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Abstract
In this paper, we refine the proof of Hardy’s inequality in (Evans in Partial Differential
Equations, 2010, Hardy in Inequalities, 1952) and extend Hardy’s inequality from two
aspects. That is to say, we extend the integral estimation function from u

|x| to
u

|x|σ with
suitable σ > 0 and extend the space dimension from n ≥ 3 to n ≥ 2. Hardy’s
inequality in (Evans in Partial Differential Equations, 2010, Hardy in Inequalities, 1952)
is the special case of our results.
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1 Introduction
It is well known that inequalities are important tools in classical analysis [2–6, 13, 14,
26–29, 31–39, 41–43, 45]. One application of inequalities is to study the properties of par-
tial differential equations. Li and his coauthors [15–23] studied the global existence and
uniqueness, limit behavior, uniform stability, and blow-up of solutions for partial differ-
ential equations by using various inequalities. Liu [11, 24, 25] showed the stability and
convergence results of evolution equations and Du [8, 9] studied obstacle problems by
using various inequalities.

In recent decades, there have been many results on the extension and refinement of
inequality [7, 10, 12, 30, 40, 44]. Qin [30] summarized a large number of inequalities
and applications, but Hardy’s inequality was not included. The authors [7, 40] general-
ized the summation form Hardy inequality, Zhang [44] extended Hardy inequalities using
Littlewood–Paley theory and nonlinear estimates method in Besov spaces, and the results
improved and extended the well-known results in [1].

The first edition of classic textbook [10] does not contain Hardy’s inequality, we see that
the very significant Hardy’s inequality

∫
B(o,r)

u2

|x|2 dx ≤ C
∫

B(o,r)

(
|Du|2 +

u2

r2

)
dx

holds if u ∈ H1(B(o, r)), n ≥ 3, and r > 0 in the second edition of [10]. The proof of Hardy’s
inequality given in [10, 12] is very ingenious, but it is not easy to master for the reader.
Therefore, we refine the proof of Hardy’s inequality for readers to grasp the essence of the
proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say, we
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extend the integral estimation function from u
|x| to u

|x|σ with suitable σ > 0 and extend the
space dimension from n ≥ 3 to n ≥ 2. Hardy’s inequality in [10, 12] is the special case of
our results.

Let B(o, r) be a closed ball in Rn with center o and radius r > 0, x = (x1, x2, . . . , xn) be a
vector in B(o, r), ν = (ν1,ν2, . . . ,νn) = ( x1

r , x2
r , . . . , xn

r ) be the unit outward normal to ∂B(o, r).
W k,p(Ω) and H1(Ω) denote the Sobolev spaces. We write

Du = (ux1 , ux2 , . . . , uxn ), |x| =
(
x2

1 + x2
2 + · · · + x2

n
) 1

2 .

In Sect. 2, we first recall Hardy’s inequality, refine the proof for completeness, and state
our main results. The proofs of the main results are given in Sect. 3.

2 Main results
Now, we present the global approximation theorem and Hardy’s inequality in Sobolev
space.

Lemma 2.1 ([10], Global approximation theorem) Assume that Ω is bounded and ∂Ω is
C1. Let u ∈ W k,p(Ω) for some 1 ≤ p < ∞. Then there exist functions um ∈ C∞(Ω) such that

um → u inW k,p(Ω).

Lemma 2.2 ([10, 12], Hardy’s inequality) Assume n ≥ 3 and r > 0. Let u ∈ H1(B(o, r)). Then
u
|x| ∈ L2(B(o, r)) with the estimate

∫
B(o,r)

u2

|x|2 dx ≤ C
∫

B(o,r)

(
|Du|2 +

u2

r2

)
dx. (2.1)

For readers to grasp the essence of the proof, we give the refined proof below.

