Skip to content

Advertisement

  • Research
  • Open Access

The refinement and generalization of Hardy’s inequality in Sobolev space

Journal of Inequalities and Applications20182018:330

https://doi.org/10.1186/s13660-018-1922-5

  • Received: 4 September 2018
  • Accepted: 22 November 2018
  • Published:

Abstract

In this paper, we refine the proof of Hardy’s inequality in (Evans in Partial Differential Equations, 2010, Hardy in Inequalities, 1952) and extend Hardy’s inequality from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{\sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n\geq 3\) to \(n\geq 2\). Hardy’s inequality in (Evans in Partial Differential Equations, 2010, Hardy in Inequalities, 1952) is the special case of our results.

Keywords

  • Hardy’s inequality
  • Integrate by part
  • Cauchy inequality
  • Divergence theorem

1 Introduction

It is well known that inequalities are important tools in classical analysis [26, 13, 14, 2629, 3139, 4143, 45]. One application of inequalities is to study the properties of partial differential equations. Li and his coauthors [1523] studied the global existence and uniqueness, limit behavior, uniform stability, and blow-up of solutions for partial differential equations by using various inequalities. Liu [11, 24, 25] showed the stability and convergence results of evolution equations and Du [8, 9] studied obstacle problems by using various inequalities.

In recent decades, there have been many results on the extension and refinement of inequality [7, 10, 12, 30, 40, 44]. Qin [30] summarized a large number of inequalities and applications, but Hardy’s inequality was not included. The authors [7, 40] generalized the summation form Hardy inequality, Zhang [44] extended Hardy inequalities using Littlewood–Paley theory and nonlinear estimates method in Besov spaces, and the results improved and extended the well-known results in [1].

The first edition of classic textbook [10] does not contain Hardy’s inequality, we see that the very significant Hardy’s inequality
$$ \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx $$
holds if \(u\in H^{1}(B(o,r))\), \(n\geq 3\), and \(r>0\) in the second edition of [10]. The proof of Hardy’s inequality given in [10, 12] is very ingenious, but it is not easy to master for the reader. Therefore, we refine the proof of Hardy’s inequality for readers to grasp the essence of the proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{ \sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n \geq 3\) to \(n \geq 2\). Hardy’s inequality in [10, 12] is the special case of our results.
Let \(B(o,r)\) be a closed ball in \(\mathbf{R}^{n}\) with center o and radius \(r>0\), \(x=(x_{1},x_{2},\ldots , x_{n})\) be a vector in \(B(o,r)\), \(\nu =(\nu _{1},\nu _{2},\ldots ,\nu _{n})= (\frac{x_{1}}{r},\frac{x _{2}}{r},\ldots ,\frac{x_{n}}{r} )\) be the unit outward normal to \(\partial B(o,r)\). \(W^{k,p}(\varOmega )\) and \(H^{1}(\varOmega )\) denote the Sobolev spaces. We write
$$\begin{aligned} Du=(u_{x_{1}},u_{x_{2}},\ldots , u_{x_{n}}), \quad \vert x \vert = \bigl(x_{1}^{2}+x_{2}^{2}+ \cdots +x_{n}^{2} \bigr)^{\frac{1}{2}}. \end{aligned}$$

In Sect. 2, we first recall Hardy’s inequality, refine the proof for completeness, and state our main results. The proofs of the main results are given in Sect. 3.

2 Main results

Now, we present the global approximation theorem and Hardy’s inequality in Sobolev space.

Lemma 2.1

([10], Global approximation theorem)

Assume that Ω is bounded and ∂Ω is \(C^{1}\). Let \(u\in W^{k,p}(\varOmega )\) for some \(1\leq p<\infty \). Then there exist functions \(u_{m}\in C^{\infty }(\overline{\varOmega })\) such that
$$\begin{aligned} u_{m}\rightarrow u \quad \mathit{in } W^{k,p}(\varOmega ). \end{aligned}$$

Lemma 2.2

([10, 12], Hardy’s inequality)

Assume \(n\geq 3\) and \(r>0\). Let \(u\in H^{1}(B(o,r))\). Then \(\frac{u}{|x|} \in L^{2}(B(o,r))\) with the estimate
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx. \end{aligned}$$
(2.1)

For readers to grasp the essence of the proof, we give the refined proof below.

