
Zhao and Cheung Journal of Inequalities and Applications        (2019) 2019:161 
https://doi.org/10.1186/s13660-019-2109-4

R E S E A R C H Open Access

On Gardner–Hartenstine’s inequality
Chang-Jian Zhao1* and Wing-Sum Cheung2

*Correspondence:
chjzhao@163.com
1Department of Mathematics, China
Jiliang University, Hangzhou, P.R.
China
Full list of author information is
available at the end of the article

Abstract
In the paper, we give a new generalization of Gardner–Hartenstine inequality and
establish its integral form. As applications, we combine an important inequality and
give some broader improvements.

MSC: 26D15; 52A40

Keywords: Hölder’s inequality; Minkowski’s inequality; Gardner–Hartenstine’s
inequality

1 Introduction
In [1], Gardner and Hartenstine established an interesting inequality. This inequality is
crucial in their proof (as it was in [2]).

Theorem A For x0, y0 > 0 and reals xi, yi, i = 1, . . . , n, we have

(
∑n

i=1(xi + yi)2)(n–1)/2

(x0 + y0)n–2 ≤ (
∑n

i=1 x2
i )(n–1)/2

xn–2
0

+
(
∑n

i=1 y2
i )(n–1)/2

yn–2
0

, (1.1)

with equality if and only if either xi = yi = 0 for i = 1, 2, . . . , n or xi = αyi for i = 0, 1, . . . , n,
and some α > 0.

The first aim of this paper is to give a new generalization of the Gardner–Hartenstine
inequality (1.1). Our result is given in the following theorem.

Theorem 1.1 For p > 1, 1
p + 1

q = 1 and r > 1. If x00, y00 > 0 and reals xij, yij, i = 1, 2, . . . , n,
j = 1, 2, . . . , m, then

( (
∑m

j=1
∑n

i=1(xij + yij)r)1/r

(x00 + y00)1/q

)p

≤
( (

∑m
j=1

∑n
i=1 xr

ij)1/r

x1/q
00

)p

+
( (

∑m
j=1

∑n
i=1 yr

ij)1/r

y1/q
00

)p

, (1.2)

with equality if and only if either xij = yij = 0 for i = 1, . . . , n, j = 1, . . . , m or xij = αyij for
i = 0, 1, . . . , n, j = 0, 1, . . . , m, and some α > 0.

Remark 1.2 Let xij and yij change xi and yi, respectively, with appropriate transformation,
and putting m = 1, r = 2, p = n – 1, and q = (n – 1)/(n – 2) in (1.2), (1.2) becomes (1.1).
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Another aim of this paper is to give an integral form of (1.2). Our result is given in the
following theorem.

Theorem 1.3 For p > 1, 1
p + 1

q = 1 and r > 1. If u(x, y), v(x, y) > 0 and f (x, y), g(x, y) are
continuous functions on [a, b] × [c, d], then

( (
∫ b

a
∫ d

c (f (x, y) + g(x, y))r dx dy)1/r

(u(x, y) + v(x, y))1/q

)p

≤
( (

∫ b
a

∫ d
c f (x, y)r dx dy)1/r

u(x, y)1/q

)p

+
( (

∫ b
a

∫ d
c g(x, y)r dx dy)1/r

v(x, y)1/q

)p

, (1.3)

with equality if and only if either (‖f (x, y)‖r
r ,‖g(x, y)‖r

r) = α(‖u(x, y)‖r
r ,‖v(x, y)‖r

r) for some
α > 0 or ‖f (x, y)‖r

r = ‖g(x, y)‖r
r = 0.

Let f (x, y) and g(x, y) change f (x) and g(x), respectively, with appropriate transformation,
and putting r = 2, p = n–1 and q = (n–1)/(n–2) in (1.3), (1.3) becomes the following result.

Corollary 1.4 If u(x), v(x) > 0 and f (x), g(x) are continuous functions on [a, b], then

(
∫ b

a (f (x) + g(x))2 dx)(n–1)/2

(u(x) + v(x))n–2 ≤ (
∫ b

a f (x)2 dx)(n–1)/2

u(x)n–2 +
(
∫ b

a g(x)2 dx)(n–1)/2

v(x)n–2 , (1.4)

with equality if and only if either ‖f (x)‖r
r = ‖g(x)‖r

r = 0 or (‖f (x)‖r
r ,‖g(x)‖r

r) = α(‖u(x)‖r
r ,

‖v(x)‖r
r) for some α > 0.

