Skip to main content

The refinement and generalization of Hardy’s inequality in Sobolev space

Abstract

In this paper, we refine the proof of Hardy’s inequality in (Evans in Partial Differential Equations, 2010, Hardy in Inequalities, 1952) and extend Hardy’s inequality from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{\sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n\geq 3\) to \(n\geq 2\). Hardy’s inequality in (Evans in Partial Differential Equations, 2010, Hardy in Inequalities, 1952) is the special case of our results.

Introduction

It is well known that inequalities are important tools in classical analysis [2,3,4,5,6, 13, 14, 26,27,28,29, 31,32,33,34,35,36,37,38,39, 41,42,43, 45]. One application of inequalities is to study the properties of partial differential equations. Li and his coauthors [15,16,17,18,19,20,21,22,23] studied the global existence and uniqueness, limit behavior, uniform stability, and blow-up of solutions for partial differential equations by using various inequalities. Liu [11, 24, 25] showed the stability and convergence results of evolution equations and Du [8, 9] studied obstacle problems by using various inequalities.

In recent decades, there have been many results on the extension and refinement of inequality [7, 10, 12, 30, 40, 44]. Qin [30] summarized a large number of inequalities and applications, but Hardy’s inequality was not included. The authors [7, 40] generalized the summation form Hardy inequality, Zhang [44] extended Hardy inequalities using Littlewood–Paley theory and nonlinear estimates method in Besov spaces, and the results improved and extended the well-known results in [1].

The first edition of classic textbook [10] does not contain Hardy’s inequality, we see that the very significant Hardy’s inequality

$$ \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx $$

holds if \(u\in H^{1}(B(o,r))\), \(n\geq 3\), and \(r>0\) in the second edition of [10]. The proof of Hardy’s inequality given in [10, 12] is very ingenious, but it is not easy to master for the reader. Therefore, we refine the proof of Hardy’s inequality for readers to grasp the essence of the proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{ \sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n \geq 3\) to \(n \geq 2\). Hardy’s inequality in [10, 12] is the special case of our results.

Let \(B(o,r)\) be a closed ball in \(\mathbf{R}^{n}\) with center o and radius \(r>0\), \(x=(x_{1},x_{2},\ldots , x_{n})\) be a vector in \(B(o,r)\), \(\nu =(\nu _{1},\nu _{2},\ldots ,\nu _{n})= (\frac{x_{1}}{r},\frac{x _{2}}{r},\ldots ,\frac{x_{n}}{r} )\) be the unit outward normal to \(\partial B(o,r)\). \(W^{k,p}(\varOmega )\) and \(H^{1}(\varOmega )\) denote the Sobolev spaces. We write

$$\begin{aligned} Du=(u_{x_{1}},u_{x_{2}},\ldots , u_{x_{n}}), \quad \vert x \vert = \bigl(x_{1}^{2}+x_{2}^{2}+ \cdots +x_{n}^{2} \bigr)^{\frac{1}{2}}. \end{aligned}$$

In Sect. 2, we first recall Hardy’s inequality, refine the proof for completeness, and state our main results. The proofs of the main results are given in Sect. 3.

Main results

Now, we present the global approximation theorem and Hardy’s inequality in Sobolev space.

Lemma 2.1

([10], Global approximation theorem)

Assume that Ω is bounded and ∂Ω is \(C^{1}\). Let \(u\in W^{k,p}(\varOmega )\) for some \(1\leq p<\infty \). Then there exist functions \(u_{m}\in C^{\infty }(\overline{\varOmega })\) such that

$$\begin{aligned} u_{m}\rightarrow u \quad \mathit{in } W^{k,p}(\varOmega ). \end{aligned}$$

Lemma 2.2

([10, 12], Hardy’s inequality)

Assume \(n\geq 3\) and \(r>0\). Let \(u\in H^{1}(B(o,r))\). Then \(\frac{u}{|x|} \in L^{2}(B(o,r))\) with the estimate

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx. \end{aligned}$$
(2.1)

For readers to grasp the essence of the proof, we give the refined proof below.