Proof

By the global approximation theorem Lemma 2.1, we may assume \(u\in C^{\infty }(B(o,r))\). Noting that \(D (\frac{1}{|x|^{ \rho }} )=-\rho \frac{x}{|x|^{\rho +2}}\) for any \(\rho >0\) and integrating by parts, we have
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx &= -\frac{1}{\rho } \int _{B(o,r)}u ^{2}D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr) \cdot \frac{x}{ \vert x \vert ^{2-\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{B(o,r)}u^{2}\sum_{i=1}^{n} \biggl(\frac{1}{ \vert x \vert ^{ \rho }} \biggr)_{x_{i}} \frac{x_{i}}{ \vert x \vert ^{2-\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{\partial B(o,r)}\sum_{i=1}^{n}u^{2} \nu _{i} \cdot \frac{x_{i}}{ \vert x \vert ^{2}}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \frac{1}{ \vert x \vert ^{\rho }} \biggl(u^{2}\frac{x_{i}}{ \vert x \vert ^{2-\rho }} \biggr)_{x_{i}} \,dx \\ &= -\frac{1}{\rho r} \int _{\partial B(o,r)}u^{2}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)} \biggl[2uDu\cdot \frac{x}{ \vert x \vert ^{2}}+(n+ \rho -2) \frac{u^{2}}{ \vert x \vert ^{2}} \biggr]\,dx. \end{aligned}$$
(2.2)
Therefore
$$\begin{aligned} (n-2) \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx =-2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2}}\,dx+\frac{1}{r} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.3)
For any \(\varepsilon >0\), using the Cauchy inequality and Schwarz inequality, we obtain
$$\begin{aligned} -2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2}}\,dx &= -2 \int _{B(o,r)} \frac{u}{ \vert x \vert }Du\cdot \frac{x}{ \vert x \vert }\,dx \\ &\leq 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert } \vert Du \vert \biggl\vert \frac{x}{ \vert x \vert } \biggr\vert \,dx \\ &= 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert } \vert Du \vert \,dx \\ &\leq 2 \varepsilon \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx+\frac{1}{2 \varepsilon } \int _{B(o,r)} \vert Du \vert ^{2}\,dx. \end{aligned}$$
Fixing \(\varepsilon >0\) such that \(n-2-2\varepsilon >0\), we conclude
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \vert Du \vert ^{2}\,dx+ \frac{C}{r} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.4)
According to the divergence theorem, we have
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx &= \int _{\partial B(o,r)}xu^{2} \cdot \nu \,dS= \int _{\partial B(o,r)}u^{2}x\cdot \frac{x}{r}\,dS \\ &=r \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.5)
Using the Cauchy inequality and Schwarz inequality, we get
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx = & \int _{B(o,r)} \bigl[u^{2} \operatorname{div}(x)+D \bigl(u^{2}\bigr)\cdot x \bigr]\,dx \\ = & \int _{B(o,r)} \bigl(nu^{2}+2uDu\cdot x \bigr)\,dx \\ \leq & \int _{B(o,r)} \bigl(nu^{2}+u^{2}+ \vert x \vert ^{2} \vert Du \vert ^{2} \bigr)\,dx \\ \leq & \int _{B(o,r)} \bigl[(n+1)u^{2}+r^{2} \vert Du \vert ^{2} \bigr]\,dx. \end{aligned}$$
(2.6)
Combining (2.5) and (2.6), we obtain the trace inequality
$$\begin{aligned} \frac{1}{r} \int _{\partial B(o,r)}u^{2}\,dS \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx. \end{aligned}$$
(2.7)
Employing this inequality (2.7) in (2.4) finishes the proof of (2.1). □

Under the circumstance, we extend the space dimension n and parameter σ in \(\frac{u}{|x|^{\sigma }}\) of Hardy’s inequality. Now we show our main results.

Theorem 2.1

Assume \(n\geq 2\) and \(r>0\), \(u\in H^{1}(B(o,r))\). Then, for \(\sigma <\frac{n}{2}\), we have \(\frac{u}{|x|^{\sigma }}\in L^{2}(B(o,r))\) with the estimate as follows:

If \(\sigma \leq 1\) and \(\sigma < \frac{n}{2}\), we have
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{r ^{2(\sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$
If \(\sigma >1\) and \(\sigma < \frac{n}{2}\), we have
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx\leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$

Remark 2.1

Hardy’s inequality (2.1) is the case of \(\sigma =1\) and \(n\geq 3\) in Theorem 2.1.

