- Research
- Open access
- Published:
Blow-up analysis for a periodic two-component μ-Hunter–Saxton system
Journal of Inequalities and Applications volume 2018, Article number: 308 (2018)
Abstract
The two-component μ-Hunter–Saxton system is considered in the spatially periodic setting. Firstly, two wave-breaking criteria are derived by employing the transport equation theory and the localization analysis method. Secondly, a sufficient condition of the blow-up solutions is established by using the classic method. The results obtained in this paper are new and different from those in previous works.
1 Introduction
In this article, we consider the periodic two-component μ-Hunter–Saxton system derived by Zuo [1]
where \(u(t,x)\) and \(\rho (t,x)\) are time-dependent functions on the unit circle \(\mathbb{S}=\mathbb{R}/\mathbb{Z}\), the real dimensionless constant \(\sigma \in \mathbb{R}\) is a parameter which provides the competition, or balance, in fluid convection between nonlinear steepening and amplification due to stretching. \(\mu (u)=\int_{\mathbb{S}}u\,dx\) denotes its mean and \(\gamma_{i}\in \mathbb{R}\), \(i=1,2\). It is shown in [1] that system (1) is an Euler equation with bi-Hamilton structure
where \(A(u)=\mu (u)-u_{xx}\), and it is also viewed as a bi-variational equation. Moreover, for \(\gamma_{i}=0\), \(i=1,2\), system (1) has a Lax pair given by
where λ is a spectral parameter (see [1]). Recently, Liu and Yin [2, 3] investigated the Cauchy problem for system (1). In [2], the local well-posedness and several precise blow-up criteria for the system were obtained. Under the conditions \(\mu_{0}=0\) and \(\mu_{0}\neq 0\), the sufficient conditions of blow-up solutions were presented. The global existence for strong solution for system (1) in the Sobolev space \(H^{s}(\mathbb{S}) \times H^{s-1}(\mathbb{S})\) with \(s=2\) is also given [2], and in [3], the existence of global weak solution is established for the periodic two-component μ-Hunter–Saxton system. The objective of the present paper is to focus mainly on wave-breaking criterion and several sufficient conditions of blow-up solutions.
If t is replaced by −t, and \(\gamma_{i}=0\) (\(i=1,2\)) in system (1), in fact, system (1) has significant relationship with several models describing the motion of waves at the free surface of shallow water under the influence of gravity. Such as μ-Camassa–Holm equation [4,5,6], μ–b equation [7], two-component periodic Hunter–Saxton system [8,9,10,11,12], and two-component Dullin–Gottwald–Holm system [13, 14]. If \(\mu -\partial^{2}_{x}\) and t are replaced by \(1-\partial^{2}_{x}\) and −t in system (1) respectively, system (1)(\(\gamma_{i}=0\) (\(i=1,2\))) becomes the two-component Camassa–Holm system, and its dynamic properties can be found in [15,16,17,18,19,20,21,22,23,24] and the references therein.
Integrating the first equation of system (1) over the circle \(\mathbb{S}=\mathbb{R}/\mathbb{Z}\) and noting the periodicity of u, we have \(\mu (u_{t})=0\). Making use of system (1), we have that \(\int_{\mathbb{S}}(u^{2}_{x}+\rho^{2})\,dx\) is conserved in time. In what follows we denote
and
Then \(\mu_{0}\) and \(\mu_{1}\) are constants independent of time t.