This is just an integral form of (1.1) established by Gardner and Hartenstine [1].
As applications, we combine another important inequality and give some broader im-

provements. Our results are given in the following theorems.

Theorem 1.5 For p > 1, 1
p + 1

q = 1 and r > 1. If x00, y00, a00, b00 > 0 and reals xij, yij, aij, bij,
i = 1, 2, . . . , n, j = 1, 2, . . . , m, then

(
∑m

j=1
∑n

i=1[(xij + yij)r + (aij + bij)r])p

[(x00 + y00)r + (a00 + b00)r]p/q

≤
( (

∑m
j=1

∑n
i=1 xr

ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

)r

+
( (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

)r

(1.5)

with equality if and only if either xij = yij = 0 and aij = bij = 0 for i = 1, . . . , n and j = 1, . . . , m
or xij = αyij and aij = βbij for i = 0, 1, . . . , n and j = 0, 1, . . . , m and some α,β > 0, and

( (
∑m

j=1
∑n

i=1 xr
ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

)

:
( (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

)

= (x00 + y00) : (a00 + b00).
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Theorem 1.6 For p > 1, 1
p + 1

q = 1 and r > 1. If u(x, y), v(x, y), u′(x, y), v′(x, y) > 0 and f (x, y),
g(x, y), f ′(x, y), g ′(x, y) are continuous functions on [a, b] × [c, d], then

(
∫ b

a
∫ d

c [(f (x, y) + g(x, y))r + (f ′(x, y) + g ′(x, y))r] dx dy)p

[(u(x, y) + v(x, y))r + (u′(x, y) + v′(x, y))r]p/q

≤
( (

∫ b
a

∫ d
c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

)r

+
( (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r dx dy)p/r

v′(x, y)p/q

)r

(1.6)

with equality if and only if either f (x, y) = g(x, y) = 0 and f ′(x, y) = g ′(x, y) = 0 or (f (x, y),
g(x, y)) = α(u(x, y), v(x, y)) and (f ′(x, y), g ′(x, y)) = β(u′(x, y), v′(x, y)) and some α,β > 0, and

( (
∫ b

a
∫ d

c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

)

:
( (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r)p/r

v′(x, y)p/q

)

=
(
u(x, y) + v(x, y)

)
:
(
u′(x, y) + v′(x, y)

)
.

2 Generalizations
Our main results are given in the following theorems.

Theorem 2.1 For p > 1, 1
p + 1

q = 1 and r > 1. If x00, y00 > 0 and reals xij, yij, i = 1, 2, . . . , n,
j = 1, 2, . . . , m, then

( (
∑m

j=1
∑n

i=1(xij + yij)r)1/r

(x00 + y00)1/q

)p

≤
( (

∑m
j=1

∑n
i=1 xr

ij)1/r

x1/q
00

)p

+
( (

∑m
j=1

∑n
i=1 yr

ij)1/r

y1/q
00

)p

, (2.1)

with equality if and only if either xij = yij = 0 for i = 1, . . . , n, j = 1, . . . , m or xij = αyij for
i = 0, 1, . . . , n, j = 0, 1, . . . , m, and some α > 0.

Proof From Minkowski’s and Hölder’s inequalities, we obtain

( m∑

j=1

n∑

i=1

(xij + yij)r

)1/r

≤
( m∑

j=1

n∑

i=1

xr
ij

)1/r

+

( m∑

j=1

n∑

i=1

yr
ij

)1/r

=
( (

∑m
j=1

∑n
i=1 xr

ij)1/r

x1/q
00

)

x1/q
00 +

( (
∑m

j=1
∑n

i=1 yr
ij)1/r

y1/q
00

)

y1/q
00

≤
{( (

∑m
j=1

∑n
i=1 xr

ij)1/r

x1/q
0

)p

+
( (

∑m
j=1

∑n
i=1 yr

ij)1/r

y1/q
00

)p}1/p

× ((
x1/q

00
)q +

(
y1/q

00
)q)1/q

=
{ (

∑m
j=1

∑n
i=1 xr

ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ijj)p/r

yp/q
00

}1/p

(x00 + y00)1/q.

