Skip to main content

Weighted inequalities for fractional Hardy operators and commutators

Abstract

In this paper, we introduce a fractional maximal operators \(N_{\alpha }\) on \((0,\infty )\) associated to the fractional Hardy operator \(P_{\alpha }\) and its dual \(Q_{\alpha }, 0\leq \alpha <1\), and obtain some characterizations for the one-weight and two-weight inequalities for \(N_{\alpha }\). We also give some \(A_{p}\) type sufficient conditions for the two-weight inequalities for the fractional Hardy operators, the dual operators and the commutators of the fractional Hardy operators with CMO functions.

1 Introduction

Let \(P_{\alpha }\) and \(Q_{\alpha }\) be the fractional Hardy operator and its adjoint on \((0,\infty )\),

$$\begin{aligned} P_{\alpha }f(x)=\frac{1}{x^{1-\alpha }} \int _{0}^{x}f(y)\,dy,\qquad Q_{\alpha }f(x)= \int _{x}^{\infty }\frac{f(y)}{y^{1-\alpha }}\,dy, \end{aligned}$$

where \(0\leq \alpha <1\).

When \(\alpha =0\), we denote \(P_{0}\) as P and \(Q_{0}\) as Q. P and Q are the Hardy operator and its adjoint. Hardy [6, 7] established the Hardy integral inequalities

$$ \int _{0}^{\infty } \bigl\vert Pf(y) \bigr\vert ^{p}\,dy\leq p^{\prime p} \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}\,dy,\quad p>1, $$

and

$$ \int _{0}^{\infty } \bigl\vert Qf(y) \bigr\vert ^{p}\,dy\leq p^{p} \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}\,dy,\quad p>1, $$

where \(p'=p/(p-1)\).

The two inequalities above go by the name of Hardy’s integral inequalities. For earlier development of this kind of inequality and many applications in analysis, see [2, 8, 13].

The fractional Calderón operator \(S_{\alpha }\) is defined as \(S_{\alpha }=P_{\alpha }+Q_{\alpha }\). When \(\alpha =0\), \(S_{0}\) is denoted S, and S is the Calderón operator, which plays a significant role in the theory of real interpolation; see [1]. Next, we introduce the fractional maximal operators \(N_{\alpha }\) related to the fractional Calderón operator. Given a measurable function f on \((0,\infty )\), the fractional maximal operator \(N_{\alpha }\) is defined as

$$\begin{aligned} N_{\alpha }f(x)=\sup_{t>x}\frac{1}{t^{1-\alpha }} \int _{0}^{t} \bigl\vert f(y) \bigr\vert \,dy,\quad x>0. \end{aligned}$$

Notice that \(N_{\alpha }f\) is a decreasing function, and that \(|P_{\alpha }f|\leq N_{\alpha }f \leq S_{\alpha }(|f|)\), for any f. Indeed, for any f and \(t>x\) we have

$$\begin{aligned} &\bigl\vert P_{\alpha }f(x) \bigr\vert \leq \sup_{t>x} \frac{1}{t^{1-\alpha }} \int _{0}^{t} \bigl\vert f(y) \bigr\vert \,dy \leq N_{\alpha }f(x), \\ &\frac{1}{t^{1-\alpha }} \int _{0}^{t} \bigl\vert f(y) \bigr\vert \,dy \leq \frac{1}{x^{1-\alpha }} \int _{0}^{x} \bigl\vert f(y) \bigr\vert \,dy+ \int _{x}^{t}\frac{ \vert f(y) \vert }{y^{1-\alpha }}\,dy \leq S_{\alpha }f(x). \end{aligned}$$

Notice that \(N_{\alpha }f\leq S_{\alpha }f\) for nonnegative f.

For \(\alpha =0\), \(N_{0}\) is denoted as N. Duoandikoetxea, Martin-Reyes and Ombrosi in [3] introduced the maximal operator N related to the Calderón operator and studied the weighted inequalities for N. Li, Zhang and Xue [9] obtained some two-weight inequalities for N.

For \(1< p\leq q<\infty \), we say a weight w satisfies the \(A_{p,q,0}\) condition, denoted as \(w\in A_{p,q,0}\), if

$$ [w]_{p,q,0}=\sup_{t>0} \biggl(\frac{1}{t} \int _{0}^{t}w(y)^{q}\,dy \biggr)^{1/q} \biggl(\frac{1}{t} \int _{0}^{t}w(y)^{-p'}\,dy \biggr)^{1/p'}< \infty. $$

For \(p=1< q<\infty \), we write \(A_{1,q,0}\) for the class of nonnegative functions w such that

$$ [w]_{1,q,0}=\sup_{t>0} \biggl(\frac{1}{t} \int _{0}^{t}w(y)^{q}\,dy \biggr)^{1/q} \biggl(\mathrm{ess}\sup_{x\in (0,t)} \frac{1}{w(y)} \biggr)< \infty. $$

For \(1< p\leq q<\infty \), we say a pair of weights \((u,v)\) satisfies the two-weight \(A_{p,q}\) condition, denoted \((u,v)\in A_{p,q}\), if

$$\begin{aligned}{} [u,v]_{p,q}=\sup_{t>0} \biggl(\frac{1}{t} \int _{0}^{t}u(y)^{q}\,dy \biggr)^{1/q} \biggl(\frac{1}{t} \int _{0}^{t}v(y)^{-p'}\,dy \biggr)^{1/p'}< \infty. \end{aligned}$$

For \(p=1\) we write \((u,v)\in A_{1,q}\), if

$$\begin{aligned}{} [u,v]_{1,q}=\sup_{t>0} \biggl(\frac{1}{t} \int _{0}^{t}u(y)^{q}\,dy \biggr)^{1/q} \biggl(\mathrm{ess}\sup_{x\in (0,t)} \frac{1}{v(y)} \biggr)< \infty. \end{aligned}$$

Let \(1\leq p<\infty \), we say b is a one-side dyadic \(\mathrm{CMO}^{p}\) function, if

$$\begin{aligned} \sup_{j\in \mathbb{Z}} \biggl(\frac{1}{2^{j}} \int _{0}^{2^{j}} \bigl\vert b(y)-b_{(0,2^{j}]} \bigr\vert ^{p}\,dy \biggr)^{1/p}= \Vert b \Vert _{\mathrm{CMO}^{p}}< \infty, \end{aligned}$$

where \(b_{(0,2^{j}]}=\frac{1}{2^{j}}\int _{0}^{2^{j}}f(x)\,dx\), we then say that \(b\in \mathrm{CMO}^{p}\).

It is easy to see \(\mathrm{BMO}(0,\infty )\) â«‹ \(\mathrm{CMO}^{p}\), where \(1\leq p<\infty \). \(\mathrm{CMO}^{q}\) â«‹ \(\mathrm{CMO}^{p}\) for \(1\leq p< q< \infty \).

