
Guo and Xiong Journal of Inequalities and Applications        (2018) 2018:308 
https://doi.org/10.1186/s13660-018-1903-8

R E S E A R C H Open Access

Blow-up analysis for a periodic
two-component μ-Hunter–Saxton system
Yunxi Guo1* and Tingjian Xiong2

*Correspondence:
matyunxiguo@126.com
1School of Mathematics, Zunyi
Normal University, Zunyi, China
Full list of author information is
available at the end of the article

Abstract
The two-component μ-Hunter–Saxton system is considered in the spatially periodic
setting. Firstly, two wave-breaking criteria are derived by employing the transport
equation theory and the localization analysis method. Secondly, a sufficient condition
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obtained in this paper are new and different from those in previous works.

MSC: 35D05; 35G25; 35L05; 35Q35

Keywords: Two-component μ-Hunter–Saxton system; Wave-breaking criteria;
Blow-up phenomena

1 Introduction
In this article, we consider the periodic two-component μ-Hunter–Saxton system derived
by Zuo [1]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(ut) – utxx = 2μ(u)ux – 2σuxuxx – σuuxxx + ρρx – γ1uxxx, t > 0, x ∈R,

ρt = (uρ)x + 2γ2ρx, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x + 1) = u(t, x), t > 0, x ∈R,

ρ(t, x + 1) = ρ(t, x), t > 0, x ∈ R,

(1)

where u(t, x) and ρ(t, x) are time-dependent functions on the unit circle S = R/Z, the real
dimensionless constant σ ∈ R is a parameter which provides the competition, or balance,
in fluid convection between nonlinear steepening and amplification due to stretching.
μ(u) =

∫

S
u dx denotes its mean and γi ∈ R, i = 1, 2. It is shown in [1] that system (1) is

an Euler equation with bi-Hamilton structure

Γ1 =

(
∂xA 0

0 ∂x

)

, Γ2 =

(
A(u)∂x + ∂xA(u) – γ1∂

3
x ρ∂x

∂xρ 2γ2∂x

)

,
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where A(u) = μ(u) – uxx, and it is also viewed as a bi-variational equation. Moreover, for
γi = 0, i = 1, 2, system (1) has a Lax pair given by

ψxx = λ
(
A(u) – λ2ρ2)ψ , ψt =

(

u –
1

2λ

)

ψx –
1
2

uxψ ,

where λ is a spectral parameter (see [1]). Recently, Liu and Yin [2, 3] investigated the
Cauchy problem for system (1). In [2], the local well-posedness and several precise blow-
up criteria for the system were obtained. Under the conditions μ0 = 0 and μ0 �= 0, the
sufficient conditions of blow-up solutions were presented. The global existence for strong
solution for system (1) in the Sobolev space Hs(S)×Hs–1(S) with s = 2 is also given [2], and
in [3], the existence of global weak solution is established for the periodic two-component
μ-Hunter–Saxton system. The objective of the present paper is to focus mainly on wave-
breaking criterion and several sufficient conditions of blow-up solutions.

If t is replaced by –t, and γi = 0 (i = 1, 2) in system (1), in fact, system (1) has signifi-
cant relationship with several models describing the motion of waves at the free surface
of shallow water under the influence of gravity. Such as μ-Camassa–Holm equation [4–
6], μ–b equation [7], two-component periodic Hunter–Saxton system [8–12], and two-
component Dullin–Gottwald–Holm system [13, 14]. If μ – ∂2

x and t are replaced by 1 – ∂2
x

and –t in system (1) respectively, system (1)(γi = 0 (i = 1, 2)) becomes the two-component
Camassa–Holm system, and its dynamic properties can be found in [15–24] and the ref-
erences therein.