Proof

By the global approximation theorem Lemma 2.1, we may assume \(u\in C^{\infty }(B(o,r))\). Noting that \(D (\frac{1}{|x|^{ \rho }} )=-\rho \frac{x}{|x|^{\rho +2}}\) for any \(\rho >0\) and integrating by parts, we have

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx &= -\frac{1}{\rho } \int _{B(o,r)}u ^{2}D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr) \cdot \frac{x}{ \vert x \vert ^{2-\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{B(o,r)}u^{2}\sum_{i=1}^{n} \biggl(\frac{1}{ \vert x \vert ^{ \rho }} \biggr)_{x_{i}} \frac{x_{i}}{ \vert x \vert ^{2-\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{\partial B(o,r)}\sum_{i=1}^{n}u^{2} \nu _{i} \cdot \frac{x_{i}}{ \vert x \vert ^{2}}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \frac{1}{ \vert x \vert ^{\rho }} \biggl(u^{2}\frac{x_{i}}{ \vert x \vert ^{2-\rho }} \biggr)_{x_{i}} \,dx \\ &= -\frac{1}{\rho r} \int _{\partial B(o,r)}u^{2}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)} \biggl[2uDu\cdot \frac{x}{ \vert x \vert ^{2}}+(n+ \rho -2) \frac{u^{2}}{ \vert x \vert ^{2}} \biggr]\,dx. \end{aligned}$$
(2.2)

Therefore

$$\begin{aligned} (n-2) \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx =-2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2}}\,dx+\frac{1}{r} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.3)

For any \(\varepsilon >0\), using the Cauchy inequality and Schwarz inequality, we obtain

$$\begin{aligned} -2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2}}\,dx &= -2 \int _{B(o,r)} \frac{u}{ \vert x \vert }Du\cdot \frac{x}{ \vert x \vert }\,dx \\ &\leq 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert } \vert Du \vert \biggl\vert \frac{x}{ \vert x \vert } \biggr\vert \,dx \\ &= 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert } \vert Du \vert \,dx \\ &\leq 2 \varepsilon \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx+\frac{1}{2 \varepsilon } \int _{B(o,r)} \vert Du \vert ^{2}\,dx. \end{aligned}$$

Fixing \(\varepsilon >0\) such that \(n-2-2\varepsilon >0\), we conclude

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \vert Du \vert ^{2}\,dx+ \frac{C}{r} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.4)

According to the divergence theorem, we have

$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx &= \int _{\partial B(o,r)}xu^{2} \cdot \nu \,dS= \int _{\partial B(o,r)}u^{2}x\cdot \frac{x}{r}\,dS \\ &=r \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.5)

Using the Cauchy inequality and Schwarz inequality, we get

$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx = & \int _{B(o,r)} \bigl[u^{2} \operatorname{div}(x)+D \bigl(u^{2}\bigr)\cdot x \bigr]\,dx \\ = & \int _{B(o,r)} \bigl(nu^{2}+2uDu\cdot x \bigr)\,dx \\ \leq & \int _{B(o,r)} \bigl(nu^{2}+u^{2}+ \vert x \vert ^{2} \vert Du \vert ^{2} \bigr)\,dx \\ \leq & \int _{B(o,r)} \bigl[(n+1)u^{2}+r^{2} \vert Du \vert ^{2} \bigr]\,dx. \end{aligned}$$
(2.6)

Combining (2.5) and (2.6), we obtain the trace inequality

$$\begin{aligned} \frac{1}{r} \int _{\partial B(o,r)}u^{2}\,dS \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx. \end{aligned}$$
(2.7)

Employing this inequality (2.7) in (2.4) finishes the proof of (2.1). □

Under the circumstance, we extend the space dimension n and parameter σ in \(\frac{u}{|x|^{\sigma }}\) of Hardy’s inequality. Now we show our main results.