Remark 2.2

If \(n=2\), then \(\sigma <1\). \(B(o,r)\) denotes a closed circular region with center o and radius \(r>0\), \(\partial B(o,r)\) denotes a circle, and \(\int _{B(o,r)}\cdots dS\) denotes curvilinear integration.

3 Proofs of the main results

In this section we show the proofs of the main results Theorem 2.1.

Proof

For any \(\rho >0\), since
$$\begin{aligned} D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr)=-\rho \frac{x}{ \vert x \vert ^{\rho +2}}, \end{aligned}$$
which implies
$$\begin{aligned} \frac{1}{{ \vert x \vert }^{2\sigma }} &= \biggl[-\rho \frac{x}{{ \vert x \vert }^{\rho +2}} \biggr] \cdot \biggl[ \biggl(-\frac{1}{ \rho } \biggr)\frac{x}{{ \vert x \vert }^{2\sigma -\rho }} \biggr] \\ &=-\frac{1}{\rho }D \biggl(\frac{1}{{ \vert x \vert }^{\rho }} \biggr)\cdot \frac{x}{ { \vert x \vert }^{2\sigma -\rho }} . \end{aligned}$$
(3.1)
By the global approximation theorem, we may assume \(u\in C^{\infty }(B(o,r))\). Noting that (3.1) holds, we obtain
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx &= -\frac{1}{\rho } \int _{B(o,r)}u^{2}D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr) \cdot \frac{x}{ \vert x \vert ^{2 \sigma -\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \biggl(\frac{1}{ \vert x \vert ^{ \rho }} \biggr)_{x_{i}} \biggl(u^{2} \frac{x_{i}}{ \vert x \vert ^{2\sigma -\rho }} \biggr)\,dx \\ &= -\frac{1}{\rho } \int _{\partial B(o,r)}\sum_{i=1}^{n}u^{2} \nu _{i} \cdot \frac{x_{i}}{ \vert x \vert ^{2\sigma }}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \frac{1}{ \vert x \vert ^{\rho }} \biggl(u^{2}\frac{x_{i}}{ \vert x \vert ^{2\sigma -\rho }} \biggr)_{x_{i}} \,dx \\ &= -\frac{1}{\rho r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)} \biggl[2uDu\cdot \frac{x}{ \vert x \vert ^{2\sigma }}+(n+\rho -2\sigma )\frac{u^{2}}{ \vert x \vert ^{2\sigma }} \biggr]\,dx. \end{aligned}$$
(3.2)
Hence
$$\begin{aligned} (n-2\sigma ) \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx &= -2 \int _{B(o,r)}uDu \cdot \frac{x}{ \vert x \vert ^{2\sigma }}\,dx \\ &\quad {}+\frac{1}{r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(3.3)
For any \(\varepsilon >0\), using the Cauchy inequality and Schwarz inequality, we obtain
$$\begin{aligned} -2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2\sigma }}\,dx &= -2 \int _{B(o,r)}\frac{u}{ \vert x \vert ^{ \sigma }}Du\cdot \frac{x}{ \vert x \vert ^{\sigma }}\,dx \\ &\leq 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert ^{\sigma }} \vert Du \vert \biggl\vert \frac{x}{ \vert x \vert ^{ \sigma }} \biggr\vert \,dx \\ &= 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert ^{\sigma }} \vert Du \vert \frac{1}{ \vert x \vert ^{\sigma -1}}\,dx \\ &\leq 2\varepsilon \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \\ &\quad {}+\frac{1}{2\varepsilon } \int _{B(o,r)} \vert Du \vert ^{2}\frac{1}{ \vert x \vert ^{2(\sigma -1)}} \,dx. \end{aligned}$$
(3.4)
According to the divergence theorem, we have
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx=r \int _{\partial B(o,r)}u^{2}\,dS, \end{aligned}$$
and using the Cauchy inequality and Schwarz inequality, we get
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx &= \int _{B(o,r)} \bigl(nu^{2}+2uDu \cdot x \bigr)\,dx \\ &\leq \int _{B(o,r)} \bigl(nu^{2}+u^{2}+ \vert Du \vert ^{2} \vert x \vert ^{2} \bigr)\,dx \\ &\leq \int _{B(o,r)} \bigl[(n+1)u^{2}+r^{2} \vert Du \vert ^{2} \bigr]\,dx, \end{aligned}$$
which implies
$$\begin{aligned} \frac{1}{r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS \leq \frac{n+1}{r ^{2\sigma }} \int _{B(o,r)}u^{2}\,dx+\frac{1}{r^{2(\sigma -1)}} \int _{B(o,r)} \vert Du \vert ^{2}\,dx. \end{aligned}$$
(3.5)
By substituting (3.4) and (3.5) into (3.3), fixing ε such that \(n-2\sigma -2\varepsilon >0\), we conclude
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl[\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}+ \frac{u^{2}}{r^{2 \sigma }} \biggr]\,dx. \end{aligned}$$
(3.6)