Integrating the first equation of system (1) over the circle S = R/Z and noting the peri-
odicity of u, we have μ(ut) = 0. Making use of system (1), we have that

∫

S
(u2

x + ρ2) dx is
conserved in time. In what follows we denote

μ0 = μ(u0) = μ(u) =
∫

S

u(t, x) dx (2)

and

μ1 =
(∫

S

u2
x(t, x) + ρ2(t, x) dx

) 1
2

=
(∫

S

u2
x(0, x) + ρ2(0, x) dx

) 1
2

. (3)

Then μ0 and μ1 are constants independent of time t.
Notice that

∫

S
(u(t, x) – μ0) dx = μ0 – μ0 = 0. From Remark 2.1 in [2], we get

max
x∈S

[
u(t, x) – μ0

]2 ≤ 1
12

∫

S

u2
x(t, x) dx ≤ 1

12

∫

S

u2
x(t, x) + ρ2(t, x) dx

=
1

12

∫

S

u2
x(0, x) + ρ2(0, x) dx =

1
12

μ2
1, (4)

which implies that the amplitude of wave remains bounded in any time. Namely, we have

∥
∥u(t, ·)∥∥L∞(S) – |μ0| ≤

∥
∥u(t, ·) – μ0

∥
∥

L∞(S) ≤
√

3
6

μ1, (5)

which results in

∥
∥u(t, ·)∥∥L∞(S) ≤ |μ0| +

√
3

6
μ1. (6)
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In fact, the initial-value problem (1) can be recast in the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – (σu + γ1)ux = A–1∂x(2μ0u + σ
2 u2

x + 1
2ρ2), t > 0, x ∈R,

ρt – (u + 2γ2)ρx = ρux, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈R,

ρ(0, x) = ρ0(x), x ∈R,

u(t, x + 1) = u(t, x), t > 0, x ∈ R,

ρ(t, x + 1) = ρ(t, x), t > 0, x ∈R,

(7)

where A = μ – ∂2
x is an isomorphism between Hs and Hs–2 with the inverse ν = A–1ω given

explicitly by

ν(x) =
(

x2

2
–

x
2

+
13
12

)

μ(ω) +
(

x –
1
2

)∫ 1

0

∫ y

0
ω(s) ds dy

–
∫ x

0

∫ y

0
ω(s) ds dy +

∫ 1

0

∫ y

0

∫ s

0
ω(r) dr ds dy. (8)

Commuting A–1 and ∂x, we get

A–1∂xω(x) =
(

x –
1
2

)∫ 1

0
ω(x) –

∫ x

0
ω(y) dy +

∫ 1

0

∫ x

0
ω(y) dy dx (9)

and

A–1∂2
x ω(x) = –ω(x) +

∫ 1

0
ω(x) dx. (10)

Note that if f ∈ L2(S), we have A–1f = (μ–∂2
x )–1f = g ∗ f , where we denote by ∗ convolution

and g is the Green’s function of the operator A–1 given by

g(x) =
1
2

(

x –
1
2

)2

+
23
24

, (11)

and the derivative of g can be assigned

gx(x) =

⎧
⎨

⎩

0, x = 0,

x – 1
2 , x ∈ (0, 1).

(12)

The objective of the present paper is to focus mainly on a wave-breaking criterion and
wave-breaking phenomena for system (1). The local well-posedness of system (1) is firstly
established by using Kato’s theory. Then we present two wave-breaking criteria (see The-
orem 3.1 and Theorem 3.2) and a wave-breaking phenomenon (Theorem 4.1) for system
(1) in the Sobolev space Hs(S) × Hs–1(S) with s ≥ 2. The results obtained in this paper are
new and different from those in Liu and Yin’s work [2].

The rest of this paper is organized as follows. Section 2 states local well-posedness for the
periodic two-component μ-Hunter–Saxton system. In Sect. 3, we employ the transport
equation theory to prove a wave-breaking criterion in the Sobolev space Hs(S) × Hs–1(S)
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with s ≥ 2. An improved wave-breaking criterion also is presented in Sect. 3. Section 4 is
devoted to the study of a wave-breaking phenomenon.