Theorem 2.1

Assume \(n\geq 2\) and \(r>0\), \(u\in H^{1}(B(o,r))\). Then, for \(\sigma <\frac{n}{2}\), we have \(\frac{u}{|x|^{\sigma }}\in L^{2}(B(o,r))\) with the estimate as follows:

If \(\sigma \leq 1\) and \(\sigma < \frac{n}{2}\), we have

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{r ^{2(\sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$

If \(\sigma >1\) and \(\sigma < \frac{n}{2}\), we have

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx\leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$

Remark 2.1

Hardy’s inequality (2.1) is the case of \(\sigma =1\) and \(n\geq 3\) in Theorem 2.1.

Remark 2.2

If \(n=2\), then \(\sigma <1\). \(B(o,r)\) denotes a closed circular region with center o and radius \(r>0\), \(\partial B(o,r)\) denotes a circle, and \(\int _{B(o,r)}\cdots dS\) denotes curvilinear integration.

Proofs of the main results

In this section we show the proofs of the main results Theorem 2.1.

Proof

For any \(\rho >0\), since

$$\begin{aligned} D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr)=-\rho \frac{x}{ \vert x \vert ^{\rho +2}}, \end{aligned}$$

which implies

$$\begin{aligned} \frac{1}{{ \vert x \vert }^{2\sigma }} &= \biggl[-\rho \frac{x}{{ \vert x \vert }^{\rho +2}} \biggr] \cdot \biggl[ \biggl(-\frac{1}{ \rho } \biggr)\frac{x}{{ \vert x \vert }^{2\sigma -\rho }} \biggr] \\ &=-\frac{1}{\rho }D \biggl(\frac{1}{{ \vert x \vert }^{\rho }} \biggr)\cdot \frac{x}{ { \vert x \vert }^{2\sigma -\rho }} . \end{aligned}$$
(3.1)

By the global approximation theorem, we may assume \(u\in C^{\infty }(B(o,r))\). Noting that (3.1) holds, we obtain

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx &= -\frac{1}{\rho } \int _{B(o,r)}u^{2}D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr) \cdot \frac{x}{ \vert x \vert ^{2 \sigma -\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \biggl(\frac{1}{ \vert x \vert ^{ \rho }} \biggr)_{x_{i}} \biggl(u^{2} \frac{x_{i}}{ \vert x \vert ^{2\sigma -\rho }} \biggr)\,dx \\ &= -\frac{1}{\rho } \int _{\partial B(o,r)}\sum_{i=1}^{n}u^{2} \nu _{i} \cdot \frac{x_{i}}{ \vert x \vert ^{2\sigma }}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \frac{1}{ \vert x \vert ^{\rho }} \biggl(u^{2}\frac{x_{i}}{ \vert x \vert ^{2\sigma -\rho }} \biggr)_{x_{i}} \,dx \\ &= -\frac{1}{\rho r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)} \biggl[2uDu\cdot \frac{x}{ \vert x \vert ^{2\sigma }}+(n+\rho -2\sigma )\frac{u^{2}}{ \vert x \vert ^{2\sigma }} \biggr]\,dx. \end{aligned}$$
(3.2)

Hence

$$\begin{aligned} (n-2\sigma ) \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx &= -2 \int _{B(o,r)}uDu \cdot \frac{x}{ \vert x \vert ^{2\sigma }}\,dx \\ &\quad {}+\frac{1}{r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(3.3)

For any \(\varepsilon >0\), using the Cauchy inequality and Schwarz inequality, we obtain

$$\begin{aligned} -2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2\sigma }}\,dx &= -2 \int _{B(o,r)}\frac{u}{ \vert x \vert ^{ \sigma }}Du\cdot \frac{x}{ \vert x \vert ^{\sigma }}\,dx \\ &\leq 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert ^{\sigma }} \vert Du \vert \biggl\vert \frac{x}{ \vert x \vert ^{ \sigma }} \biggr\vert \,dx \\ &= 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert ^{\sigma }} \vert Du \vert \frac{1}{ \vert x \vert ^{\sigma -1}}\,dx \\ &\leq 2\varepsilon \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \\ &\quad {}+\frac{1}{2\varepsilon } \int _{B(o,r)} \vert Du \vert ^{2}\frac{1}{ \vert x \vert ^{2(\sigma -1)}} \,dx. \end{aligned}$$
(3.4)