Proof By the global approximation theorem Lemma 2.1, we may assume u ∈ C∞(B(o, r)).
Noting that D( 1

|x|ρ ) = –ρ x
|x|ρ+2 for any ρ > 0 and integrating by parts, we have

∫
B(o,r)

u2

|x|2 dx = –
1
ρ

∫
B(o,r)

u2D
(

1
|x|ρ

)
· x
|x|2–ρ

dx

= –
1
ρ

∫
B(o,r)

u2
n∑

i=1

(
1

|x|ρ
)

xi

xi

|x|2–ρ
dx

= –
1
ρ

∫
∂B(o,r)

n∑
i=1

u2νi · xi

|x|2 dS

+
1
ρ

∫
B(o,r)

n∑
i=1

1
|x|ρ

(
u2 xi

|x|2–ρ

)
xi

dx

= –
1
ρr

∫
∂B(o,r)

u2 dS

+
1
ρ

∫
B(o,r)

[
2uDu · x

|x|2 + (n + ρ – 2)
u2

|x|2
]

dx. (2.2)
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Therefore

(n – 2)
∫

B(o,r)

u2

|x|2 dx = –2
∫

B(o,r)
uDu · x

|x|2 dx +
1
r

∫
∂B(o,r)

u2 dS. (2.3)

For any ε > 0, using the Cauchy inequality and Schwarz inequality, we obtain

–2
∫

B(o,r)
uDu · x

|x|2 dx = –2
∫

B(o,r)

u
|x|Du · x

|x| dx

≤ 2
∫

B(o,r)

|u|
|x| |Du|

∣∣∣∣ x
|x|

∣∣∣∣dx

= 2
∫

B(o,r)

|u|
|x| |Du|dx

≤ 2ε

∫
B(o,r)

u2

|x|2 dx +
1

2ε

∫
B(o,r)

|Du|2 dx.

Fixing ε > 0 such that n – 2 – 2ε > 0, we conclude

∫
B(o,r)

u2

|x|2 dx ≤ C
∫

B(o,r)
|Du|2 dx +

C
r

∫
∂B(o,r)

u2 dS. (2.4)

According to the divergence theorem, we have

∫
B(o,r)

div
(
xu2)dx =

∫
∂B(o,r)

xu2 · ν dS =
∫

∂B(o,r)
u2x · x

r
dS

= r
∫

∂B(o,r)
u2 dS. (2.5)

Using the Cauchy inequality and Schwarz inequality, we get

∫
B(o,r)

div
(
xu2)dx =

∫
B(o,r)

[
u2 div(x) + D

(
u2) · x

]
dx

=
∫

B(o,r)

(
nu2 + 2uDu · x

)
dx

≤
∫

B(o,r)

(
nu2 + u2 + |x|2|Du|2)dx

≤
∫

B(o,r)

[
(n + 1)u2 + r2|Du|2]dx. (2.6)

Combining (2.5) and (2.6), we obtain the trace inequality

1
r

∫
∂B(o,r)

u2 dS ≤ C
∫

B(o,r)

(
|Du|2 +

u2

r2

)
dx. (2.7)

Employing this inequality (2.7) in (2.4) finishes the proof of (2.1). �

Under the circumstance, we extend the space dimension n and parameter σ in u
|x|σ of

Hardy’s inequality. Now we show our main results.
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Theorem 2.1 Assume n ≥ 2 and r > 0, u ∈ H1(B(o, r)). Then, for σ < n
2 , we have u

|x|σ ∈
L2(B(o, r)) with the estimate as follows:

If σ ≤ 1 and σ < n
2 , we have

∫
B(o,r)

u2

|x|2σ
dx ≤ C

∫
B(o,r)

( |Du|2
r2(σ–1) +

u2

r2σ

)
dx.

If σ > 1 and σ < n
2 , we have

∫
B(o,r)

u2

|x|2σ
dx ≤ C

∫
B(o,r)

( |Du|2
|x|2(σ–1) +

u2

r2σ

)
dx.

Remark 2.1 Hardy’s inequality (2.1) is the case of σ = 1 and n ≥ 3 in Theorem 2.1.

Remark 2.2 If n = 2, then σ < 1. B(o, r) denotes a closed circular region with center o and
radius r > 0, ∂B(o, r) denotes a circle, and

∫
B(o,r) · · ·dS denotes curvilinear integration.