Notice that \(\int_{\mathbb{S}}(u(t,x)-\mu_{0})\,dx=\mu_{0}-\mu_{0}=0\). From Remark 2.1 in [2], we get
which implies that the amplitude of wave remains bounded in any time. Namely, we have
which results in
In fact, the initial-value problem (1) can be recast in the following:
where \(A=\mu -\partial^{2}_{x}\) is an isomorphism between \(H^{s}\) and \(H^{s-2}\) with the inverse \(\nu =A^{-1}\omega \) given explicitly by
Commuting \(A^{-1}\) and \(\partial_{x}\), we get
and
Note that if \(f\in L^{2}(\mathbb{S})\), we have \(A^{-1}f=(\mu -\partial ^{2}_{x})^{-1}f=g\ast f\), where we denote by ∗ convolution and g is the Green’s function of the operator \(A^{-1}\) given by
and the derivative of g can be assigned
The objective of the present paper is to focus mainly on a wave-breaking criterion and wave-breaking phenomena for system (1). The local well-posedness of system (1) is firstly established by using Kato’s theory. Then we present two wave-breaking criteria (see Theorem 3.1 and Theorem 3.2) and a wave-breaking phenomenon (Theorem 4.1) for system (1) in the Sobolev space \(H^{s}(\mathbb{S})\times H^{s-1}( \mathbb{S})\) with \(s\geq 2\). The results obtained in this paper are new and different from those in Liu and Yin’s work [2].
The rest of this paper is organized as follows. Section 2 states local well-posedness for the periodic two-component μ-Hunter–Saxton system. In Sect. 3, we employ the transport equation theory to prove a wave-breaking criterion in the Sobolev space \(H^{s}(\mathbb{S}) \times H^{s-1}(\mathbb{S})\) with \(s\geq 2\). An improved wave-breaking criterion also is presented in Sect. 3. Section 4 is devoted to the study of a wave-breaking phenomenon.
2 Local well-posedness
In this section, we will establish the local well-posedness for system (1) by Kato’s theorem. For convenience, we present here Kato’s theorem. Consider the abstract quasilinear evolution equation
Let X and Y be two Hilbert spaces such that Y is continuously and densely embedded in X. Let \(Q:Y\rightarrow X\) be a topological isomorphism, and let \(\Vert \cdot \Vert _{X}\) and \(\Vert \cdot \Vert _{Y}\) be the norms of the Banach spaces X and Y, respectively. Let \(L(Y,X)\) denote the space of all bounded linear operators from Y to X. In particular, it is denoted by \(L(X)\) if \(X=Y\). If A is an unbounded operator, we denote the domain of A by \(D(A)\). \([A,B]\) denotes the commutator of two linear operators A and B. The linear operator A belongs to \(G(X,1,\beta )\), where β is a real number, if −A generates a \(C_{0}\)-semigroup such that \(\Vert e^{-sA}\Vert _{L(X)}\leq e^{\beta s}\). The inner product in \(H^{s}\) is denoted by \(\langle \cdot ,\cdot \rangle_{s}\), particularly the \(L^{2}\) inner product is \(\langle \cdot ,\cdot \rangle \).
We make the following assumptions, where \(\mu_{1}\), \(\mu_{2}\), \(\mu_{3}\), and \(\mu_{4}\) are constants depending only on \(\max \{ \Vert z\Vert _{Y}, \Vert y\Vert _{Y}\}\).
-
(I)
\(A(y)\in L(Y,X)\) for \(y\in X\) with
$$\begin{aligned} \bigl\Vert \bigl(A(y)-A(z)\bigr)w \bigr\Vert _{X}\leq \mu_{1} \Vert y-z \Vert _{X} \Vert w \Vert _{Y},\quad y,z,w\in Y \end{aligned}$$and \(A(y)\in G(X,1,\beta )\) (i.e., \(A(y)\) is quasi-m-accretive), uniformly on bounded sets in Y.
-
(II)
\(QA(y)Q^{-1}=A(y)+B(y)\), where \(B(y)\in L(X)\) is bounded uniformly on bounded sets in Y. Moreover,
$$\begin{aligned} \bigl\Vert \bigl(B(y)-B(z)\bigr)w \bigr\Vert _{X}\leq \mu_{2} \Vert y-z \Vert _{Y} \Vert w \Vert _{X},\quad y,z\in Y, w\in X. \end{aligned}$$ -
(III)
\(f: Y\rightarrow Y\) extends to a map from X into X, is bounded on bounded sets in Y, and satisfies
$$\begin{aligned} \bigl\Vert f(y)-f(z) \bigr\Vert _{Y}\leq \mu_{3} \Vert y-z \Vert _{Y},\quad y,z\in Y \end{aligned}$$and
$$\begin{aligned} \bigl\Vert f(y)-f(z) \bigr\Vert _{X}\leq \mu_{4} \Vert y-z \Vert _{X},\quad y,z\in Y. \end{aligned}$$
Kato’s Theorem
([25])
Assume that conditions (I), (II), and (III) hold. Given \(v_{0}\in Y\), there is a maximal \(T>0\) depending only on \(\Vert v_{0}\Vert _{Y}\) and a unique solution v to system (13) such that
Moreover, the map \(v_{0}\longmapsto v(\cdot , v_{0})\) is a continuous map from Y to \(C([0,T); Y)\cap C^{1}([0,T); X)\).