Let b be a locally integrable function on \((0,\infty )\), we define the commutators of the fractional Calderón operator \(S_{\alpha }\) with b as \(S_{\alpha }^{b}=P_{\alpha }^{b}+Q_{\alpha }^{b}\), where

$$\begin{aligned} P_{\alpha }^{b}f(x)=\frac{1}{x^{1-\alpha }} \int _{0}^{x}\bigl(b(x)-b(y)\bigr)f(y)\,dy,\qquad Q_{\alpha }^{b}f(x)= \int _{x}^{\infty }\frac{(b(x)-b(y))f(y)}{y ^{1-\alpha }}\,dy. \end{aligned}$$

For \(\alpha =0\), \(P_{\alpha }^{b}\) and \(Q_{\alpha }^{b}\) be denoted as \(P^{b}\) and \(Q^{b}\), respectively. Long and Wang [10] established Hardy’s integral inequalities for commutators generated by P and Q with one-sided dyadic CMO functions, and for \(0<\alpha <1\) proved that the two commutators of \(P_{\alpha }^{b}\) and \(Q_{\alpha }^{b}\) are bounded from \(L^{p}(\mathbb{R_{+}})\) to \(L^{q}(\mathbb{R_{+}})\) with the function b in one-side dyadic \(\mathrm{CMO}^{\max {(q,p')}}\), where \(1< p< q<\infty \), \(\frac{1}{q}=\frac{1}{p}-\alpha \). Fu [4], Zheng and Fu [14] showed some boundedness properties for \(P_{\alpha }^{b}\) and \(Q_{\alpha }^{b}\), respectively. Li, Zhang and Xue [9] obtained some \(A_{p}\) type sufficient conditions such that the two-weight inequalities are true for P, Q, \(P^{b}\) and \(Q^{b}\). The commutator estimates for Hardy operator are actual in view of applications in PDE; see Mamedov and Brahimov [11].

In this paper, we discuss the one-weight and two-weight inequalities of operators \(N_{\alpha }\), \(P_{\alpha }\), \(Q_{\alpha }\), \(P_{\alpha } ^{b}\), \(Q_{\alpha }^{b}\), and get the following results.

Theorem 1.1

For \(1\leq p<\frac{1}{\alpha }\), \(0\le \alpha <1\), \(\frac{1}{q}= \frac{1}{p}-\alpha \), \(N_{\alpha }\) is bounded from \(L^{p}(w^{p})\) to \(L^{q,\infty }(w^{q})\) if and only if \(w\in A_{p,q,0}\). More precisely,

$$ \sup_{\lambda >0}\lambda \biggl( \int _{\{x:N_{\alpha }f(x)>\lambda \}} w(y)^{q}\,dy \biggr)^{1/q}\leq [w]_{p,q,0} \Vert f \Vert _{L^{p}(w^{p})}. $$
(1)

For \(1< p<\frac{1}{\alpha }\), \(0\leq \alpha <1\), \(\frac{1}{q}= \frac{1}{p}-\alpha \), \(N_{\alpha }\) is bounded from \(L^{p}(w^{p})\) to \(L^{q}(w^{q})\) if and only if \(w\in A_{p,q,0}\). Moreover,

$$ \Vert N_{\alpha }f \Vert _{L^{q}(w^{q})}\leq C[w]_{p,q,0}^{(1-\alpha )p'q} \Vert f \Vert _{L^{p}(w^{p})}. $$
(2)

Theorem 1.2

For \(1\leq p<\frac{1}{\alpha }\), \(0\leq \alpha <1\), \(\frac{1}{q}= \frac{1}{p}-\alpha \), \(N_{\alpha }\) is bounded from \(L^{p}(v^{p})\) to \(L^{q,\infty }(u^{q})\) if and only if \((u,v)\in A_{p,q}\). More precisely,

$$\begin{aligned} \sup_{\lambda >0}\lambda \biggl( \int _{\{x:N_{\alpha }f(x)>\lambda \}} u(y)^{q}\,dy \biggr)^{1/q}\leq [u,v]_{p,q} \Vert f \Vert _{L^{p}(v^{p})}. \end{aligned}$$

Theorem 1.3

For \(1< p<\infty \), \(0\leq \alpha <1\), \(0< q<\infty \), \(N_{\alpha }\) is bounded from \(L^{p}(v^{p})\) to \(L^{q}(u^{q})\), if and only if, for any \(t>0\), \((u,v)\) satisfies

$$ \biggl( \int _{0}^{t}\bigl[N_{\alpha } \bigl(v^{-p'}\chi _{(0,t)}\bigr) (y)\bigr]^{q}u(y)^{q} \,dy \biggr)^{1/q}\leq C \biggl( \int _{0}^{t}v(y)^{-p'}\,dy \biggr)^{1/p}< \infty. $$
(3)

But for \(1< p<\frac{1}{\alpha }\), \(0\leq \alpha <1\), \(\frac{1}{q}= \frac{1}{p}-\alpha \), \(N_{\alpha }\) is not bounded from \(L^{p}(v^{p})\) to \(L^{q}(u^{q})\) if \((u,v)\in A_{p,q}\), the proof is similar to the case for the Hardy–Littlewood maximal function on \(\mathbb{R}^{n}\); see [5]. Notice that \(|P_{\alpha }f|\leq N_{\alpha }f \leq S_{ \alpha }(|f|)\), by Theorem 1.1, we see that \((u,v)\in A_{p,q}\), is necessary but not sufficient for \(S_{\alpha }\) to be bounded from \(L^{p}(v^{p})\) to \(L^{q}(u^{q})\).

Theorem 1.4

Let \(1< p< q<\infty \), \(0\leq \alpha <1\).

  1. (a)

    Let \((u,v)\) be a pair of weights for which there exists \(r>1\) such that, for every \(t>0\),

    $$ t^{(1/q+\alpha -1/p)} \biggl(\frac{1}{t} \int _{0}^{t}u(y)^{q}\,dy \biggr)^{1/q} \biggl(\frac{1}{t} \int _{0}^{t}v(y)^{-rp'}\,dy \biggr)^{1/rp'}\leq C< \infty. $$
    (4)

    Then

    $$ \biggl( \int _{0}^{\infty } \bigl\vert P_{\alpha }f(x) \bigr\vert ^{q}u(x)^{q}\,dx \biggr)^{1/q} \leq C \biggl( \int _{0}^{\infty } \bigl\vert f(x) \bigr\vert ^{p}v(x)^{p}\,dx \biggr)^{1/p}. $$
    (5)
  2. (b)

    Let \((u,v)\) be a pair of weights for which there exists \(r>1\) such that, for every \(t>0\),

    $$ t^{(1/q+\alpha -1/p)} \biggl(\frac{1}{t} \int _{0}^{t}u(y)^{rq}\,dy \biggr)^{1/rq} \biggl(\frac{1}{t} \int _{0}^{t}v(y)^{-p'}\,dy \biggr)^{1/p'}\leq C< \infty. $$
    (6)

    Then

    $$ \biggl( \int _{0}^{\infty } \bigl\vert Q_{\alpha }f(x) \bigr\vert ^{q}u(x)^{q}\,dx \biggr)^{1/q} \leq C \biggl( \int _{0}^{\infty } \bigl\vert f(x) \bigr\vert ^{p}v(x)^{p}\,dx \biggr)^{1/p}. $$
    (7)