2 Local well-posedness
In this section, we will establish the local well-posedness for system (1) by Kato’s theo-
rem. For convenience, we present here Kato’s theorem. Consider the abstract quasilinear
evolution equation

⎧
⎨

⎩

dv
dt + A(v)v = f (v), t ≥ 0,

v(0) = v0.
(13)

Let X and Y be two Hilbert spaces such that Y is continuously and densely embedded in X.
Let Q : Y → X be a topological isomorphism, and let ‖ · ‖X and ‖ · ‖Y be the norms of the
Banach spaces X and Y , respectively. Let L(Y , X) denote the space of all bounded linear
operators from Y to X. In particular, it is denoted by L(X) if X = Y . If A is an unbounded
operator, we denote the domain of A by D(A). [A, B] denotes the commutator of two linear
operators A and B. The linear operator A belongs to G(X, 1,β), where β is a real number,
if –A generates a C0-semigroup such that ‖e–sA‖L(X) ≤ eβs. The inner product in Hs is
denoted by 〈·, ·〉s, particularly the L2 inner product is 〈·, ·〉.

We make the following assumptions, where μ1, μ2, μ3, and μ4 are constants depending
only on max{‖z‖Y ,‖y‖Y }.

(I) A(y) ∈ L(Y , X) for y ∈ X with

∥
∥
(
A(y) – A(z)

)
w

∥
∥

X ≤ μ1‖y – z‖X‖w‖Y , y, z, w ∈ Y

and A(y) ∈ G(X, 1,β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets
in Y .

(II) QA(y)Q–1 = A(y) + B(y), where B(y) ∈ L(X) is bounded uniformly on bounded sets
in Y . Moreover,

∥
∥
(
B(y) – B(z)

)
w

∥
∥

X ≤ μ2‖y – z‖Y ‖w‖X , y, z ∈ Y , w ∈ X.

(III) f : Y → Y extends to a map from X into X , is bounded on bounded sets in Y , and
satisfies

∥
∥f (y) – f (z)

∥
∥

Y ≤ μ3‖y – z‖Y , y, z ∈ Y

and

∥
∥f (y) – f (z)

∥
∥

X ≤ μ4‖y – z‖X , y, z ∈ Y .

Kato’s Theorem ([25]) Assume that conditions (I), (II), and (III) hold. Given v0 ∈ Y , there
is a maximal T > 0 depending only on ‖v0‖Y and a unique solution v to system (13) such
that

v = v(·, v0) ∈ C
(
[0, T

)
; Y ) ∩ C1([0, T

)
; X).

Moreover, the map v0 �−→ v(·, v0) is a continuous map from Y to C([0, T); Y )∩C1([0, T); X).
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Set

f (z) =

(
∂x(μ – ∂2

x )–1(2μ0u + σ
2 u2

x + 1
2ρ2)

uxρ

)

,

Y = Hs(S) × Hs–1(S), X = Hs–1(S) × Hs–2(S), Λ = (1 – ∂2
x ) 1

2 , Λμ = (μ – ∂2
x ) 1

2 ,

z =

(
u
ρ

)

and Q =

(
Λμ 0
0 Λμ

)

.

Obviously, Q is an isomorphism of Hs × Hs–1 onto Hs–1 × Hs–2.
The local well-posedness for system (1) is collected in the following.

Theorem 2.1 Given z0 = (u0,ρ0) ∈ Hs(S) × Hs–1(S), s ≥ 2, then there exists a maximal
T = T(‖z0‖Hs(S)×Hs–1(S)) > 0 and a unique solution z = (u,ρ) to system (1) such that

z = z(·, z0) ∈ C
(
[0, T

)
; Hs(S)) ∩ C1([0, T

)
; Hs–1(S)).

Proof Since there are some similarities with the proof of Theorem 3.1 in [14], here we
omit the proof of the theorem. �

3 Wave-breaking criteria
Lemma 3.1 ([26]) Let T > 0 and v ∈ C1([0, T); H2(R)). Then, for every t ∈ [0, T), there
exists at least one point ξ (t) ∈ R with

m(t) := inf
x∈R

(
vx(t, x)

)
= vx

(
t, ξ (t)

)
.

The function m(t) is absolutely continuous on (0, T) with

dm(t)
dt

= vtx
(
t, ξ (t)

)
a.e. on (0, T).