Rearranging, (2.1) follows.
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The following is a discussion of the conditions for this equal sign to hold. Suppose that
equality holds in (2.1). Then equality holds in Minkowski’s inequality, which implies that
xij = αyij for i = 1, . . . , n and j = 1, . . . , m and some α ≥ 0. Equality also holds in Hölder’s
inequality, implying that there are constants β and γ with β2 + γ 2 > 0 such that

β

( (
∑m

j=1
∑n

i=1 xr
ij)1/r

x1/q
00

)p

= γ
(
x1/q

00
)q,

or equivalently

β

( m∑

j=1

n∑

i=1

xr
ij

)p/r

= γ xp
00,

and the same equation with yij instead of xij, i = 0, 1, . . . , n; j = 0, 1, . . . , m. Therefore

γ xp
00 = β

( m∑

j=1

n∑

i=1

xr
ij

)p/r

= β

( m∑

j=1

n∑

i=1

(αyij)r

)p/r

= γ (αy00)p.

Obviously, if γ = 0, then xij = yij = 0 for i = 1, . . . , n; j = 1, . . . , m. If γ �= 0, then α > 0 and
xij = αyij for i = 0, 1, . . . , n and j = 0, 1, . . . , m.

This proof is complete. �

Let xij become xi with appropriate transformation, and m = 1, (2.2) reduces to the fol-
lowing result.

Corollary 2.2 For p > 1, 1
p + 1

q = 1 and r > 1. If x0, y0 > 0 and reals xi, yi, i = 1, 2, . . . , n, then

(
(
∑n

i=1(xi + yi)r)1/r

(x0 + y0)1/q

)p

≤
(

(
∑n

i=1 xr
i )1/r

x1/q
0

)p

+
(

(
∑n

i=1 yr
i )1/r

y1/q
0

)p

,

with equality if and only if either xi = yi = 0 for i = 1, . . . , n or xi = αyi for i = 0, 1, . . . , n, for
some α > 0.

Theorem 2.3 For p > 1, 1
p + 1

q = 1 and r > 1. If u(x, y), v(x, y) > 0 and f (x, y), g(x, y) are
continuous functions on [a, b] × [c, d], then

( (
∫ b

a
∫ d

c (f (x, y) + g(x, y))r dx dy)1/r

(u(x, y) + v(x, y))1/q

)p

≤
( (

∫ b
a

∫ d
c f (x, y)r dx dy)1/r

u(x, y)1/q

)p

+
( (

∫ b
a

∫ d
c g(x, y)r dx dy)1/r

v(x, y)1/q

)p

, (2.2)

with equality if and only if either (‖f (x, y)‖r
r ,‖g(x, y)‖r

r) = α(‖u(x, y)‖r
r ,‖v(x, y)‖r

r) for some
α > 0 or ‖f (x, y)‖r

r = ‖g(x, y)‖r
r = 0.
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Proof From Minkowski’s and Hölder’s integral inequalities, we obtain

(∫ b

a

∫ d

c

(
f (x, y) + g(x, y)

)r dx dy
)1/r

≤
(∫ b

a

∫ d

c
f (x, y)r dx dy

)1/r

+
(∫ b

a

∫ d

c
g(x, y)r dx dy

)1/r

=
( (

∫ b
a

∫ d
c f (x, y)r dx dy)1/r

u(x, y)1/q

)

u(x, y)1/q

+
( (

∫ b
a

∫ d
c f (x, y)r dx dy)1/r

v(x, y)1/q

)

v(x, y)1/q

≤
{( (

∫ b
a

∫ d
c f (x, y)r dx dy)1/r

u(x, y)1/q

)p

+
( (

∫ b
a

∫ d
c g(x, y)r dx dy)1/r

v(x, y)1/q

)p}1/p

× ((
u(x, y)1/q)q +

(
v(x, y)1/q)q)1/q

=
{ (

∫ b
a

∫ d
c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

}1/p

× (
u(x, y) + v(x, y)

)1/q.

Rearranging, (2.2) follows.
The following is a discussion of the conditions for this equal sign to hold. Suppose that

equality holds in (2.2). Then equality holds in Minkowski’s inequality, which implies that
f (x, y) = αg(x, y) and some α ≥ 0. Equality also holds in Hölder’s inequality, implying that
there are constants β and γ with β2 + γ 2 > 0 such that

β

( (
∫ b

a
∫ d

c f (x, y)r dx)1/r

u(x, y)1/q

)p

= γ
(
u(x, y)1/q)q,

or equivalently

β

(∫ b

a

∫ d

c
f (x, y)r dx dy

)p/r

= γ u(x, y)p,

and the same equation with g(x, y) instead of f (x, y). Therefore

γ u(x, y)p = β

(∫ b

a

∫ d

c
f (x, y)r dx dy

)p/r

= β

(∫ b

a

∫ d

c

(
αg(x, y)

)r dx dy
)p/r

= γ
(
αv(x, y)

)p.