Set
\(Y=H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})\), \(X=H^{s-1}( \mathbb{S})\times H^{s-2}(\mathbb{S})\), \(\varLambda =(1-\partial^{2}_{x})^{ \frac{1}{2}}\), \(\varLambda_{\mu }=(\mu -\partial^{2}_{x})^{\frac{1}{2}}\),
Obviously, Q is an isomorphism of \(H^{s}\times H^{s-1}\) onto \(H^{s-1}\times H^{s-2}\).
The local well-posedness for system (1) is collected in the following.
Theorem 2.1
Given \(z_{0}=(u_{0},\rho_{0})\in H^{s}( \mathbb{S})\times H^{s-1}(\mathbb{S})\), \(s\geq 2\), then there exists a maximal \(T=T(\Vert z_{0} \Vert _{H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})})>0\) and a unique solution \(z=(u,\rho )\) to system (1) such that
Proof
Since there are some similarities with the proof of Theorem 3.1 in [14], here we omit the proof of the theorem. □
3 Wave-breaking criteria
Lemma 3.1
([26])
Let \(T>0\) and \(v\in C^{1}([0,T); H^{2}(R))\). Then, for every \(t\in [0,T)\), there exists at least one point \(\xi (t)\in R\) with
The function \(m(t)\) is absolutely continuous on \((0,T)\) with
Now, consider the initial value problem for the Lagrangian flow map:
where u denotes the first component of the solution \(z=(u,\rho )\) to system (1). Applying classical results from ordinary differential equations, one can obtain the result.
Lemma 3.2
Let \(u\in C([0,T);H^{s}(\mathbb{R}))\cap C^{1}([0,T);H^{s-1}(\mathbb{R}))\), \(s\geq 2\). Then Eq. (14) has a unique solution \(q\in C^{1}([0,T)\times \mathbb{R};\mathbb{R})\). Moreover, the map \(q(t,\cdot )\) is an increasing diffeomorphism of \(\mathbb{R}\) with
Lemma 3.3
Let \(z_{0}=(u_{0},\rho_{0})\in H^{s}( \mathbb{S})\times H^{s-1}(\mathbb{S})\), \(s\geq 2\), and let \(T>0\) be the maximal existence time of the corresponding solution \(z=(u,\rho )\) to system (1). Then it has
Theorem 3.1
Let \(z_{0}=(u_{0},\rho_{0})\in H^{s}( \mathbb{S})\times H^{s-1}(\mathbb{S})\) with \(s\geq 2\), and \(z=(u, \rho )\) be the corresponding solution to (1). Assume that \(T>0\) is the maximal existence time. Then
Proof
Since the two equations for u and ρ in system (7) satisfy the transport structure
Therefore, we can complete the proof of Theorem 3.1 by making use of conservation laws and the localization analysis in transport equation theory (see Theorems 3.1 and 3.2) in [18]. The detailed proof can be found in [18]. □
Theorem 3.2
Let \((u_{0}, \rho_{0})\in H^{s}\times H ^{s-1} \) with \(s > 3/2\), and \(T > 0\) be the maximal time of existence of the solution \((u, \rho )\) to system (1) with initial data \((u_{0}, \rho_{0})\). Then the corresponding solution \((u, \rho )\) blows up in finite time \(T < \infty \) if and only if
Furthermore, if \(\sigma \geq 1\), then the corresponding solution \((u, \rho )\) blows up in finite time \(T < \infty \) if and only if
Proof
By Theorem 2.1 and a simple density argument, we need only to prove this theorem for \(s \geq 3\). We may also assume \(u_{0}\neq 0\), otherwise it is trivial. Let \(T > 0\) be the maximal time of existence of the corresponding solution \((u, \rho )\) to system (1). We first prove the case in (18). Assume that \(T < \infty \) and (18) is not true. Then there is some positive number \(\varOmega > 0\) such that
Therefore, Theorem 3.1 implies that the maximal existence time \(T = \infty \), which contradicts the assumption that \(T < \infty \).