Theorem 1.5

Let \(1< p< q<\infty \), \(0\leq \alpha <1\), \(b\in CMO^{r'\max {\{q,p'\}}}\), and \((u,v)\) be a pair of weights for which there exists \(r>1\) such that, for every \(t>0\),

$$ t^{(1/q+\alpha -1/p)} \biggl(\frac{1}{t} \int _{0}^{t}u(y)^{rq}\,dy \biggr)^{1/rq} \biggl(\frac{1}{t} \int _{0}^{t}v(y)^{-rp'}\,dy \biggr)^{1/rp'}\leq C< \infty. $$
(8)

Then

$$ \biggl( \int _{0}^{\infty } \bigl\vert P_{\alpha }^{b} f(x) \bigr\vert ^{q}u(x)^{q}\,dx \biggr)^{1/q} \leq C \biggl( \int _{0}^{\infty } \bigl\vert f(x) \bigr\vert ^{p}v(x)^{p}\,dx \biggr)^{1/p} $$
(9)

and

$$ \biggl( \int _{0}^{\infty } \bigl\vert Q_{\alpha }^{b} f(x) \bigr\vert ^{q}u(x)^{q}\,dx \biggr)^{1/q} \leq C \biggl( \int _{0}^{\infty } \bigl\vert f(x) \bigr\vert ^{p}v(x)^{p}\,dx \biggr)^{1/p}. $$
(10)

2 The proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3

In order to prove the theorems, we need the fractional maximal operator \(N_{\alpha }^{g}\) associated to a fixed positive measurable function g. For \(0\le \alpha <1\), we defined \(N_{\alpha }^{g}\) as

$$ N_{\alpha }^{g}f(x)=\sup_{t>x} \frac{\int _{0}^{t} \vert f(y) \vert g(y)\,dy}{( \int _{0}^{t}g(y)\,dy)^{1-\alpha }}. $$

Mamedov and Zeren [12] obtained the two-weight inequalities for this maximal operator in the Lebesgue spaces with variable exponent. When \(\alpha =0\), we denote \(N_{\alpha }^{g}\) as \(N^{g}\). Duoandikoetxea, Martin-Reyes and Ombrosi in [3] obtained the following lemma for \(N^{g}\).

Lemma 2.1

Let \(0\le \alpha <1\) and g be a nonnegative measurable function such that \(0< g(0,t)=\int _{0}^{t}g(x)\,dx<\infty \), for all \(t>0\).

  1. (i)

    \(N_{\alpha }^{g}\) is of weak type \((1,\frac{1}{1-\alpha })\) with respect to the measure \(g(t)\,dt\). Actually,

    $$ \biggl( \int _{\{x:N_{\alpha }^{g}f(x)>\lambda \}} g(y)\,dy \biggr)^{1- \alpha }\leq \frac{1}{\lambda } \int _{\{x:N_{\alpha }^{g}f(x)>\lambda \}} \bigl\vert f(y) \bigr\vert g(y) \,dy, $$
    (11)

    for all \(\lambda >0\) and all measurable functions f.

  2. (ii)

    \(N_{\alpha }^{g}\) is of strong type \((p,q)\), \(1< p<\frac{1}{\alpha }\), \(\frac{1}{q}=\frac{1}{p}-\alpha \), with respect to the measure \(g(t)\,dt\). More precisely,

    $$\begin{aligned} \biggl( \int _{0}^{\infty } \bigl\vert N_{\alpha }^{g}f(y) \bigr\vert ^{q}g(y)\,dy \biggr)^{1/q} \leq C(p,\alpha ) \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}g(y)\,dy \biggr)^{1/p}, \end{aligned}$$

    in which the constant \(C(p,\alpha )\) independent of f and g.

Proof

By standard interpolation arguments, it suffices to prove (i) since by the Hölder inequality, we have

$$\begin{aligned} \frac{\int _{0}^{t} \vert f(x) \vert g(x)\,dx}{(\int _{0}^{t}g(x)\,dx)^{1-\alpha }} & \leq \frac{(\int _{0}^{t} \vert f(x) \vert ^{1/\alpha }g(x)\,dx)^{\alpha }(\int _{0} ^{t}g(x)\,dx)^{1-\alpha }}{(\int _{0}^{t}g(x)\,dx)^{1-\alpha }} \\ &= \biggl( \int _{0}^{t} \bigl\vert f(x) \bigr\vert ^{1/\alpha }g(x)\,dx \biggr)^{\alpha } \\ &\leq \Vert f \Vert _{L^{1/\alpha }(g)}. \end{aligned}$$

Thus we obtain \(\|N_{\alpha }^{g}f\|_{\infty }\leq \|f\|_{L^{1/\alpha }(g)}\).

Observe that \(N_{\alpha }^{g}f\) is decreasing and continuous. Therefore, if \(\{t:N_{\alpha }^{g}(f)(t)>\lambda \}\) is not empty, then it is either a bounded interval \((0,d)\) or all of \((0,\infty )\). In the first case

$$ \lambda \biggl( \int _{0}^{d}g(x)\,dx \biggr)^{1-\alpha }= \int _{0}^{d} \bigl\vert f(x) \bigr\vert g(x) \,dx, $$
(12)

whereas in the second case we have

$$\begin{aligned} \lambda \biggl( \int _{0}^{\infty }g(x)\,dx \biggr)^{1-\alpha }\leq \int _{0} ^{\infty } \bigl\vert f(x) \bigr\vert g(x) \,dx. \end{aligned}$$

Thus we obtain (11). Notice that if \(g(0,\infty )=\int _{0}^{\infty }g(x)\,dx=+\infty \) and f is integrable with respect to g, only the first case is possible and the equality holds. □

Proof of Theorem 1.1

Let us prove first the necessity of \(A_{p,q,0}\) for the weak-type inequality.

(i) For \(1< p<\frac{1}{\alpha }\), let \(E_{k}=\{x:w(x)>1/k \}\) and \(w_{k}=w\chi _{E_{k}}\). Take \(f=w_{k}^{-p'}\chi _{(0,t)}\). Then

$$ N_{\alpha }f(x)\geq \frac{1}{t^{1-\alpha }} \int _{0}^{t}w_{k}^{-p'}, $$
(13)

for \(0< x< t\). Thus, \((0,t)\subset \{x:N_{\alpha }f(x)>\lambda \}\) taking as λ the right-hand side of (13). By \(N_{\alpha }\) is bounded from \(L^{p}(w^{p})\) to \(L^{q,\infty }(w^{q})\), we have

$$\begin{aligned} \biggl( \int _{0}^{t}w^{q} \biggr)^{1/q} \biggl(\frac{1}{t} \int _{0}^{t}w_{k} ^{-p'} \biggr) &=\frac{1}{t^{\alpha }} \biggl( \int _{0}^{t}w^{q} \biggr)^{1/q} \cdot \lambda \\ &\leq \frac{1}{t^{\alpha }} \biggl( \int _{\{x:N_{\alpha }f(x)>\lambda \}} w^{q} \biggr)^{1/q}\cdot \lambda \\ &\leq \frac{C}{t^{\alpha }} \biggl( \int _{0}^{t}w_{k}^{-p'p}w^{p} \biggr)^{1/p} \\ &=\frac{C}{t^{\alpha }} \biggl( \int _{0}^{t}w_{k}^{-p'} \biggr)^{1/p}. \end{aligned}$$

Thus we obtain

$$\begin{aligned} \biggl(\frac{1}{t} \int _{0}^{t}w^{q} \biggr)^{1/q} \biggl(\frac{1}{t} \int _{0} ^{t}w_{k}^{-p'} \biggr)^{1/p'}\leq C. \end{aligned}$$

Letting k tend to infinity, \(w\in A_{p,q,0}\) follows.

