of (2.2). Putting \(f(x,y)=f'(x,y)\), \(g(x,y)=g'(x,y)\), \(u(x,y)=u'(x,y)\) and \(v(x,y)=v'(x,y)\) in (3.5), (3.5) reduces to (2.2).

References

  1. Gardner, R.J., Hartenstine, D.: Capacities, surface area, and radial sums. Adv. Math. 221, 601–626 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bandle, C., Marcus, M.: Radial averaging transformations and generalized capacities. Math. Z. 145, 11–17 (1975)

    Article  MathSciNet  Google Scholar 

  3. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Univ. Press, Cambridge (1934)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author expresses his gratitude to professor W. Li for their valuable help.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Funding

The first author’s research is supported by the Natural Science Foundation of China (11371334, 10971205). The second author’s research is partially supported by a HKU Seed Grant for Basic Research.

Author information

Authors and Affiliations

Authors

Contributions

C-JZ and W-SC jointly contributed to the main results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chang-Jian Zhao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CJ., Cheung, WS. On Gardner–Hartenstine’s inequality. J Inequal Appl 2019, 161 (2019). https://doi.org/10.1186/s13660-019-2109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2109-4

MSC

Keywords