Now, we try to prove the blow-up criterion (19). Since \(\sup_{x\in \mathbb{S}}(v_{x}(t,x))=-\inf_{x\in \mathbb{S}}(-v_{x}(t, x))\), we define
Obviously,
Since \(q(t,\cdot )\) defined by (14) is a diffeomorphism of the circle for any \(t \in [0,T )\), there exists \(x_{1}(t) \in \mathbb{S}\) such that
Along the trajectory of \(q(t,x_{1}(t))\), we have
Differentiating the first equation of system (7) and using the equality \(\partial^{2}_{x}\varLambda^{-2}_{\mu } f=-f+\int^{1}_{0}f\,dx\), we have
Along the trajectory of \(q(t,x_{1}(t))\), (25) can be rewritten as the following form:
where ′ denotes the derivative with respect to t and \(d(t)=-2\mu _{0}u+2\mu^{2}_{0}+\int_{0}^{1}(\frac{\sigma }{2}u^{2}_{x}+ \frac{1}{2}\rho^{2})\,dx\).
Assume that (19) is not valid, then there is some positive number Ω such that
then, from (24), for each \(x\in \mathbb{S}\), we get
from which we obtain
In order to proceed with the proof, next we need to obtain the lower bound of \(d(t,-\xi (t))\).
Let
then
We now claim that
Assume the contrary that there is \(t_{0}\in [0,T)\) such that \(Q(t_{0})<0\). Let \(t_{1}=\max \{t< t_{0}; Q(t)=0\}\). Then \(Q(t_{1})=0\) and \(Q'(t_{1})<0\), namely
and
Recalling (26) and using (33), we have
which is a contradiction to (35). This verifies that (33) is valid. Therefore, choosing arbitrary \(x\in \mathbb{S}\), we have
recalling the assumption
we get \(\sqrt{\frac{\sigma }{2}}\vert u_{x}\vert <+\infty \). This contradicts our assumption \(T<\infty \), which completes the proof of Theorem 3.2. □
4 Wave-breaking phenomenon
In this section, we give a new blow-up phenomenon. To prove the blow-up phenomenon, the following lemma is crucial.
Lemma 4.1
([26])
Let g be a monotone function on \([a,b]\) and f be a real continuous function on \([a,b]\). Then there exists \(\xi \in [a,b]\) such that
We let
then a new wave-breaking result is collected in the following theorem.
Theorem 4.1
Let \(z_{0}=(u_{0},\rho_{0})\in H^{s}( \mathbb{S})\times H^{s-1}(\mathbb{S})\) with \(s\geq 2\), and let T be the maximal existence time of the corresponding solution to system (1) with the initial data \(z_{0}\). Assume that \(I_{1}(0)+I_{2}(0) \geq -\frac{98}{3}\mu_{0}+2\mu_{1}\), \(\mu_{0}<0\), and \(\sigma \geq 1\).
If there are some \(x_{1}, x_{2}\in \mathbb{S}\) such that
and
then the solution of system (1) blows up in finite time.