(ii) For \(p=1\), let \((0,s)\) be any interval, for any interval \((t_{1},t_{2})\subset (0,s)\). Taking \(f=\chi _{(t_{1},t_{2})}\). Then

$$ N_{\alpha }f(x)\geq \frac{1}{s^{1-\alpha }} \int _{0}^{s} \vert \chi _{(t_{1},t_{2})} \vert \,dy=\frac{t_{2}-t_{1}}{s^{1-\alpha }}, $$
(14)

for \(0< x< s\). Thus, \((0,s)\subset \{x:N_{\alpha }f(x)>\lambda \}\) taking as λ the right-hand side of (14). By \(N_{\alpha }\) is bounded from \(L^{p}(w^{p})\) to \(L^{q,\infty }(w^{q})\), we have

$$\begin{aligned} \lambda \biggl( \int _{0}^{s}w^{q} \biggr)^{1/q} \leq \lambda \biggl( \int _{\{x:N_{\alpha }f(x)>\lambda \}} w^{q} \biggr)^{1/q} \leq C \int _{t_{1}}^{t_{2}}w. \end{aligned}$$

Thus we have

$$\begin{aligned} \biggl(\frac{1}{s} \int _{0}^{s}w^{q} \biggr)^{1/q} \leq \frac{C}{t_{2}-t_{1}} \int _{t_{1}}^{t_{2}}w. \end{aligned}$$

By the Lebesgue differentiation theorem, for any \(y\in (0,s)\), we have

$$\begin{aligned} \biggl(\frac{1}{s} \int _{0}^{s}w^{q} \biggr)^{1/q} \leq Cw(y). \end{aligned}$$

Thus, \(w\in A_{1,q,0}\) follows.

For the sufficient, arguing as in the proof of the Lemma 2.1, we have (12) with \(g\equiv 1\), that is,

$$\begin{aligned} d^{1-\alpha }\lambda = \int _{0}^{d} \bigl\vert f(y) \bigr\vert \,dy. \end{aligned}$$

Then

$$\begin{aligned} &\lambda \biggl( \int _{\{x:N_{\alpha }f(x)>\lambda \}} w(y)^{q}\,dy \biggr)^{1/q}\\ &\quad=\lambda \biggl( \int _{0}^{d}w(y)^{q}\,dy \biggr)^{1/q} \\ &\quad\leq \frac{1}{d^{1-\alpha }} \biggl( \int _{0}^{d} \bigl\vert f(y) \bigr\vert ^{p}w(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{0}^{d}w(y)^{-p'}\,dy \biggr)^{1/p'} \biggl( \int _{0}^{d}w(y)^{q}\,dy \biggr)^{1/q} \\ &\quad\leq [w]_{p,q,0} \biggl( \int _{0}^{d} \bigl\vert f(y) \bigr\vert ^{p}w(y)^{p}\,dy \biggr)^{1/p}, \end{aligned}$$

and (1) follows.

Now we prove (2). If \(w\in A_{p,q,0}, 0< x< t\), \(\sigma =w^{-p'}\) and \(\delta =w^{q}\), we have

$$\begin{aligned} \biggl(\frac{1}{t^{1-\alpha }} \int _{0}^{t}f(y)\,dy \biggr)^{\frac{1}{(1- \alpha )p'}} &\leq [w]_{p,q,0} \biggl(\frac{\int _{0}^{t}f(y)\,dy}{(\int _{0}^{t}\sigma (y)\,dy)^{(1-\alpha )}} \biggr)^{\frac{1}{(1-\alpha )p'}} \frac{( \int _{0}^{t}\,dy)^{1/q}}{(\int _{0}^{t}\delta (y)\,dy)^{1/q}} \\ &\leq [w]_{p,q,0}\frac{(\int _{0}^{t} \vert N_{\alpha }^{\sigma }(f\sigma ^{-1})(y) \vert ^{\frac{q}{(1-\alpha )p'}}\,dy)^{1/q}}{(\int _{0}^{t}\delta (y)\,dy)^{1/q}} \\ &\leq [w]_{p,q,0} \bigl\vert N^{\delta }\bigl(\delta ^{-1} \bigl\vert N_{\alpha }^{\sigma }\bigl(f \sigma ^{-1}\bigr) \bigr\vert ^{\frac{q}{(1-\alpha )p'}}\bigr) (x) \bigr\vert ^{1/q}. \end{aligned}$$

Therefore,

$$ \bigl\vert N_{\alpha }f(x) \bigr\vert ^{q}\leq [w]_{p,q,0}^{(1-\alpha )p'q} \bigl\vert N^{\delta }\bigl(\delta ^{-1} \bigl\vert N_{\alpha }^{\sigma }\bigl(f\sigma ^{-1}\bigr) \bigr\vert ^{\frac{q}{(1- \alpha )p'}}\bigr) (x) \bigr\vert ^{(1-\alpha )p'}. $$

Consequently, using Lemma 2.1,

$$\begin{aligned} \int _{0}^{\infty } \bigl\vert N_{\alpha }f(y) \bigr\vert ^{q}w(y)^{q}\,dy &\leq C[w]_{p,q,0} ^{(1-\alpha )p'q} \int _{0}^{\infty } \bigl\vert N_{\alpha }^{\sigma } \bigl(f\sigma ^{-1}\bigr) (y) \bigr\vert ^{q} \sigma (y)\,dy \\ &\leq C[w]_{p,q,0}^{(1-\alpha )p'q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \sigma ^{-1}(y) \bigr\vert ^{p}\sigma (y)\,dy \biggr)^{q/p} \\ &\leq C[w]_{p,q,0}^{(1-\alpha )p'q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}w(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

This ends the proof of the theorem. □

Proof of Theorem 1.2

For \(1\leq p<\frac{1}{\alpha }\), the proof for the necessity of \(A_{p,q}\) for the weak-type inequality is standard and similar to the proof of Theorem 1.1, we omitted here. For the sufficient, we observe that \(N_{\alpha }f\) is decreasing and continuous. Therefore, if \(\{x:N_{\alpha }f(x)>\lambda \}\) is not empty, then it is a bounded interval \((0,d)\), thus

$$\begin{aligned} d^{1-\alpha }\lambda = \int _{0}^{d} \bigl\vert f(y) \bigr\vert \,dy. \end{aligned}$$

Then

$$\begin{aligned} &\lambda \biggl( \int _{\{x:N_{\alpha }f(x)>\lambda \}} u(y)^{q}\,dy \biggr)^{1/q}\\ &\quad=\lambda \biggl( \int _{0}^{d}u(y)^{q}\,dy \biggr)^{1/q} \\ &\quad\leq \frac{1}{d^{1-\alpha }} \biggl( \int _{0}^{d} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{0}^{d}v(y)^{-p'}\,dy \biggr)^{1/p'} \biggl( \int _{0}^{d}u(y)^{q}\,dy \biggr)^{1/q} \\ &\quad\leq [u,v]_{p,q} \biggl( \int _{0}^{d} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p}. \end{aligned}$$

This ends the proof. □

Proof of Theorem 1.3

Denote \(\sigma =v^{-p'}\). The necessity of (3) follows by a standard argument if we substitute \(f=\sigma \chi _{(0,t)}\) into \(\|N_{\alpha }f\|_{L^{q}(u ^{q})}\leq C\|f\|_{L^{p}(v^{p})}\).