According to the divergence theorem, we have

$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx=r \int _{\partial B(o,r)}u^{2}\,dS, \end{aligned}$$

and using the Cauchy inequality and Schwarz inequality, we get

$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx &= \int _{B(o,r)} \bigl(nu^{2}+2uDu \cdot x \bigr)\,dx \\ &\leq \int _{B(o,r)} \bigl(nu^{2}+u^{2}+ \vert Du \vert ^{2} \vert x \vert ^{2} \bigr)\,dx \\ &\leq \int _{B(o,r)} \bigl[(n+1)u^{2}+r^{2} \vert Du \vert ^{2} \bigr]\,dx, \end{aligned}$$

which implies

$$\begin{aligned} \frac{1}{r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS \leq \frac{n+1}{r ^{2\sigma }} \int _{B(o,r)}u^{2}\,dx+\frac{1}{r^{2(\sigma -1)}} \int _{B(o,r)} \vert Du \vert ^{2}\,dx. \end{aligned}$$
(3.5)

By substituting (3.4) and (3.5) into (3.3), fixing ε such that \(n-2\sigma -2\varepsilon >0\), we conclude

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl[\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}+ \frac{u^{2}}{r^{2 \sigma }} \biggr]\,dx. \end{aligned}$$
(3.6)

Therefore, from (3.6), for \(n\geq 2\) and \(\sigma <\frac{n}{2}\):

if \(\sigma \leq 1\), noting that

$$\begin{aligned} \frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2(\sigma -1)}}\leq \frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}, \quad x\in B(o,r), \end{aligned}$$

we obtain

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{r ^{2(\sigma -1)}}+\frac{u^{2}}{r^{2\sigma }} \biggr) \,dx. \end{aligned}$$
(3.7)

if \(\sigma >1\), noting that

$$\begin{aligned} \frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2(\sigma -1)}}\geq \frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}, \quad x\in B(o,r), \end{aligned}$$

we obtain

$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$
(3.8)

The proof of Theorem 2.1 is completed. □

Conclusions

In this paper, we refine the proof of Hardy’s inequality for readers to grasp the essence of the proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{\sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n \geq 3\) to \(n \geq 2\). Hardy’s inequality in [10, 12] is the special case of our results.

References

  1. 1.

    Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Am. Math. Soc., Rhode Island (2003)

    Google Scholar 

  2. 2.

    Chu, Y.M., Wang, G.D., Zhang, X.H.: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725–731 (2010)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Chu, Y.M., Wang, G.D., Zhang, X.H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chu, Y.M., Wang, M.K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chu, Y.M., Wang, M.K., Qiu, S.L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chu, Y.M., Xia, W.F., Zhang, X.H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Deng, Y., Wu, S., He, D.: A sharpened version of Hardy’s inequality for parameter \(p=5/{4}\). J. Inequal. Appl. 2013, 63 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Du, G.W., Li, F.: Global higher integrability of solutions to subelliptic double obstacle problems. J. Appl. Anal. Comput. 8(3), 1021–1032 (2018)

    MathSciNet  Google Scholar 

  9. 9.

    Du, G.W., Li, F.: Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients. J. Inequal. Appl. 2018, 53 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Evans, L.C.: Partial Differential Equations, 2nd edn. Grad. Stud. Math., vol. 19. Am. Math. Soc., Providence (2010)

    Google Scholar 

  11. 11.

    Feng, Y.H., Liu, C.M.: Stability of steady-state solutions to Navier–Stokes–Poisson systems. J. Math. Anal. Appl. 462, 1679–1694 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  13. 13.

    Ivanov, S.P., Vassilev, D.N.: Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem. World Scientific, Hackensack (2011)

    Google Scholar 

  14. 14.

    Kannappan, P.: Functional Equations and Inequalities with Applications. Springer, New York (2009)

    Google Scholar 

  15. 15.