Therefore, from (3.6), for \(n\geq 2\) and \(\sigma <\frac{n}{2}\):

if \(\sigma \leq 1\), noting that
$$\begin{aligned} \frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2(\sigma -1)}}\leq \frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}, \quad x\in B(o,r), \end{aligned}$$
we obtain
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{r ^{2(\sigma -1)}}+\frac{u^{2}}{r^{2\sigma }} \biggr) \,dx. \end{aligned}$$
(3.7)
if \(\sigma >1\), noting that
$$\begin{aligned} \frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2(\sigma -1)}}\geq \frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}, \quad x\in B(o,r), \end{aligned}$$
we obtain
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$
(3.8)

The proof of Theorem 2.1 is completed. □

4 Conclusions

In this paper, we refine the proof of Hardy’s inequality for readers to grasp the essence of the proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{\sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n \geq 3\) to \(n \geq 2\). Hardy’s inequality in [10, 12] is the special case of our results.

Declarations

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestion.

Availability of data and materials

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (No.11201258).

Authors’ contributions

The authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematical Sciences, Qufu Normal University, Qufu, P.R. China
(2)
Center for Teaching Research and Evaluation, Qufu Normal University, Qufu, P.R. China

References

  1. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Am. Math. Soc., Rhode Island (2003) MATHGoogle Scholar
  2. Chu, Y.M., Wang, G.D., Zhang, X.H.: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725–731 (2010) MathSciNetMATHGoogle Scholar
  3. Chu, Y.M., Wang, G.D., Zhang, X.H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011) MathSciNetView ArticleGoogle Scholar
  4. Chu, Y.M., Wang, M.K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012) MathSciNetView ArticleGoogle Scholar
  5. Chu, Y.M., Wang, M.K., Qiu, S.L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetView ArticleGoogle Scholar
  6. Chu, Y.M., Xia, W.F., Zhang, X.H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012) MathSciNetView ArticleGoogle Scholar
  7. Deng, Y., Wu, S., He, D.: A sharpened version of Hardy’s inequality for parameter \(p=5/{4}\). J. Inequal. Appl. 2013, 63 (2013) MathSciNetView ArticleGoogle Scholar
  8. Du, G.W., Li, F.: Global higher integrability of solutions to subelliptic double obstacle problems. J. Appl. Anal. Comput. 8(3), 1021–1032 (2018) MathSciNetGoogle Scholar
  9. Du, G.W., Li, F.: Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients. J. Inequal. Appl. 2018, 53 (2018) MathSciNetView ArticleGoogle Scholar
  10. Evans, L.C.: Partial Differential Equations, 2nd edn. Grad. Stud. Math., vol. 19. Am. Math. Soc., Providence (2010) MATHGoogle Scholar
  11. Feng, Y.H., Liu, C.M.: Stability of steady-state solutions to Navier–Stokes–Poisson systems. J. Math. Anal. Appl. 462, 1679–1694 (2018) MathSciNetView ArticleGoogle Scholar
  12. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952) MATHGoogle Scholar
  13. Ivanov, S.P., Vassilev, D.N.: Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem. World Scientific, Hackensack (2011) View ArticleGoogle Scholar
  14. Kannappan, P.: Functional Equations and Inequalities with Applications. Springer, New York (2009) View ArticleGoogle Scholar
  15. Li, F.: Global existence and uniqueness of weak solution for nonlinear viscoelastic full Marguerre–von Karman shallow shell equations. Acta Math. Sin. Engl. Ser. 25(12), 2133–2156 (2009) MathSciNetView ArticleGoogle Scholar
  16. Li, F.: Limit behavior of the solution to nonlinear viscoelastic Marguerre–von Karman shallow shells system. J. Differ. Equ. 249, 1241–1257 (2010) View ArticleGoogle Scholar
  17. Li, F., Bai, Y.: Uniform rates of decay for nonlinear viscoelastic Marguerre–von Karman shallow shell system. J. Math. Anal. Appl. 351(2), 522–535 (2009) MathSciNetView ArticleGoogle Scholar