To show that (3) is sufficient, fix a bounded nonnegative function f with compact support. Since \(N_{\alpha }f\) is decreasing and continuous, for each \(k\in \mathbb{Z}\), if \(\{x\in (0,\infty ):N _{\alpha }f(x)>2^{k}\}\) is not empty, then there exists \(d_{k}\) such that \(\{x\in (0,\infty ):N_{\alpha }f(x)>2^{k}\}=(0,d_{k})\). Thus \(0< d_{k+1}\leq d_{k}\), \(\varOmega _{k}=\{x\in (0,\infty ):2^{k}< N_{\alpha }f(x)\leq 2^{k+1}\}=[d_{k+1},d_{k})\) and

$$\begin{aligned} 2^{k}\,d_{k}^{1-\alpha }= \int _{0}^{d_{k}}f(y)\,dy. \end{aligned}$$

Fix a large integer \(K>0\), which will go to infinity later, and let \(\varLambda _{K}=\{k\in \mathbb{Z}:|k|\leq K\}\). We have

$$\begin{aligned} \mathcal{I}_{K} &= \int _{\bigcup _{k=-K}^{K}\varOmega _{K}} \bigl(N_{\alpha }f(y) \bigr)^{q}u(y)^{q}\,dy \leq \sum_{k=-K}^{K}2^{(k+1)q} \int _{d_{k+1}}^{d_{k}}u(y)^{q}\,dy \\ &=2^{q}\sum_{k=-K}^{K} \int _{d_{k+1}}^{d_{k}}u(y)^{q}\,dy \biggl( \frac{1}{d _{k}^{1-\alpha }} \int _{0}^{d_{k}}f(y)\,dy \biggr)^{q} \\ &=2^{q}\sum_{k=-K}^{K} \int _{d_{k+1}}^{d_{k}}u(y)^{q}\,dy \biggl( \frac{1}{d _{k}^{1-\alpha }} \int _{0}^{d_{k}}\sigma (y)\,dy \biggr)^{q} \biggl(\frac{\int _{0}^{d_{k}}(f\sigma ^{-1})(y)\sigma (y)\,dy}{\int _{0}^{d_{k}}\sigma (y)\,dy} \biggr)^{q} \\ &=2^{q} \int _{\mathbb{Z}} T_{K}\bigl(f\sigma ^{-1}\bigr)^{q}\,d\nu, \end{aligned}$$

where ν is the measure on \(\mathbb{Z}\) given by

$$\begin{aligned} \nu (k)= \int _{d_{k+1}}^{d_{k}}u(y)^{q}\,dy \biggl( \frac{1}{d_{k}^{1-\alpha }} \int _{0}^{d_{k}}\sigma (y)\,dy \biggr)^{q}, \end{aligned}$$

and, for every measurable function h, the operator \(T_{K}\) is defined by

$$\begin{aligned} T_{K}h(k)=\frac{\int _{0}^{d_{k}}h(y)\sigma (y)\,dy}{\int _{0}^{d_{k}} \sigma (y)\,dy}\chi _{\varLambda _{K}}(k). \end{aligned}$$

If we prove that \(T_{K}\) is uniformly bounded from \(L^{p}((0,\infty ), \sigma )\) to \(L^{q}(\mathbb{Z},\nu )\) independently of K, we shall obtain

$$\begin{aligned} \mathcal{I}_{K}&\leq C \int _{\mathbb{Z}} T_{K}\bigl(f\sigma ^{-1}\bigr)^{q}\,d \nu \\ &\leq C \biggl( \int _{0}^{\infty }\bigl[\bigl(f\sigma ^{-1} \bigr) (y)\bigr]^{p}\sigma (y)\,dy \biggr)^{q/p}=C \biggl( \int _{0}^{\infty }f(y)^{p}v(y)^{p} \,dy \biggr)^{q/p}. \end{aligned}$$

The uniformity in K of this estimate and the monotone convergence theorem will lead to the desired inequality.

Now we prove that \(T_{K}\) is a bounded operator from \(L^{p}((0,\infty ),\sigma )\) to \(L^{q}(\mathbb{Z},\nu )\). It is clear that \(T_{K}:L ^{\infty }((0,\infty ),\sigma )\to L^{\infty }(\mathbb{Z},\nu )\) with constant less than or equal to 1. The Marcinkiewicz interpolation theorem says that it is enough to prove the uniform boundedness of the operators \(T_{K}\) from \(L^{1}((0,\infty ),\sigma )\) to \(L^{q/p,\infty }(\mathbb{Z},\nu )\). For this purpose, fix \(h\ge 0\), a bounded function with compact support, and put \(F_{\lambda }=\{k\in \mathbb{Z}:T_{K}h(k)> \lambda \}=\{|k|\leq K:T_{K}h(k)>\lambda \}\), and \(k_{0}=\min \{k:k \in F_{\lambda }\}\). Using (3), we have

$$\begin{aligned} \nu (F_{\lambda }) &=\sum_{k\in F_{\lambda }} \int _{d_{k+1}}^{d_{k}} \biggl(\frac{1}{d_{k}^{1-\alpha }} \int _{0}^{d_{k}}\sigma (y)\,dy \biggr)^{q}u(x)^{q} \,dx \\ &\leq \sum_{k\in F_{\lambda }} \int _{d_{k+1}}^{d_{k}}\bigl(N_{\alpha }( \sigma \chi _{(0,d_{k})})\bigr) (x)^{q}u(x)^{q}\,dx \\ &\leq \sum_{k\in F_{\lambda }} \int _{d_{k+1}}^{d_{k}}\bigl(N_{\alpha }( \sigma \chi _{(0,d_{k_{0}})})\bigr) (x)^{q}u(x)^{q}\,dx \\ &\leq \int _{0}^{d_{k_{0}}}\bigl(N_{\alpha }(\sigma \chi _{(0,d_{k_{0}})})\bigr) (x)^{q}u(x)^{q}\,dx \\ &\leq C \biggl( \int _{0}^{d_{k_{0}}}\sigma (y)\,dy \biggr)^{q/p} \\ &\leq C \biggl(\frac{1}{\lambda } \int _{0}^{d_{k_{0}}}h(y)\sigma (y)\,dy \biggr)^{q/p} \\ &\leq C \biggl(\frac{1}{\lambda } \int _{0}^{\infty }h(y)\sigma (y)\,dy \biggr)^{q/p}, \end{aligned}$$