Proof
By Theorem 2.1, we need only to prove this theorem for \(s\geq 3\). According to Lemma 3.1, there exists \(\xi (t)\in \mathbb{S}\) such that
Since \(q(t,\cdot )\) defined by (14) is a diffeomorphism of the circle for any \(t\in [0,T)\), we know that there exists \(x_{1}(t) \in \mathbb{S}\) such that
Therefore we can choose \(\xi (0)=x_{1}\) and
Using Lemma 3.3, we have
On the other hand, due to \(\sup_{x\in \mathbb{S}}(v_{x}(t,x))=- \inf_{x\in \mathbb{S}}(-v_{x}(t,x))\), we similarly define
There exists \(x_{2}(t)\in \mathbb{S}\) such that
Moreover, we have
Differentiating the first equation of system (7) with respect to x yields
Using (10), we get
Recalling the definitions of \(I_{i}\) (\(i=1,2\)), we get
and
We notice that \(g(x)=\frac{1}{2}(x-\frac{1}{2})^{2}+\frac{23}{24}\) is continuous on \(\mathbb{S}\), decreasing on \([0,\frac{1}{2}]\), and increasing on \([\frac{1}{2},1]\). Therefore, we have
From equality (11), we deduce
In an analogous way, we get
Thus, by (53) and (54), it implies
If \(\mu_{0}\leq 0\) and \(\sigma \geq 1\), from (55), (50), and (51) we deduce that, for a.e. \(t\in (0,T)\),
and
Summing up (56) and (57) results in
From the assumption of Theorem 4.1 \(I_{0}(0)+I_{2}(0)\geq - \frac{98}{3}\mu_{0}+2\mu_{1}\), we now claim that, for all \(t\in T\),
Let \(I(t)=(I_{1}+I_{2})(t)+\frac{98}{3}\mu_{0}-2\mu_{1}\). Then we claim that \(I(t)\geq 0\). It is observed that \(I(t)\) is continuous on \([0,T)\). Assume that \(I(t)\geq 0\) is not valid, then there is \(t_{0}\in (0,T)\) such that \(I(t_{0})<0\). Let \(t_{1}=\max \{t< t_{0}: I(t)=0 \}\). Then \(I(t_{1})=0\) and \(I'(t_{1})<0\), namely
and
Due to
and
Thus, we get
which gives rise to a contradiction with (61). Therefore, (59) is true.
Since \(I_{2}(t)\) is locally Lipschitz on \((0,T)\), we have that \(\frac{1}{(I_{2}(t)+\frac{49}{3\sigma }\mu_{0})}\) is also locally Lipschitz on \((0,T)\), then \(\frac{1}{(I_{2}(t)+\frac{49}{3\sigma }\mu _{0})}\) is absolutely continuous on \((0,T)\).
Solving (65), we obtain
which leads us to
The above inequality implies that \(I_{2}(t)\rightarrow +\infty \) as \(t\rightarrow \frac{2}{\sigma (I_{2}(0)+\frac{49}{3\sigma }\mu_{0})}\). Applying Theorem 3.2, we complete the proof of Theorem 4.1. □
Remark 1
If we let \(\rho_{0}(-x)=0\), then from Lemma 3.3 we can obtain \(\rho (t,-x)=0\) easily. Then system (1) is degenerated into μ-version Camassa–Holm equation under \(\gamma_{1}=0\). For the blow-up results related to μ-version Camassa–Holm equation, the reader is referred to [6] and the references therein.
Remark 2
It is worthwhile to mention that comparing with the results in [2], our blow-up results are new and quite different. There is twofold meaning: firstly, our blow-up criteria and the proof of them are different from the ones in [2]. Then, our blow-up phenomena (see Theorem 4.1) are also different from the ones in [2], because the conditions of Theorem 4.1 in our paper are different from the ones [2]. When \(\rho_{0}(-x)=0\), system (1) is degenerated into μ-version Camassa–Holm equation essentially. So the blow-up phenomena in [2] belong to μ-version Camassa–Holm equation.