Now, consider the initial value problem for the Lagrangian flow map:

⎧
⎨

⎩

qt = u(t, –q) + 2γ2, t ∈ [0, T),

q(0, x) = x, x ∈R,
(14)

where u denotes the first component of the solution z = (u,ρ) to system (1). Applying
classical results from ordinary differential equations, one can obtain the result.

Lemma 3.2 Let u ∈ C([0, T); Hs(R)) ∩ C1([0, T); Hs–1(R)), s ≥ 2. Then Eq. (14) has a
unique solution q ∈ C1([0, T) ×R;R). Moreover, the map q(t, ·) is an increasing diffeomor-
phism of R with

qx(t, x) = exp

(

–
∫ t

0
ux

(
s, –q(s, x)

)
ds

)

> 0, (t, x) ∈ [0, T) ×R. (15)
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Lemma 3.3 Let z0 = (u0,ρ0) ∈ Hs(S) × Hs–1(S), s ≥ 2, and let T > 0 be the maximal exis-
tence time of the corresponding solution z = (u,ρ) to system (1). Then it has

ρ
(
t, –q(t, x)

)
qx(t, x) = ρ0(–x), (t, x) ∈ [0, T) ×R. (16)

Theorem 3.1 Let z0 = (u0,ρ0) ∈ Hs(S) × Hs–1(S) with s ≥ 2, and z = (u,ρ) be the corre-
sponding solution to (1). Assume that T > 0 is the maximal existence time. Then

T < ∞ ⇒
∫ T

0
‖ux‖L∞(S) dτ = ∞. (17)

Proof Since the two equations for u and ρ in system (7) satisfy the transport structure

∂t f + v∂xf = F .

Therefore, we can complete the proof of Theorem 3.1 by making use of conservation laws
and the localization analysis in transport equation theory (see Theorems 3.1 and 3.2) in
[18]. The detailed proof can be found in [18]. �

Theorem 3.2 Let (u0,ρ0) ∈ Hs × Hs–1 with s > 3/2, and T > 0 be the maximal time of ex-
istence of the solution (u,ρ) to system (1) with initial data (u0,ρ0). Then the corresponding
solution (u,ρ) blows up in finite time T < ∞ if and only if

lim
t→T

{
sup
x∈S

|ux|
}

= +∞. (18)

Furthermore, if σ ≥ 1, then the corresponding solution (u,ρ) blows up in finite time T < ∞
if and only if

lim
t→T–

{

sup
x∈S

√
σ

2
ux

}

= +∞. (19)

Proof By Theorem 2.1 and a simple density argument, we need only to prove this theorem
for s ≥ 3. We may also assume u0 �= 0, otherwise it is trivial. Let T > 0 be the maximal time
of existence of the corresponding solution (u,ρ) to system (1). We first prove the case in
(18). Assume that T < ∞ and (18) is not true. Then there is some positive number Ω > 0
such that

|ux| ≤ Ω , ∀(t, x) ∈ [0, T) × R. (20)

Therefore, Theorem 3.1 implies that the maximal existence time T = ∞, which contra-
dicts the assumption that T < ∞.

Now, we try to prove the blow-up criterion (19). Since supx∈S(vx(t, x)) = – infx∈S(–vx(t,
x)), we define

N(t) = ux
(
t, –ξ (t)

)
= sup

x∈S
ux(t, x), t ∈ [0, T). (21)
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Obviously,

uxx
(
t, –ξ (t)

)
= 0, t ∈ [0, T). (22)

Since q(t, ·) defined by (14) is a diffeomorphism of the circle for any t ∈ [0, T), there exists
x1(t) ∈ S such that

q
(
t, x1(t)

)
= ξ (t), t ∈ [0, T). (23)

Along the trajectory of q(t, x1(t)), we have

dρ(t, –ξ (t))
dt

=
dρ(t, –q(t, x1(t)))

dt
= ρ

(
t, –q(t, x1)

)
ux

(
t, –q(t, x1)

)

= ρ
(
t, –ξ (t)

)
ux

(
t, –ξ (t)

)
, t ∈ [0, T). (24)