where the constant C does not depend on K. This ends the proof. □

3 The proofs of Theorem 1.4 and Theorem 1.5

Proof of Theorem 1.4

We first prove (5). By the Hölder inequality and condition (4), we have

$$\begin{aligned} & \int _{0}^{\infty } \bigl\vert P_{\alpha }f(x) \bigr\vert ^{q}u(x)^{q}\,dx \\ &\quad=\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \biggl\vert \frac{1}{x ^{1-\alpha }} \int _{0}^{x}f(y)\,dy \biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq \sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \frac{1}{2^{j(1- \alpha )}}\sum _{k=-\infty }^{j} \int _{2^{k}}^{2^{k+1}}f(y)\,dy \Biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq \sum_{j=-\infty }^{\infty }\frac{1}{2^{jq(1-\alpha )}} \int _{2^{j}} ^{2^{j+1}}u(x)^{q}\,dx \\ &\qquad{}\times \Biggl(\sum_{k=-\infty }^{j} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-p'}\,dy \biggr)^{1/p'} \Biggr)^{q} \\ &\quad\leq \sum_{j=-\infty }^{\infty }\frac{1}{2^{jq(1-\alpha )}} \int _{2^{j}} ^{2^{j+1}}u(x)^{q}\,dx \\ &\qquad{}\times \Biggl(\sum_{k=-\infty }^{j} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \biggl( \int _{2^{k}}^{2^{k+1}}1\,dy \biggr)^{1/r'p'} \Biggr)^{q} \\ &\quad\leq C\sum_{j=-\infty }^{\infty } \Biggl(\sum _{k=-\infty }^{j}2^{ \frac{(k-j)}{r'p'}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ &\quad\leq C\sum_{j=-\infty }^{\infty } \Biggl(\sum _{k=-\infty }^{j}2^{ \frac{(k-j)}{2r'}} \Biggr)^{q/p'} \Biggl(\sum_{k=-\infty }^{j}2^{ \frac{(k-j)p}{2r'p'}} \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \Biggr)^{q/p} \\ &\quad\leq C \Biggl(\sum_{j=-\infty }^{\infty }\sum _{k=-\infty }^{j}2^{ \frac{(k-j)p}{2r'p'}} \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \Biggr)^{q/p} \\ &\quad\leq C \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

Next we will prove the following inequalities (7). By the Hölder inequality and condition (6), we have

$$\begin{aligned} & \int _{0}^{\infty } \bigl\vert Q_{\alpha }f(x) \bigr\vert ^{q}u(x)^{q}\,dx \\ &\quad=\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \biggl\vert \int _{x}^{ \infty }\frac{f(y)}{y^{1-\alpha }}\,dy \biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq \sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \sum _{k=j} ^{\infty }\frac{1}{2^{k(1-\alpha )}} \int _{2^{k}}^{2^{k+1}}\bigl\vert f(y) \bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq \sum_{j=-\infty }^{\infty } \biggl( \int _{2^{j}}^{2^{j+1}}u(x)^{rq}\,dx \biggr)^{1/r} \biggl( \int _{2^{j}}^{2^{j+1}}1\,dx \biggr)^{1/r'} \\ &\qquad{}\times \Biggl(\sum_{k=j}^{\infty } \frac{1}{2^{k(1-\alpha )}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}} ^{2^{k+1}}v(y)^{-p'}\,dy \biggr)^{1/p'} \Biggr)^{q} \\ &\quad\leq C\sum_{j=-\infty }^{\infty } \Biggl(\sum _{k=j}^{\infty }2^{ \frac{(j-k)}{r'q}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ &\quad\leq C\sum_{j=-\infty }^{\infty } \Biggl(\sum _{k=j}^{\infty }2^{ \frac{(j-k)p'}{2r'q}} \Biggr)^{q/p'} \Biggl(\sum_{k=j}^{\infty }2^{ \frac{(j-k)p}{2r'q}} \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \Biggr)^{q/p} \\ &\quad\leq C \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

 □

Lemma 3.1

([10])

Let \(b\in \mathrm{CMO}^{1}\), \(j,k\in \mathbb{Z}\), then

$$\begin{aligned} \bigl\vert b(t)-b_{(0,2^{j+1}]} \bigr\vert \leq \bigl\vert b(t)-b_{(0,2^{k+1}]} \bigr\vert +2 \vert j-k \vert \Vert b \Vert _{\mathrm{CMO} ^{1}}. \end{aligned}$$

Proof of Theorem 1.5

We first prove (9). We have

$$\begin{aligned} & \int _{0}^{\infty } \bigl\vert P_{\alpha }^{b} f(x) \bigr\vert ^{q}u(x)^{q}\,dx \\ &\quad=\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \biggl\vert \frac{1}{x ^{1-\alpha }} \int _{0}^{x}\bigl(b(x)-b(y)\bigr)f(y)\,dy \biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq \sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \frac{1}{2^{j(1- \alpha )}}\sum _{k=-\infty }^{j} \int _{2^{k}}^{2^{k+1}}\bigl\vert \bigl(b(x)-b(y) \bigr)f(y)\bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq 2^{q/q'}\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \frac{1}{2^{j(1-\alpha )}}\sum _{k=-\infty }^{j} \int _{2^{k}}^{2^{k+1}}\bigl\vert \bigl(b(x)-b _{(0,2^{j+1}]}\bigr)f(y) \bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q} \,dx \\ &\qquad{}+2^{q/q'}\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \frac{1}{2^{j(1- \alpha )}}\sum _{k=-\infty }^{j} \int _{2^{k}}^{2^{k+1}}\bigl\vert b(y)-b_{(0,2^{j+1}]})f(y) \bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad=2^{q/q'}(\mathrm {I}+\mathrm{II}). \end{aligned}$$

For I, by the Hölder inequality and condition (8), we have

$$\begin{aligned} \mathrm{I} ={}&\sum_{j=-\infty }^{\infty }\frac{1}{2^{jq(1-\alpha )}} \int _{2^{j}} ^{2^{j+1}} \bigl\vert b(x)-b_{(0,2^{j+1}]} \bigr\vert ^{q}u(x)^{q}\,dx \Biggl(\sum _{k=-\infty } ^{j} \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert \,dy \Biggr)^{q} \\ \leq{}& \sum_{j=-\infty }^{\infty }\frac{1}{2^{jq(1-\alpha )}} \biggl( \int _{2^{j}}^{2^{j+1}} \bigl\vert b(x)-b_{(0,2^{j+1}]} \bigr\vert ^{r'q}\,dx \biggr)^{1/r'} \biggl( \int _{2^{j}}^{2^{j+1}}u(x)^{rq}\,dx \biggr)^{1/r} \\ &{}\times \Biggl(\sum_{k=-\infty }^{j} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \biggl( \int _{2^{k}}^{2^{k+1}}\,dy \biggr)^{1/r'p'} \Biggr)^{q} \\ \leq {}&C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q}\sum _{j=-\infty }^{\infty }\frac{2^{j+1}}{2^{jq(1- \alpha )}} \biggl( \frac{1}{2^{j+1}} \int _{0}^{2^{j+1}}u(x)^{rq}\,dx \biggr)^{1/r} \\ &{}\times \Biggl(\sum_{k=-\infty }^{j}2^{\frac{j+1}{rp'}+\frac{k+1}{r'p'}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \frac{1}{2^{j+1}} \int _{0}^{2^{j+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \Biggr)^{q} \\ \leq{}& C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q}\sum _{j=-\infty }^{\infty } \Biggl( \sum_{k=-\infty }^{j}2^{\frac{(k-j)}{r'p'}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ \leq {}&C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q}\sum _{j=-\infty }^{\infty } \Biggl( \sum_{k=-\infty }^{j}2^{\frac{(k-j)}{2r'}} \Biggr)^{q/p'} \Biggl( \sum_{k=-\infty }^{j}2^{\frac{(k-j)p}{2r'p'}} \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \Biggr)^{q/p} \\ \leq{}& C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