References
Zuo, D.: A two-component μ-Hunter–Saxton equation. Inverse Probl. 26, 085003 (2010)
Liu, J., Yin, Z.: On the Cauchy problem of a periodic 2-component μ-Hunter–Saxton system. Nonlinear Anal. 75(1), 131–142 (2012)
Liu, J., Yin, Z.: Global weak solutions for a periodic two-component μ-Hunter–Saxton system. Monatshefte Math. 168, 503–521 (2012)
Khesin, B., Lenells, J., Misiolek, G.: Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342, 617–656 (2008)
Lenells, J., Misiolek, G., Tiǧlay, F.: Integrable evolution equations on space of tensor densities and their peakon solutions. Commun. Math. Phys. 299, 129–161 (2010)
Fu, Y., Liu, Y., Qu, C.: On the blow-up structure for the generalized periodic Camassa–Holm and Degasperis–Procesi equations. J. Funct. Anal. 262, 3125–3158 (2012)
Lv, G., Wang, X.: Holder continuity on μ–b equation. Nonlinear Anal. 102, 30–35 (2014)
Escher, J.: Non-metric two-component Euler equation on the circle. Monatshefte Math. 167, 449–459 (2012)
Moon, B., Liu, Y.: Wave breaking and global existence for the generalized periodic two-component Hunter–Saxton system. J. Differ. Equ. 253, 319–355 (2012)
Wunsch, M.: On the Hunter–Saxton system. Discrete Contin. Dyn. Syst. 12, 647–656 (2009)
Wunsch, M.: Weak geodesic flow on a semi-direct product and global solutions to the periodic Hunter–Saxton system. Nonlinear Anal. 74, 4951–4960 (2011)
Moon, B.: Solitary wave solutions of the generalized two-component Hunter–Saxton system. Nonlinear Anal., Theory Methods Appl. 89, 242–249 (2013)
Guo, F., Gao, H.J., Liu, Y.: On the wave-breaking phenomena for the two-component Dullin–Gottwald–Holm system. J. Lond. Math. Soc. 86, 810–834 (2012)
Zhu, M., Xu, J.X.: On the wave-breaking phenomena for the periodic two-component Dullin–Gottwald–Holm system. J. Math. Anal. Appl. 391, 415–428 (2012)
Constantin, A., Ivanov, R.I.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)
Escher, J., Lechtenfeld, O., Yin, Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19, 493–513 (2007)
Gui, G., Liu, Y.: On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 268(1–2), 45–66 (2011)
Gui, G., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)
Guo, Z., Zhou, Y.: On solutions to a two-component generalized Camassa–Holm equation. Stud. Appl. Math. 124, 307–322 (2010)
Chen, R.M., Liu, Y.: Wave breaking and global existence for a generalized two-component Camassa–Holm system. Int. Math. Res. Not. 6, 1381–1416 (2011)
Ivanov, R.: Two-component integrable systems modelling shallow water waves: the constant vorticity case. Wave Motion 46, 389–396 (2009)
Zhang, P.Z., Liu, Y.: Stability of solitary waves and wave-breaking phenomena for the two-component Camassa–Holm system. Int. Math. Res. Not. 211, 1981–2021 (2010)
Lv, G., Wang, X.: Non-uniform dependence on initial data of a modified periodic two-component Camassa–Holm system. Z. Angew. Math. Mech. 95, 444–456 (2015)
Lv, G., Wang, X.: On the Cauchy problem for a two-component b-family system. Nonlinear Anal. 111, 1–14 (2014)
Kato, T.: Quasi-linear equations of evolution with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Math., vol. 448, pp. 25–70. Springer, Berlin (1975)
Constantin, A., Escher, J.: Wave-breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
Acknowledgements
The authors thank the referees for their valuable comments and suggestions. Guo’s work is supported by Zunyi Normal University Doctoral Program project [grant number BS[2017]10], Department of Sichuan Province Education project [grant number 17ZB0314] and the Sichuan Province University Key Laboratory of Bridge Non-Destruction Detecting and Engineering Computer [Grant number 2014QZY05].
Availability of data and materials
In our paper, no data were used to support this study.
Funding
There is no fund to fund our work.
Author information
Authors and Affiliations
Contributions
Two authors cooperated to complete the work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
There are no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Guo, Y., Xiong, T. Blow-up analysis for a periodic two-component μ-Hunter–Saxton system. J Inequal Appl 2018, 308 (2018). https://doi.org/10.1186/s13660-018-1903-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1903-8