Differentiating the first equation of system (7) and using the equality ∂2
x Λ–2

μ f = –f +
∫ 1

0 f dx, we have

utx – (σu + γ1)uxx =
σ

2
u2

x – 2μ0u –
1
2
ρ2 + 2μ2

0 +
∫ 1

0

(
σ

2
u2

x +
1
2
ρ2

)

dx. (25)

Along the trajectory of q(t, x1(t)), (25) can be rewritten as the following form:

N ′(t) =
σ

2
N2(t) –

1
2
ρ2(t) + d

(
t, –ξ (t)

)
, (26)

where ′ denotes the derivative with respect to t and d(t) = –2μ0u + 2μ2
0 +

∫ 1
0 ( σ

2 u2
x + 1

2ρ2) dx.
Assume that (19) is not valid, then there is some positive number Ω such that

sup
x∈S

√
σ

2
ux ≤ Ω , ∀(t, x) ∈ [0, T) × S, (27)

then, from (24), for each x ∈ S, we get

∣
∣ρ

(
t, –ξ (t)

)∣
∣ =

∣
∣ρ(0)

∣
∣e

∫ t
0 ux dt ≤ ‖ρ0‖L∞e

√
2
σ Ωt , (28)

from which we obtain

∥
∥ρ

(
t, –ξ (t)

)∥
∥

L∞ ≤ ‖ρ0‖L∞e
√

2
σ Ωt . (29)

In order to proceed with the proof, next we need to obtain the lower bound of d(t, –ξ (t)).

d
(
t, –ξ (t)

)
= –2μ0u + 2μ2

0 +
∫ 1

0

σ

2
u2

x +
1
2
ρ2 dx

≥ –2|μ0u| + 2μ2
0 +

1
2
μ2

1

≥ –
√

3
3

|μ0|μ1 +
1
2
μ2

1. (30)
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Let

Q(t) =
√

σ

2
N(t) +

√
σ

2
‖u0,x‖L∞ + μ1 +

√√
3

3
|μ0|μ1

+
√

2
2

‖ρ0‖L∞e
√

2
σ Ωt , (31)

then

Q(0) =
√

σ

2
N(0) +

√
σ

2
‖u0,x‖L∞ + μ1 +

√√
3

3
|μ0|μ1

+
√

2
2

‖ρ0‖L∞ > 0. (32)

We now claim that

Q(t) > 0, t ∈ [0, T). (33)

Assume the contrary that there is t0 ∈ [0, T) such that Q(t0) < 0. Let t1 = max{t < t0; Q(t) =
0}. Then Q(t1) = 0 and Q′(t1) < 0, namely

√
σ

2
N(t1) = –

√
σ

2
‖u0,x‖L∞ – μ1 –

√√
3

3
|μ0|μ1 –

√
2

2
‖ρ0‖L∞e

√
2
σ Ωt1 (34)

and

√
σ

2
N ′(t1) < –

√
1
σ

Ω‖ρ0‖L∞e
√

2
σ Ωt1 < 0. (35)

Recalling (26) and using (33), we have

N ′(t1) =
σ

2
N2(t1) –

1
2
ρ2(t1) + d(t1)

>
(

–
√

σ

2
‖u0,x‖L∞ – μ1 –

√√
3

3
|μ0|μ1 –

√
2

2
‖ρ0‖L∞e

√
2
σ Ωt1

)2

+
[

–
√

3
3

|μ0|μ1 +
1
2
μ2

1

]

–
1
2
‖ρ0‖2

L∞e2
√

2
σ Ωt1

> 0, (36)

which is a contradiction to (35). This verifies that (33) is valid. Therefore, choosing arbi-
trary x ∈ S, we have

sup
x∈R

√
σ

2
ux(t, x)

≥ –
√

σ

2
‖u0,x‖L∞ – μ1 –

√√
3

3
|μ0|μ1 –

√
2

2
‖ρ0‖L∞e

√
2
σ Ωt , (37)
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recalling the assumption

sup
x∈R

√
σ

2
ux ≤ Ω , ∀(t, x) ∈ [0, T) × R,

we get
√

σ
2 |ux| < +∞. This contradicts our assumption T < ∞, which completes the proof

of Theorem 3.2. �

4 Wave-breaking phenomenon
In this section, we give a new blow-up phenomenon. To prove the blow-up phenomenon,
the following lemma is crucial.