For II, by Lemma 3.1, we have

$$\begin{aligned} {\mathrm{II}} \leq {}&\sum_{j=-\infty }^{\infty } \frac{1}{2^{jq(1- \alpha )}} \int _{2^{j}}^{2^{j+1}} \Biggl\vert \sum _{k=-\infty }^{j} \int _{2^{k}} ^{2^{k+1}}\bigl\vert \bigl(b(y)-b_{(0,2^{k+1}]} \bigr)f(y) \bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q}\,dx \\ &{}+\sum_{j=-\infty }^{\infty }\frac{1}{2^{jq(1-\alpha )}} \int _{2^{j}} ^{2^{j+1}} \Biggl\vert \sum _{k=-\infty }^{j} \int _{2^{k}}^{2^{k+1}}2(j-k) \Vert b \Vert _{\mathrm{CMO}^{1}}\bigl\vert f(y)\bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q} \,dx \\ ={}&\mathrm{II_{1}+II_{2}}. \end{aligned}$$

For \(\mathrm{II_{1}}\), by the Hölder inequality and condition (8), we have

$$\begin{aligned} \mathrm{II_{1}}\leq{}& \sum_{j=-\infty }^{\infty }\frac{1}{2^{jq(1-\alpha )}} \int _{2^{j}} ^{2^{j+1}}u(x)^{q}\,dx \Biggl(\sum _{k=-\infty }^{j} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert b(y)-b _{(0,2^{k+1}]} \bigr\vert ^{r'p'}\,dy \biggr)^{1/r'p'} \\ &{}\times \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \Biggr)^{q} \\ \leq{}& C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q}\sum _{j=-\infty }^{\infty }\frac{2^{j+1}}{2^{jq(1- \alpha )}} \Biggl(\sum _{k=-\infty }^{j}2^{\frac{(k+1)}{r'p'}+ \frac{(j+1)}{rp'}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ \leq{}& C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

For \(\mathrm{II_{2}}\), we have

$$\begin{aligned} {\mathrm{II_{2}}} ={}&C \Vert b \Vert _{\mathrm{CMO}^{1}}^{q} \sum_{j=-\infty }^{\infty }\frac{1}{2^{jq(1- \alpha )}} \int _{2^{j}}^{2^{j+1}}u(x)^{q}\,dx \Biggl(\sum _{k=-\infty }^{j}(j-k) \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert \,dy \Biggr)^{q} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{1}}^{q}\sum _{j=-\infty }^{\infty }\frac{1}{2^{jq(1- \alpha )}} \int _{2^{j}}^{2^{j+1}}u(x)^{q}\,dx \Biggl(\sum _{k=-\infty }^{j}(j-k) \\ &{}\times \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \biggl( \int _{2^{k}} ^{2^{k+1}}\,dy \biggr)^{1/r'p'} \Biggr)^{q} \\ \leq {}&C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q}\sum _{j=-\infty }^{\infty } \Biggl( \sum_{k=-\infty }^{j}(j-k)2^{\frac{(k-j)}{r'p'}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

Now we prove (10). We have

$$\begin{aligned} & \int _{0}^{\infty } \bigl\vert Q_{\alpha }^{b} f(x) \bigr\vert ^{q}u(x)^{q}\,dx \\ &\quad=\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \biggl\vert \int _{x}^{ \infty }\frac{(b(x)-b(y))f(y)}{y^{1-\alpha }}\,dy \biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq \sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \sum _{k=j} ^{\infty }\frac{1}{2^{k(1-\alpha )}} \int _{2^{k}}^{2^{k+1}}\bigl\vert \bigl(b(x)-b(y) \bigr)f(y) \bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q}\,dx \\ &\quad\leq 2^{q/q'}\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \sum _{k=j}^{\infty }\frac{1}{2^{k(1-\alpha )}} \int _{2^{k}}^{2^{k+1}}\bigl\vert \bigl(b(x)-b _{(0,2^{j+1}]}\bigr)f(y) \bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q} \,dx \\ &\qquad{}+2^{q/q'}\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \sum _{k=j}^{\infty }\frac{1}{2^{k(1-\alpha )}} \int _{2^{k}}^{2^{k+1}}\bigl\vert \bigl(b(y)-b _{(0,2^{j+1}]}\bigr)f(y)\bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q} \,dx \\ &\quad =2^{q/q'}( \mathrm{J}+\mathrm{JJ}). \end{aligned}$$

For J, by the Hölder inequality and condition (8), we have

$$\begin{aligned} {\mathrm{J}} ={}&\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \bigl\vert b(x)-b _{(0,2^{j+1}]} \bigr\vert ^{q}u(x)^{q}\,dx \Biggl(\sum _{k=j}^{\infty }\frac{1}{2^{k(1- \alpha )}} \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert \,dy \Biggr)^{q} \\ \leq {}&\sum_{j=-\infty }^{\infty } \biggl( \int _{2^{j}}^{2^{j+1}} \bigl\vert b(x)-b _{(0,2^{j+1}]} \bigr\vert ^{r'q}\,dx \biggr)^{1/r'} \biggl( \int _{2^{j}}^{2^{j+1}}u(x)^{rq}\,dx \biggr)^{1/r} \Biggl(\sum_{k=j}^{\infty } \frac{1}{2^{k(1-\alpha )}} \\ &{}\times \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \biggl( \int _{2^{k}} ^{2^{k+1}}\,dy \biggr)^{1/r'p'} \Biggr)^{q} \\ \leq {}&C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q}\sum _{j=-\infty }^{\infty }2^{ \frac{j+1}{r'}} \biggl( \int _{0}^{2^{j+1}}u(x)^{rq}\,dx \biggr)^{1/r} \\ &{}\times \Biggl(\sum_{k=j}^{\infty }2^{-k(1-\alpha )+\frac{k+1}{rp'}+ \frac{k+1}{r'p'}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \frac{1}{2^{k+1}} \int _{0}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \Biggr)^{q} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q}\sum _{j=-\infty }^{\infty }2^{ \frac{j+1}{r'}} \Biggl(\sum _{k=j}^{\infty }2^{\frac{-(k+1)}{r'q}}\cdot \bigl(2^{k+1} \bigr)^{( \frac{1}{q}+\alpha -\frac{1}{p})} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \\ &{}\times \biggl(\frac{1}{2^{k+1}} \int _{0}^{2^{k+1}}u(x)^{rq}\,dx \biggr)^{1/rq} \biggl(\frac{1}{2^{k+1}} \int _{0}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \Biggr)^{q} \\ \leq {}&C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q}\sum _{j=-\infty }^{\infty } \Biggl(\sum_{k=j} ^{\infty }2^{\frac{(j-k)}{r'q}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q}\sum _{j=-\infty }^{\infty } \Biggl(\sum_{k=j} ^{\infty }2^{\frac{(j-k)p'}{2r'q}} \Biggr)^{q/p'} \Biggl(\sum _{k=j}^{\infty }2^{\frac{(j-k)p}{2r'q}} \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \Biggr)^{q/p} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{r'q}}^{q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