  18. Li, F., Bao, Y.: Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition. J. Dyn. Control Syst. 23, 301–315 (2017) MathSciNetView ArticleGoogle Scholar
  19. Li, F., Du, G.: General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comput. 8, 390–401 (2018) MathSciNetGoogle Scholar
  20. Li, F., Gao, Q.: Blow-up of solution for a nonlinear Petrovsky type equation with memory. Appl. Math. Comput. 274, 383–392 (2016) MathSciNetGoogle Scholar
  21. Li, F., Hu, F.Y.: Weighted integral inequality and applications in general energy decay estimate for a variable density wave equation with memory. Bound. Value Probl. 2018, 164 (2018) MathSciNetView ArticleGoogle Scholar
  22. Li, F., Zhao, C.: Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping. Nonlinear Anal., Theory Methods Appl. 74, 3468–3477 (2011) MathSciNetView ArticleGoogle Scholar
  23. Li, F., Zhao, Z., Chen, Y.: Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation. Nonlinear Anal., Real World Appl. 12, 1770–1784 (2011) MathSciNetGoogle Scholar
  24. Liu, C.M., Peng, Y.J.: Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system. Z. Angew. Math. Phys. 68, 105 (2017) MathSciNetView ArticleGoogle Scholar
  25. Liu, C.M., Peng, Y.J.: Convergence of a non-isentropic Euler–Poisson system for all time. J. Math. Pures Appl. 119(9), 255–279 (2018) MathSciNetView ArticleGoogle Scholar
  26. Pachpatte, B.G.: Integral and Finite Difference Inequalities and Applications. Elsevier, Amsterdam (2006) MATHGoogle Scholar
  27. Patriksson, M.: Nonlinear Programming and Variational Inequality Problem. Kluwer Academic Publishers, Dordrecht (1999) View ArticleGoogle Scholar
  28. Pons, O.: Inequalities in Analysis and Probability. World Scientific, Hackensack (2013) View ArticleGoogle Scholar
  29. Qian, W.M., Chu, Y.M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, 274 (2017) MathSciNetView ArticleGoogle Scholar
  30. Qin, Y.: Analytic Inequalities and Their Applications in PDEs. Springer, Switzerland (2017) View ArticleGoogle Scholar
  31. Qin, Y.M.: Analytic Inequalities and Their Applications. Springer, Cham (2017) View ArticleGoogle Scholar
  32. Steinbach, J.: A Variational Inequality Approach to Free Boundary Problem with Applications. Birkhäuser, Basel (2002) View ArticleGoogle Scholar
  33. Wang, F.Y.: Harnack Inequalities for Stochastic Partial Differential Equations. Springer, New York (2013) View ArticleGoogle Scholar
  34. Wang, G.D., Zhang, X.H., Chu, Y.M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14(4), 833–837 (2011) MathSciNetMATHGoogle Scholar
  35. Wang, M.K., Chu, Y.M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNetMATHGoogle Scholar
  36. Wang, M.K., Chu, Y.M., Qiu, Y.F., Qiu, S.L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetView ArticleGoogle Scholar
  37. Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018) MathSciNetView ArticleGoogle Scholar
  38. Wang, M.K., Qiu, S.L., Chu, Y.M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018) MathSciNetMATHGoogle Scholar
  39. Wang, M.K., Wang, Z.K., Chu, Y.M.: An optimal double inequality between geometric and identric means. Appl. Math. Lett. 25(3), 471–475 (2012) MathSciNetView ArticleGoogle Scholar
  40. Xu, Q., Zhou, M., Zhang, X.: On a strengthened version of Hardy’s inequality. J. Inequal. Appl. 2012, 300 (2012) MathSciNetView ArticleGoogle Scholar
  41. Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018) MathSciNetMATHGoogle Scholar
  42. Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetView ArticleGoogle Scholar
  43. Yang, Z.H., Zhang, W., Chu, Y.M.: Sharp Gautschi inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATHGoogle Scholar
  44. Zhang, J.: Extensions of Hardy inequality. J. Inequal. Appl. 2006, Article ID 69379 (2006) MathSciNetView ArticleGoogle Scholar
  45. Zhao, T.H., Wang, M.K., Zhang, W., Chu, Y.M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 251 (2018) MathSciNetView ArticleGoogle Scholar

Copyright

© The Author(s) 2018

Advertisement