3 Proofs of the main results
In this section we show the proofs of the main results Theorem 2.1.

Proof For any ρ > 0, since

D
(

1
|x|ρ

)
= –ρ

x
|x|ρ+2 ,

which implies

1
|x|2σ

=
[

–ρ
x

|x|ρ+2

]
·
[(

–
1
ρ

)
x

|x|2σ–ρ

]

= –
1
ρ

D
(

1
|x|ρ

)
· x
|x|2σ–ρ

. (3.1)

By the global approximation theorem, we may assume u ∈ C∞(B(o, r)). Noting that (3.1)
holds, we obtain

∫
B(o,r)

u2

|x|2σ
dx = –

1
ρ

∫
B(o,r)

u2D
(

1
|x|ρ

)
· x
|x|2σ–ρ

dx

= –
1
ρ

∫
B(o,r)

n∑
i=1

(
1

|x|ρ
)

xi

(
u2 xi

|x|2σ–ρ

)
dx

= –
1
ρ

∫
∂B(o,r)

n∑
i=1

u2νi · xi

|x|2σ
dS

+
1
ρ

∫
B(o,r)

n∑
i=1

1
|x|ρ

(
u2 xi

|x|2σ–ρ

)
xi

dx

= –
1

ρr2σ–1

∫
∂B(o,r)

u2 dS

+
1
ρ

∫
B(o,r)

[
2uDu · x

|x|2σ
+ (n + ρ – 2σ )

u2

|x|2σ

]
dx. (3.2)
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Hence

(n – 2σ )
∫

B(o,r)

u2

|x|2σ
dx = –2

∫
B(o,r)

uDu · x
|x|2σ

dx

+
1

r2σ–1

∫
∂B(o,r)

u2 dS. (3.3)

For any ε > 0, using the Cauchy inequality and Schwarz inequality, we obtain

–2
∫

B(o,r)
uDu · x

|x|2σ
dx = –2

∫
B(o,r)

u
|x|σ Du · x

|x|σ dx

≤ 2
∫

B(o,r)

|u|
|x|σ |Du|

∣∣∣∣ x
|x|σ

∣∣∣∣dx

= 2
∫

B(o,r)

|u|
|x|σ |Du| 1

|x|σ–1 dx

≤ 2ε

∫
B(o,r)

u2

|x|2σ
dx

+
1

2ε

∫
B(o,r)

|Du|2 1
|x|2(σ–1) dx. (3.4)

According to the divergence theorem, we have

∫
B(o,r)

div
(
xu2)dx = r

∫
∂B(o,r)

u2 dS,

and using the Cauchy inequality and Schwarz inequality, we get

∫
B(o,r)

div
(
xu2)dx =

∫
B(o,r)

(
nu2 + 2uDu · x

)
dx

≤
∫

B(o,r)

(
nu2 + u2 + |Du|2|x|2)dx

≤
∫

B(o,r)

[
(n + 1)u2 + r2|Du|2]dx,

which implies

1
r2σ–1

∫
∂B(o,r)

u2 dS ≤ n + 1
r2σ

∫
B(o,r)

u2 dx +
1

r2(σ–1)

∫
B(o,r)

|Du|2 dx. (3.5)

By substituting (3.4) and (3.5) into (3.3), fixing ε such that n – 2σ – 2ε > 0, we conclude

∫
B(o,r)

u2

|x|2σ
dx ≤ C

∫
B(o,r)

[ |Du|2
|x|2(σ–1) +

|Du|2
r2(σ–1) +

u2

r2σ

]
dx. (3.6)

Therefore, from (3.6), for n ≥ 2 and σ < n
2 :

if σ ≤ 1, noting that

|Du|2
|x|2(σ–1) ≤ |Du|2

r2(σ–1) , x ∈ B(o, r),
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we obtain

∫
B(o,r)

u2

|x|2σ
dx ≤ C

∫
B(o,r)

( |Du|2
r2(σ–1) +

u2

r2σ

)
dx. (3.7)

if σ > 1, noting that

|Du|2
|x|2(σ–1) ≥ |Du|2

r2(σ–1) , x ∈ B(o, r),

we obtain

∫
B(o,r)

u2

|x|2σ
dx ≤ C

∫
B(o,r)

( |Du|2
|x|2(σ–1) +

u2

r2σ

)
dx. (3.8)

The proof of Theorem 2.1 is completed. �

4 Conclusions
In this paper, we refine the proof of Hardy’s inequality for readers to grasp the essence of
the proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say,
we extend the integral estimation function from u

|x| to u
|x|σ with suitable σ > 0 and extend

the space dimension from n ≥ 3 to n ≥ 2. Hardy’s inequality in [10, 12] is the special case
of our results.
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