Obviously, if γ = 0, then ‖f (x, y)‖r
r = ‖g(x, y)‖r

r = 0. If γ �= 0, then α > 0 and (‖f (x, y)‖r
r ,

‖g(x, y)‖r
r) = α(‖u(x, y)‖r

r ,‖v(x, y)‖r
r).

This proof is complete. �
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Let f (x, y) become f (x) with appropriate transformation, (2.2) reduces to the following
result.

Corollary 2.4 For p > 1, 1
p + 1

q = 1 and r > 1. If u(x), v(x) > 0 and f (x), g(x) are continuous
functions on [a, b], then

( (
∫ b

a (f (x) + g(x))r dx)1/r

(u(x) + v(x))1/q

)p

≤
( (

∫ b
a f (x)r dx)1/r

u(x)1/q

)p

+
( (

∫ b
a g(x)r dx)1/r

v(x)1/q

)p

, (2.3)

with equality if and only if either ‖f (x)‖r
r = ‖g(x)‖r

r = 0 or (‖f (x)‖r
r ,‖g(x)‖r

r) = α(‖u(x)‖r
r ,

‖v(x)‖r
r) for some α > 0.

3 Improvements
We need the following lemma to prove our main results.

Lemma 3.1 ([3] p.39) If ai ≥ 0, bi > 0, i = 1, . . . , m, and
∑m

i=1 αi = 1, then

( m∏

i=1

(ai + bi)

)αi

≥
( m∏

i=1

ai

)αi

+

( m∏

i=1

bi

)αi

, (3.1)

with equality if and only if a1/b1 = · · · = am/bm.

Theorem 3.2 For p > 1, 1
p + 1

q = 1 and r > 1. If x00, y00, a00, b00 > 0 and reals xij, yij, aij, bij,
i = 1, 2, . . . , n, j = 1, 2, . . . , m, then

(
∑m

j=1
∑n

i=1[(xij + yij)r + (aij + bij)r])p

[(x00 + y00)r + (a00 + b00)r]p/q

≤
( (

∑m
j=1

∑n
i=1 xr

ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

)r

+
( (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

)r

(3.2)

with equality if and only if either xij = yij = 0 and aij = bij = 0 for i = 1, . . . , n and j = 1, . . . , m
or xij = αyij and aij = βbij for i = 0, 1, . . . , n and j = 0, 1, . . . , m and some α,β > 0, and

( (
∑m

j=1
∑n

i=1 xr
ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

)

:
( (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

)

= (x00 + y00) : (a00 + b00).

Proof From (2.1), we have

( m∑

j=1

n∑

i=1

(xij + yij)r

)1/r

≤
{ (

∑m
j=1

∑n
i=1 xr

ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

}1/p

(x00 + y00)1/q, (3.3)
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with equality if and only if either xij = yij = 0 for i = 1, . . . , n and j = 1, . . . , m or xij = αyij for
i = 0, 1, . . . , n and j = 0, 1, . . . , m and some α > 0, and

( m∑

j=1

n∑

i=1

(aij + bij)r

)1/r

≤
{ (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

}1/p

(a00 + b00)1/q, (3.4)

with equality if and only if either aij = bij = 0 for i = 1, . . . , n and j = 1, . . . , m or aij = αbij for
i = 0, 1, . . . , n and j = 0, 1, . . . , m and some α > 0.

From (3.1), (3.3), and (3.4), we obtain

m∑

j=1

n∑

i=1

[
(xij + yij)r + (aij + bij)r]

≤
{( (

∑m
j=1

∑n
i=1 xr

ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

)r}1/p(
(x00 + y00)r)1/q

+
{( (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

)r}1/p(
(a00 + b00)r)1/q

≤
{( (

∑m
j=1

∑n
i=1 xr

ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

)r

+
( (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

)r}1/p[
(x00 + y00)r + (a00 + b00)r]1/q.

Hence

(
∑m

j=1
∑n

i=1[(xij + yij)r + (aij + bij)r])p

[(x00 + y00)r + (a00 + b00)r]p/q ≤
( (

∑m
j=1

∑n
i=1 xr

ij)p/r

xp/q
00

+
(
∑m

j=1
∑n

i=1 yr
ij)p/r

yp/q
00

)r

+
( (

∑m
j=1

∑n
i=1 ar

ij)p/r

ap/q
00

+
(
∑m

j=1
∑n

i=1 br
ij)p/r

bp/q
00

)r

.