Lemma 4.1 ([26]) Let g be a monotone function on [a, b] and f be a real continuous func-
tion on [a, b]. Then there exists ξ ∈ [a, b] such that

∫ b

a
f (s)g(s) ds = g(a)

∫ ξ

a
f (s) ds + g(b)

∫ b

ξ

f (s) ds.

We let

I1(t) = min
x∈S

(
ux(t, x)

)
, I2(t) = max

x∈S
(
ux(t, x)

)
,

then a new wave-breaking result is collected in the following theorem.

Theorem 4.1 Let z0 = (u0,ρ0) ∈ Hs(S) × Hs–1(S) with s ≥ 2, and let T be the maximal
existence time of the corresponding solution to system (1) with the initial data z0. Assume
that I1(0) + I2(0) ≥ – 98

3 μ0 + 2μ1, μ0 < 0, and σ ≥ 1.
If there are some x1, x2 ∈ S such that

ρ0(x1) = 0, u0,x(x1) = inf
x∈S

u0,x(x) (38)

and

ρ0(x2) = 0, u0,x(x2) = sup
x∈S

u0,x(x), (39)

then the solution of system (1) blows up in finite time.

Proof By Theorem 2.1, we need only to prove this theorem for s ≥ 3. According to
Lemma 3.1, there exists ξ (t) ∈ S such that

I1(t) = ux
(
t, ξ (t)

)
= inf

x∈S
ux(t, x), t ∈ [0, T). (40)

Since q(t, ·) defined by (14) is a diffeomorphism of the circle for any t ∈ [0, T), we know
that there exists x1(t) ∈ S such that

q
(
t, x1(t)

)
= ξ (t), t ∈ [0, T). (41)
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Then (38) and (40) imply that

I1(0) = ux
(
0, ξ (0)

)
= inf

x∈S
u0,x(x) = u0,x(x1), t ∈ [0, T). (42)

Therefore we can choose ξ (0) = x1 and

ρ0
(
ξ (0)

)
= ρ0(x1) = 0, t ∈ [0, T). (43)

Using Lemma 3.3, we have

ρ
(
t, –q

(
t, x1(t)

))
= ρ

(
t, –ξ (t)

)
= 0, ∀t ∈ [0, T). (44)

On the other hand, due to supx∈S(vx(t, x)) = – infx∈S(–vx(t, x)), we similarly define

I2(t) = ux
(
t,η(t)

)
= sup

x∈S
ux(t, x), t ∈ [0, T). (45)

There exists x2(t) ∈ S such that

q
(
t, x2(t)

)
= η(t), t ∈ [0, T). (46)

Moreover, we have

ρ
(
t, –q

(
t, x2(t)

))
= ρ

(
t, –η(t)

)
= 0, ∀t ∈ [0, T). (47)

Differentiating the first equation of system (7) with respect to x yields

utx – σu2
x – (σu + γ1)uxx = A–1∂2

x

(

2μ0u +
σ

2
u2

x +
1
2
ρ2

)

. (48)

Using (10), we get

utx – (σu + γ1)uxx =
σ

2
u2

x + 2μ0A–1∂2
x u –

1
2
ρ2 +

∫ 1

0

σ

2
u2

x +
1
2
ρ2 dx. (49)

Recalling the definitions of Ii (i = 1, 2), we get

dI1

dt
=

σ

2
I2

1 + 2μ0∂
2
x A–1u +

∫ 1

0

(
σ

2
u2

x +
1
2
ρ2

)

dx

=
σ

2
I2

1 + 2μ0

∫ 1

0
g(y)uxx

(
t, ξ (t) – y

)
dy +

∫ 1

0

(
σ

2
u2

x +
1
2
ρ2

)

dx (50)

and

dI2

dt
=

σ

2
I2

2 + 2μ0∂
2
x A–1u +

∫ 1

0

(
σ

2
u2

x +
1
2
ρ2

)

dx

=
σ

2
I2

2 + 2μ0

∫ 1

0
g(y)uxx

(
t,η(t) – y

)
dy +

∫ 1

0

(
σ

2
u2

x +
1
2
ρ2

)

dx. (51)
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We notice that g(x) = 1
2 (x – 1

