Skip to main content

Generalized nonlinear weakly singular retarded integral inequalities with maxima and their applications

Abstract

This paper deals with a generalized nonlinear weakly singular retarded Wendroff-type integral inequality with maxima of an unknown function of two variables. The key is that a technique of monotonization without separability and monotonicity of given functions is used for estimating the boundedness of unknown functions. Then our outcomes can be helpful to weaken conditions for some known results. By applying our results, the uniqueness of solutions for some singular integral equation with maxima may be proven.

1 Introduction

The Gronwall inequality [1] holds a vital place in studying qualitative properties of the solutions of integral equations and differential equations. Some linear and nonlinear generalizations (e.g. [211]) of the Gronwall inequality have been extensively discussed. With further study of fractional differential equations, integral inequalities with weakly singular kernels have attracted more and more attention (see [1220]). In [14], a new method was presented to analyze the nonlinear singular integral inequalities of Henry type:

$$ u(t)\le a(t)+b(t) \int_{t_{0}}^{t}(t-s)^{\beta-1}s^{\gamma -1}F(s)u(s) \,ds,\quad t\ge0. $$
(1.1)

In 2008, Cheung et al. [20] solved the nonlinear weakly singular inequality

$$\begin{aligned} u^{p}(x,y) \le& a(x,y)+b(x,y) \int_{0}^{x} \int _{0}^{y}\bigl(x^{\alpha}-s^{\alpha} \bigr)^{\beta-1}s^{\gamma-1} \bigl(y^{\alpha}-t^{\alpha} \bigr)^{\beta-1}t^{\gamma-1} \\ &{} \cdot f(s,t)u^{q}(s,t)\,dt\,ds. \end{aligned}$$
(1.2)

On the other hand, since differential equations with maxima of the unknown function [2126] can be applied in control theory, some significant results for integral inequalities containing the maxima of the unknown function [22, 2730] have been obtained. The integral inequality with maxima

$$\begin{aligned}& u(x,y)\leq a(x,y)+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} f(s,t) u^{p}(s,t)\,dt\,ds \\& \hphantom{u(x,y)\leq{}}{} + \int_{\alpha(x_{0})}^{\alpha(x)} \int_{y_{0}}^{y} g(s,t) \Bigl(\max _{\tilde{\eta}\in[s-h,s]}u^{p}(\tilde{\eta },t) \Bigr)\,dt\,ds,\quad x \ge x_{0}, y\ge y_{0}, \\& u(x,y)\leq \psi(x,y), \quad x\in \bigl[\alpha(x_{0})-h, x_{0}\bigr], y\ge y_{0}, \end{aligned}$$
(1.3)

where f, g, and ψ are nonnegative continuous functions and \(a(x,y)>0\) is a nondecreasing continuous function, was discussed in [22].

Combining (1.2) with (1.3), we will consider the integral inequality with maxima

$$ \begin{aligned} &\varphi\bigl(u(x,y)\bigr) \leq a(x,y)+ \sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} t^{\bar{\gamma}_{j}-1} \\ &\hphantom{\varphi(u(x,y)) \leq{}}{}\cdot f_{j}(x,y,s,t) \omega_{j} \bigl(u(s,t)\bigr)\mu_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}g\bigl(u( \tilde{\eta},t)\bigr) \Bigr)\,dt\,ds, \\ &\hphantom{\varphi(u(x,y)) \leq{}}{}(x,y)\in [x_{0},x_{1}) \times[y_{0}, y_{1}), \\ &u(x,y) \leq \psi (x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}), \end{aligned} $$
(1.4)

where a, g, \(\omega_{j}\), \(f_{j}\), \(b_{j}\), and \(c_{j}\) are nonnegative continuous functions, \(b_{j}\) and \(c_{j}\) are increasing functions and belong to \(C^{1}\), \(b_{*}(x_{0}):=\min_{1\le j\le{m}}b_{j}(x_{0})\), \(h>0\) is a constant. Specially, the monotonicity of a, \(\omega_{j}\), \(\mu_{j}\), \(f_{j}\), and g is not required. Further, \(\omega_{j}\)’s are used to construct a sequence of stronger monotonized functions. Then the obtained result is applied for considering the uniqueness of solutions to a boundary value problem of an integral equation with maxima.