From the equality conditions of (3.3), (3.4), and (3.1), we easily get the equality in (3.2). �

Remark 3.3 Let aij = bij = 0, (3.2) becomes a similar form of (2.1). Putting xij = aij, yij = bij

in (3.2), where i = 0, 1, . . . , n and j = 0, 1, . . . , m, (3.2) reduces to (2.1).

Theorem 3.4 For p > 1, 1
p + 1

q = 1 and r > 1. If u(x, y), v(x, y), u′(x, y), v′(x, y) > 0 and f (x, y),
g(x, y), f ′(x, y), g ′(x, y) are continuous functions on [a, b] × [c, d], then

(
∫ b

a
∫ d

c [(f (x, y) + g(x, y))r + (f ′(x, y) + g ′(x, y))r] dx dy)p

[(u(x, y) + v(x, y))r + (u′(x, y) + v′(x, y))r]p/q

≤
( (

∫ b
a

∫ d
c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

)r

+
( (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r dx dy)p/r

v′(x, y)p/q

)r

(3.5)
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with equality if and only if either f (x, y) = g(x, y) = 0 and f ′(x, y) = g ′(x, y) = 0 or (f (x, y),
g(x, y)) = α(u(x, y), v(x, y)) and (f ′(x, y), g ′(x, y)) = β(u′(x, y), v′(x, y)) and some α,β > 0, and

( (
∫ b

a
∫ d

c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

)

:
( (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r)p/r

v′(x, y)p/q

)

=
(
u(x, y) + v(x, y)

)
:
(
u′(x, y) + v′(x, y)

)
.

Proof From (2.1), we have

(∫ b

a

∫ d

c

(
f (x, y) + g(x, y)

)r dx dy
)1/r

≤
{ (

∫ b
a

∫ d
c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

}1/p

× (
u(x, y) + v(x, y)

)1/q, (3.6)

with equality if and only if either f (x, y) = g(x, y) = 0 or (f (x, y), g(x, y)) = α(u(x, y), v(x, y))
for some α > 0. And

(∫ b

a

∫ d

c

(
f ′(x, y) + g ′(x, y)

)r dx dy
)1/r

≤
{ (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r dx dy)p/r

v′(x, y)p/q

}1/p

× (
u′(x, y) + v′(x, y)

)1/q, (3.7)

with equality if and only if either f ′(x, y) = g ′(x, y) = 0 or (f ′(x, y), g ′(x, y)) = β(u′(x, y), v′(x, y))
and for some β > 0,

From (3.1), (3.6), and (3.7), we obtain

∫ b

a

∫ d

c

[(
f (x, y) + g(x, y)

)r +
(
f ′(x, y) + g ′(x, y)

)r]dx dy

≤
{( (

∫ b
a

∫ d
c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

)r}1/p((
u(x, y) + v(x, y)

)r)1/q

+
{( (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r dx dy)p/r

v′(x, y)p/q

)r}1/p

× ((
u′(x, y) + v′(x, y)

)r)1/q

≤
{( (

∫ b
a

∫ d
c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

)r

+
( (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r dx dy)p/r

v′(x, y)p/q

)r}1/p

× [(
u(x, y) + v(x, y)

)r +
(
u′(x, y) + v′(x, y)

)r]1/q.
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Hence

(
∫ b

a
∫ d

c [(f (x, y) + g(x, y))r + (f ′(x, y) + g ′(x, y))r] dx dy)p

[(u(x, y) + v(x, y))r + (u′(x, y) + v′(x, y))r]p/q

≤
( (

∫ b
a

∫ d
c f (x, y)r dx dy)p/r

u(x, y)p/q +
(
∫ b

a
∫ d

c g(x, y)r dx dy)p/r

v(x, y)p/q

)r

+
( (

∫ b
a

∫ d
c f ′(x, y)r dx dy)p/r

u′(x, y)p/q +
(
∫ b

a
∫ d

c g ′(x, y)r dx dy)p/r

v′(x, y)p/q

)r

.

From the equality conditions of (3.6), (3.7), and (3.1), we easily get the equality in (3.2). �

Remark 3.5 Let f ′(x, y) = g ′(x, y) = 0, (3.3) becomes a similar form of (2.2). Putting f (x, y) =
f ′(x, y), g(x, y) = g ′(x, y), u(x, y) = u′(x, y) and v(x, y) = v′(x, y) in (3.5), (3.5) reduces to (2.2).
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