2 )2 + 23
24 is continuous on S, decreasing on [0, 1

2 ], and increasing
on [ 1

2 , 1]. Therefore, we have

∣
∣
∣
∣

∫ 1

0
g(y)uxx

(
t, ξ (t) – y

)
dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1
2

0
g(y)uxx

(
t, ξ (t) – y

)
dy

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ 1

1
2

g(y)uxx
(
t, ξ (t) – y

)
dy

∣
∣
∣
∣. (52)

From equality (11), we deduce

∣
∣
∣
∣

∫ 1
2

0
g(y)uxx

(
t, ξ (t) – y

)
dy

∣
∣
∣
∣

≤
∣
∣
∣
∣g(0)

∫ ζ

0
uxx

(
t, ξ (t) – y

)
dy

∣
∣
∣
∣ +

∣
∣
∣
∣g

(
1
2

)∫ 1
2

ζ

uxx
(
t, ξ (t) – y

)
dy

∣
∣
∣
∣

=
13
12

∣
∣ux

(
t, ξ (t)

)
– ux

(
t, ξ (t) – ζ

)∣
∣ +

23
24

∣
∣
∣
∣ux

(

t, ξ (t) –
1
2

)

– ux
(
t, ξ (t) – ζ

)
∣
∣
∣
∣

≤ 49
24

(
I2(t) – I1(t)

)
. (53)

In an analogous way, we get

∣
∣
∣
∣

∫ 1

1
2

g(y)uxx
(
t, ξ (t) – y

)
dy

∣
∣
∣
∣ ≤ 49

24
(
I2(t) – I1(t)

)
. (54)

Thus, by (53) and (54), it implies

∣
∣
∣
∣

∫ 1

0
g(y)uxx

(
t,η(t) – y

)
dy

∣
∣
∣
∣ ≤ 49

12
(
I2(t) – I1(t)

)
. (55)

If μ0 ≤ 0 and σ ≥ 1, from (55), (50), and (51) we deduce that, for a.e. t ∈ (0, T),

dI1

dt
≥ σ

2
I2

1 +
49
6

μ0(I2 – I1) +
1
2
μ2

1 (56)

and

dI2

dt
≥ σ

2
I2

2 +
49
6

μ0(I2 – I1) +
1
2
μ2

1

=
σ

2
I2

2 –
49
6

μ0(I2 + I1) +
49
3

μ0I2 +
1
2
μ2

1. (57)

Summing up (56) and (57) results in

d(I1 + I2)
dt

≥ σ

2
(
I2

1 + I2
2
)

+
49
3

μ0(I2 – I1) + μ2
1

=
σ

2
(
I2

1 + I2
2
)

+
49
3

μ0(I2 + I1) –
98
3

μ0I1 + μ2
1. (58)
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From the assumption of Theorem 4.1 I0(0) + I2(0) ≥ – 98
3 μ0 + 2μ1, we now claim that, for

all t ∈ T ,

(I1 + I2)(t) ≥ –
98
3

μ0 + 2μ1. (59)

Let I(t) = (I1 + I2)(t) + 98
3 μ0 – 2μ1. Then we claim that I(t) ≥ 0. It is observed that I(t) is

continuous on [0, T). Assume that I(t) ≥ 0 is not valid, then there is t0 ∈ (0, T) such that
I(t0) < 0. Let t1 = max{t < t0 : I(t) = 0}. Then I(t1) = 0 and I ′(t1) < 0, namely

(I1 + I2)(t1) = –
98
3

μ0 + 2μ1 (60)

and

I ′(t) =
(
I ′

1 + I ′
2
)
(t1) < 0. (61)