For JJ, by Lemma 3.1, we have

$$\begin{aligned} {\mathrm{JJ}} \leq{} &\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \sum _{k=j}^{\infty }\frac{1}{2^{k(1-\alpha )}} \int _{2^{k}}^{2^{k+1}}\bigl\vert \bigl(b(y)-b _{(0,2^{k+1}]}\bigr)f(y)\bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q} \,dx \\ &{}+\sum_{j=-\infty }^{\infty } \int _{2^{j}}^{2^{j+1}} \Biggl\vert \sum _{k=j} ^{\infty }\frac{1}{2^{k(1-\alpha )}} \int _{2^{k}}^{2^{k+1}}2(k-j) \Vert b \Vert _{\mathrm{CMO}^{1}}\bigl\vert f(y)\bigr\vert \,dy \Biggr\vert ^{q}u(x)^{q} \,dx \\ ={}&\mathrm{JJ}_{1}+\mathrm{JJ}_{2}. \end{aligned}$$

For \(\mathrm{JJ}_{1}\), we have

$$\begin{aligned} {\mathrm{JJ}_{1}} \leq {}&\sum_{j=-\infty }^{\infty } \biggl( \int _{2^{j}} ^{2^{j+1}}u(x)^{rq}\,dx \biggr)^{1/r}{2}^{j/r'} \Biggl(\sum_{k=j}^{\infty } \frac{1}{2^{k(1- \alpha )}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert b(y)-b_{(0,2^{k+1}]} \bigr\vert ^{r'p'}\,dy \biggr)^{1/r'p'} \\ &{}\times \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \Biggr)^{q} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q}\sum _{j=-\infty }^{\infty } \Biggl(\sum_{k=j}^{\infty }2^{\frac{(j-k)}{r'q}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

For \(\mathrm{JJ}_{2}\), we have

$$\begin{aligned} {\mathrm{JJ}_{2}} \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{1}}^{q} \sum_{j=-\infty }^{\infty } \biggl( \int _{2^{j}}^{2^{j+1}}u(x)^{rq}\,dx \biggr)^{1/r} \biggl( \int _{2^{j}} ^{2^{j+1}}1\,dx \biggr)^{1/r'} \Biggl( \sum_{k=j}^{\infty }\frac{(k-j)}{2^{k(1- \alpha )}} \\ &{}\times \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \biggl( \int _{2^{k}}^{2^{k+1}}v(y)^{-rp'}\,dy \biggr)^{1/rp'} \biggl( \int _{2^{k}} ^{2^{k+1}}1\,dy \biggr)^{1/r'p'} \Biggr)^{q} \\ \leq {}&C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q}\sum _{j=-\infty }^{\infty } \Biggl(\sum_{k=j}^{\infty }(k-j)2^{\frac{(j-k)}{r'q}} \biggl( \int _{2^{k}}^{2^{k+1}} \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{1/p} \Biggr)^{q} \\ \leq{} &C \Vert b \Vert _{\mathrm{CMO}^{r'p'}}^{q} \biggl( \int _{0}^{\infty } \bigl\vert f(y) \bigr\vert ^{p}v(y)^{p}\,dy \biggr)^{q/p}. \end{aligned}$$

This ends the proof. □

References

  1. Bastero, J., Milman, M., Ruiz, F.: On the connection between weighted norm inequalities. Commutators and real interpolation. Mem. Am. Math. Soc. 154, 731 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Bradley, J.: Hardy inequalities with mixed norms. Can. Math. Bull. 21(4), 405–408 (1978)

    Article  MathSciNet  Google Scholar 

  3. Duoandikoetxea, J., Martin-Reyes, F., Ombrosi, S.: Calderón weights as Muckenhoupt weights. Indiana Univ. Math. J. 62, 891–910 (2013)

    Article  MathSciNet  Google Scholar 

  4. Fu, Z.W.: Commutators of Hardy–Littlewood average operators. J. Beijing Norm. Univ. 42(4), 342–345 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Garcia-Cuerva, J., Rubio de Francia, L.: Weighted Norm Inequalities and Related Topics. North-Holland Math. Stud., vol. 116. North-Holland, Amsterdam (1985)

    Book  Google Scholar 

  6. Hardy, G.H.: Note on a theorem of Hillbert. Math. Z. 6, 314–317 (1920)

    Article  MathSciNet  Google Scholar 

  7. Hardy, G.H.: Note on some points in the integral calculus. Messenger Math. 57, 12–16 (1928)

    Google Scholar 

  8. Kufner, A., Persson, L.: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003)

    Book  Google Scholar 

  9. Li, W.M., Zhang, T.T., Xue, L.M.: Two-weight inequalities for Calderón operator and commutators. J. Math. Inequal. 9(3), 653–664 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Long, S., Wang, J.: Commutators of Hardy operators. J. Math. Anal. Appl. 274(2), 626–644 (2002)

    Article  MathSciNet  Google Scholar 

  11. Mamedov, F.I., Ibrahimov, T.: On some proof method of solvability of elliptic equations with small BMO seminorm of coefficients. Tran. Azerb. Nat. Acad. Sci. 1(29), 103–110 (2009)

    MATH  Google Scholar 

  12. Mamedov, F.I., Zeren, Y.: Two-weight inequalities for the maximal operator in a Lebesgue spaces with variable exponent. J. Math. Sci. 173(6), 701–716 (2011)

    Article  MathSciNet  Google Scholar 

  13. Opic, B., Kufner, A.: Hardy-Type Inequalities. Longman, Harlow (1990)

    MATH  Google Scholar 

  14. Zheng, Q.Y., Fu, Z.W.: Hardy’s integral inequality for commutators of Hardy operators. JIPAM. J. Inequal. Pure Appl. Math. 7(5), 1–7 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Wenming Li was supported by the Natural Science Foundation of Education Department of Hebei Province (grant No. Z2014031).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the manuscript.

Corresponding author

Correspondence to Wenming Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, D. & Liu, J. Weighted inequalities for fractional Hardy operators and commutators. J Inequal Appl 2019, 158 (2019). https://doi.org/10.1186/s13660-019-2108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2108-5

MSC

Keywords