2 Main result

Let \(\mathbb {R}:=(-\infty, +\infty)\), \(\mathbb {R}_{+}:=[0,\infty)\), \(\Delta:=[x_{0},x_{1})\times[y_{0}, y_{1})\) and \(\Xi:= [b_{*}(x_{0})-h,x_{0}]\times[y_{0}, y_{1})\). Define \(\Phi_{1}, \Phi_{2}: B\subset\mathbb {R} \rightarrow \mathbb {R}\setminus\{0\}\). As in [4], if \(\Phi_{1}/\Phi _{2}\) is nondecreasing on B, then \(\Phi_{1}\varpropto\Phi_{2}\). Considering inequality (1.4), we make the following assumptions for all \(j=1,\ldots,m\):

(A1):

\(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\) and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing such that \(b_{j}(x)\leq x\) and \(c_{j}(y)\le y\), and \(c_{j}(y_{0})=y_{0}\);

(A2):

\(a\in C(\Delta,\mathbb {R}_{+}) \), \(f_{j}\in C(\Delta\times [b_{*}(x_{0}),x_{1})\times[y_{0},y_{1}), \mathbb{R}_{+})\), \(\omega_{j},\mu_{j}\in C(\mathbb{R}_{+},\mathbb {R}_{+}) \) with \(\omega_{j}(t)>0\), \(\mu _{j}(t)>0\) for \(t>0\);

(A3):

\(g, \varphi\in C(\mathbb {R}_{+},\mathbb{R}_{+})\) and \(\psi\in C(\Xi, \mathbb {R}_{+})\), and φ is strictly increasing such that \(\lim_{t\rightarrow\infty}\varphi(t)=\infty\);

(A4):

\(\alpha_{j}, \bar{\alpha}_{j}\in(0,1]\), \(\beta_{j},\bar{\beta}_{j}\in(0,1)\), \(\gamma_{j}>1-\frac{1}{p}\), \(\bar{\gamma}_{j}>1-\frac{1}{p}\) such that \(\frac{1}{p}+\alpha_{j}(\beta_{j}-1)+\gamma_{j}-1\ge0\), \(\frac {1}{p}+\bar{\alpha}_{j}(\bar{\beta}_{j}-1)+\bar{\gamma}_{j}-1\ge0\), \(p(\beta_{j}-1)+1>0\), \(p(\bar{\beta}_{j}-1)+1>0\), \(p>1\).

For those \(\omega_{j}\)’s, \(\mu_{j}\)’s given in (A4), define \(\tilde {\omega}_{j}(t)\) inductively by

$$ \tilde{\omega}_{j}(t):= \textstyle\begin{cases} \hat{\omega}_{1}(t)\max_{\tau\in[0, t] }\{\hat{\mu }_{1}(\tilde{g}(\tau))\}, & t\ge0, j=1, \\ \max_{\tau\in[0, t] }\{\frac{\hat{\omega}_{j}(\tau)\hat {\mu}_{j+1}(\tilde{g}((\tau))}{\tilde{\omega}_{i-1}(\tau)}\}\tilde{\omega}_{i-1}(t),& t\ge0, j=2,\ldots,m, \end{cases} $$
(2.1)

where \(\hat{\omega}_{j}(t):=\max_{\tau\in[0, t] }\{\bar {\omega}_{j}(\tau)\}\), \(\hat{\mu}_{j}(t):=\max_{\tau\in[0, t] }\{\bar{\mu}_{j}(\tau)\}\), \(\tilde{g}(t):=\max_{\tau\in[0, t] }\{g(\tau)\}\), \(\bar{\omega}_{j}(t):=\omega_{j}(t)+\varepsilon_{j}\), \(\bar{\mu }_{j}(t):=\mu_{j}(t)+\varepsilon_{j}\) for \(t\ge0\), \(\epsilon_{j}:= \varepsilon\) if \(\omega_{j}(0)=0\) or \(:=0\) if \(\omega_{j}(0)\neq0\) for all \(j=1,2,\ldots,m\), where \(\varepsilon>0\) is an arbitrarily given constant.

Lemma 1

([16])

Let α, β, γ, and p be positive constants. Then

$$ \int^{t}_{0}\bigl(t^{\alpha}-s^{\alpha} \bigr)^{p(\beta-1)}s^{p(\gamma -1)}\,ds=\frac{t^{\theta}}{\alpha}B\biggl( \frac{p(\gamma-1)+1}{\alpha}, p(\beta-1)+1\biggr),\quad t\in{\mathbb{R}_{+}}, $$

where \(\theta:=p[\alpha(\beta-1)+\gamma-1]+1\), \(B(\xi,\eta)=\int ^{1}_{0}s^{\xi-1}(1-s)^{\eta-1}\,ds\) (\(\operatorname{Re} \xi>0\), \(\operatorname{Re} \eta>0\)) is the beta function.