    Li, F.: Global existence and uniqueness of weak solution for nonlinear viscoelastic full Marguerre–von Karman shallow shell equations. Acta Math. Sin. Engl. Ser. 25(12), 2133–2156 (2009)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Li, F.: Limit behavior of the solution to nonlinear viscoelastic Marguerre–von Karman shallow shells system. J. Differ. Equ. 249, 1241–1257 (2010)

    Article  Google Scholar 

  17. 17.

    Li, F., Bai, Y.: Uniform rates of decay for nonlinear viscoelastic Marguerre–von Karman shallow shell system. J. Math. Anal. Appl. 351(2), 522–535 (2009)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Li, F., Bao, Y.: Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition. J. Dyn. Control Syst. 23, 301–315 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Li, F., Du, G.: General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comput. 8, 390–401 (2018)

    MathSciNet  Google Scholar 

  20. 20.

    Li, F., Gao, Q.: Blow-up of solution for a nonlinear Petrovsky type equation with memory. Appl. Math. Comput. 274, 383–392 (2016)

    MathSciNet  Google Scholar 

  21. 21.

    Li, F., Hu, F.Y.: Weighted integral inequality and applications in general energy decay estimate for a variable density wave equation with memory. Bound. Value Probl. 2018, 164 (2018)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Li, F., Zhao, C.: Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping. Nonlinear Anal., Theory Methods Appl. 74, 3468–3477 (2011)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Li, F., Zhao, Z., Chen, Y.: Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation. Nonlinear Anal., Real World Appl. 12, 1770–1784 (2011)

    MathSciNet  Google Scholar 

  24. 24.

    Liu, C.M., Peng, Y.J.: Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system. Z. Angew. Math. Phys. 68, 105 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Liu, C.M., Peng, Y.J.: Convergence of a non-isentropic Euler–Poisson system for all time. J. Math. Pures Appl. 119(9), 255–279 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Pachpatte, B.G.: Integral and Finite Difference Inequalities and Applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  27. 27.

    Patriksson, M.: Nonlinear Programming and Variational Inequality Problem. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  28. 28.

    Pons, O.: Inequalities in Analysis and Probability. World Scientific, Hackensack (2013)

    Google Scholar 

  29. 29.

    Qian, W.M., Chu, Y.M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, 274 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Qin, Y.: Analytic Inequalities and Their Applications in PDEs. Springer, Switzerland (2017)

    Google Scholar 

  31. 31.

    Qin, Y.M.: Analytic Inequalities and Their Applications. Springer, Cham (2017)

    Google Scholar 

  32. 32.

    Steinbach, J.: A Variational Inequality Approach to Free Boundary Problem with Applications. Birkhäuser, Basel (2002)

    Google Scholar 

  33. 33.

    Wang, F.Y.: Harnack Inequalities for Stochastic Partial Differential Equations. Springer, New York (2013)

    Google Scholar 

  34. 34.

    Wang, G.D., Zhang, X.H., Chu, Y.M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14(4), 833–837 (2011)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Wang, M.K., Chu, Y.M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Wang, M.K., Chu, Y.M., Qiu, Y.F., Qiu, S.L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Wang, M.K., Qiu, S.L., Chu, Y.M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Wang, M.K., Wang, Z.K., Chu, Y.M.: An optimal double inequality between geometric and identric means. Appl. Math. Lett. 25(3), 471–475 (2012)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Xu, Q., Zhou, M., Zhang, X.: On a strengthened version of Hardy’s inequality. J. Inequal. Appl. 2012, 300 (2012)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Yang, Z.H., Zhang, W., Chu, Y.M.: Sharp Gautschi inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Zhang, J.: Extensions of Hardy inequality. J. Inequal. Appl. 2006, Article ID 69379 (2006)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Zhao, T.H., Wang, M.K., Zhang, W., Chu, Y.M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 251 (2018)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestion.

Availability of data and materials

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (No.11201258).

Author information

Affiliations

Authors

Contributions

The authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Fushan Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Li, F. The refinement and generalization of Hardy’s inequality in Sobolev space. J Inequal Appl 2018, 330 (2018). https://doi.org/10.1186/s13660-018-1922-5

Download citation

Keywords

  • Hardy’s inequality
  • Integrate by part
  • Cauchy inequality
  • Divergence theorem