Due to

I2(t1) ≥ 1
2

(I1 + I2)(t1) = –
98
6

μ0 + μ1 (62)

and

I1(t1) = –
98
3

μ0 + 2μ1 – I2(t1). (63)

Thus, we get

I ′(t1) = I ′
1(t1) + I ′

2(t1)

≥ σ

2
(
I2

1 + I2
2
)

–
49
3

μ0(I2 + I1) +
98
3

μ0I2 + μ2
1

=
σ

2
I2

2 +
σ

2

(

–
98
3

μ0 + 2μ1 – I2(t1)
)2

–
49
3

μ0

(

–
98
3

μ0 + 2μ1

)

+
98
3

μ0I2(t1) + μ2
1

= σ I2
2 – σ

(

–
98
3

μ0 + 2μ1

)

I2 +
98
3

μ0I2 +
σ

2

(

–
98
3

μ0 + 2μ1

)2

–
49
3

μ0

(

–
98
3

μ0 + 2μ1

)

+ μ2
1

= σ

[

I2 –
σ (– 98

3 μ0 + 2μ1) – 98
3 μ0

2σ

]2

–
[σ (– 98

3 μ0 + 2μ1) – 98
3 μ0]2

4σ

+
σ

2

(

–
98
3

μ0 + 2μ1

)2

–
49
3

μ0

(

–
98
3

μ0 + 2μ1

)

+ μ2
1

= σ

[

I2 –
σ (– 98

3 μ0 + 2μ1) – 98
3 μ0

2σ

]2

+
σ

4

(

–
98
3

μ0 + 2μ1

)2

–
1

4σ

(
98
3

μ0

)2

+ μ2
1

> 0, (64)
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which gives rise to a contradiction with (61). Therefore, (59) is true.

d(I2(t) + 49
3σ

μ0)
dt

=
dI2

dt

≥ σ

2
I2

2 –
49
6

μ0(I2 + I1) +
49
3

μ0I2 +
1
2
μ2

1

≥ σ

2
I2

2 –
49
6

μ0

(

–
98
3

μ0 + 2μ1

)

+
49
3

μ0I2 +
1
2
μ2

1

=
σ

2

(

I2(t) +
49
3σ

μ0

)2

–
1

2σ

(
49
3

μ0

)2

+
(

49
3

μ0

)2

–
49
3

μ0μ1 +
1
2
μ2

1

≥ σ

2

(

I2(t) +
49
3σ

μ0

)2

. (65)

Since I2(t) is locally Lipschitz on (0, T), we have that 1
(I2(t)+ 49

3σ μ0)
is also locally Lipschitz on

(0, T), then 1
(I2(t)+ 49

3σ μ0)
is absolutely continuous on (0, T).

Solving (65), we obtain

1
(I2(t) + 49

3σ
μ0)

≤ 1
(I2(0) + 49

3σ
μ0)

–
σ

2
t, (66)

which leads us to

I2(t) >
(I2(0) + 49

3σ
μ0)

1 – σ
2 t(I2(0) + 49

3σ
μ0)

–
49
3σ

μ0. (67)

The above inequality implies that I2(t) → +∞ as t → 2
σ (I2(0)+ 49

3σ μ0)
. Applying Theorem 3.2,

we complete the proof of Theorem 4.1. �

Remark 1 If we let ρ0(–x) = 0, then from Lemma 3.3 we can obtain ρ(t, –x) = 0 easily. Then
system (1) is degenerated into μ-version Camassa–Holm equation under γ1 = 0. For the
blow-up results related to μ-version Camassa–Holm equation, the reader is referred to
[6] and the references therein.

Remark 2 It is worthwhile to mention that comparing with the results in [2], our blow-up
results are new and quite different. There is twofold meaning: firstly, our blow-up criteria
and the proof of them are different from the ones in [2]. Then, our blow-up phenomena
(see Theorem 4.1) are also different from the ones in [2], because the conditions of Theo-
rem 4.1 in our paper are different from the ones [2]. When ρ0(–x) = 0, system (1) is degen-
erated into μ-version Camassa–Holm equation essentially. So the blow-up phenomena in
[2] belong to μ-version Camassa–Holm equation.
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