Lemma 2

Suppose that

  1. (C1)

    \(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\) and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing with \(b_{j}(x)\leq x\) on \([x_{0},x_{1})\), \(c_{j}(y)\le y\) on \([y_{0},y_{1})\) and \(c_{j}(y_{0})=y_{0}\) for all \(j=1,\ldots,m\);

  2. (C2)

    \(\psi\in C(\Xi,\mathbb {R}_{+})\), \(g_{j}\in C(\Delta\times\mathbb {R}^{2}_{+},\mathbb {R}_{+})\) are nondecreasing functions in x and y for all \(j=1,\ldots,m\);

  3. (C3)

    \(h_{j}, \bar{h}_{j}\in C(\mathbb {R}_{+},\mathbb{R}_{+})\) (\(j=1,\ldots,m\)) are all nondecreasing with \(h_{j}(t)>0\), \(\bar{h}_{j}(t)>0\) for \(t>0\), and \(h_{j}\bar{h}_{j}\propto h_{j+1}\bar{h}_{j+1}\) (\(j=1,\ldots,m-1\));

  4. (C4)

    \(b\in C(\Delta, \mathbb{R}_{+})\), \(b_{x}, b_{y}\in(\Delta, \mathbb{R})\), and \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,t)\le b(x_{0},t)\) for all \(t\in [y_{0},y_{1})\).

If \(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) satisfies the integral inequality

$$\begin{aligned}& u(x,y)\leq b(x,y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(x,y,s,t) \\& \hphantom{u(x,y)\leq{}}{}\times h_{j}\bigl(u(s,t)\bigr)\tilde{{h}}_{j} \Bigl(\max_{\tilde{\eta }\in[s-h, s]}u(\tilde{\eta},t) \Bigr)\,dt\,ds, \quad (x,y) \in\Delta, \\& u(x,y)\leq \psi (x,y), \quad (x,y)\in\Xi, \end{aligned}$$
(2.2)

then

$$ u(x,y)\leq H_{m}^{-1} \biggl(H_{m} \bigl(\eta_{m}(x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(x,y,s,t)\,dt\,ds \biggr) $$
(2.3)

for all \((x,y)\in[x_{0}, X_{1}^{*}]\times[y_{0},Y_{1}^{*}]\), where \(H_{j}^{-1}\) is the inverse of the function

$$ H_{j}(t):= \int_{t_{j}}^{t}\frac{ds}{h_{j}(s)\bar{h}_{j}(s)}, \quad t\ge t_{j}>0, j=1,\ldots,m, $$
(2.4)

\(t_{j}\) is a given constant, and \(\eta_{j}\) is defined by

$$ \begin{aligned} &\eta_{1}(x,y):=b(x_{0},y_{0})+ \int_{x_{0}}^{x} \bigl\vert b_{x}(s,y_{0}) \bigr\vert \,ds+ \int_{y_{0}}^{y} \bigl\vert b_{x}(x,t) \bigr\vert \, dt, \\ &\eta_{j+1}(x,y):=H_{j}^{-1} \biggl(H_{j}\bigl(\eta_{j}(x,y)\bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j}(x,y,s,t)dt \,ds \biggr) \end{aligned} $$
(2.5)

for \(j=1,\ldots,m-1\), and \(x_{0}\le X_{1}^{*}< x_{1}\), \(y_{0}\le Y_{1}^{*}< y_{1}\) are chosen such that

$$ H_{j}\bigl(\eta_{j}\bigl(X^{*}_{1},Y^{*}_{1} \bigr)\bigr)+ \int_{a_{j}(x_{0})}^{a_{j}(X^{*}_{1})} \int_{b_{j}(y_{0})}^{b_{j}(Y^{*}_{1})}g_{j}\bigl(X^{*}_{1},Y^{*}_{1},s,t \bigr)\, dt \,ds\le \int _{u_{j}}^{\infty}\frac{ds}{{h_{j}(s)}\tilde{h}(s)} $$
(2.6)

for \(j=1,\ldots,m\).

Proof

Let b be positive on Δ. It means that \(\eta_{1}(x,y)\) is positive on Δ. Under such a circumstance, \(\eta_{1}\) is nondecreasing on Δ and \(\eta_{1}(x,y)>0\),

$$ \eta_{1}(x,y)\ge b(x_{0},y_{0})+ \int_{x_{0}}^{x} b_{x}(s,y_{0}) \,ds+ \int _{y_{0}}^{y}b_{y}(x,t)\, dt=b(x,y). $$
(2.7)

From (2.2) and (2.7), we have

$$ \begin{aligned} &u(x,y)\leq \eta_{1}(x,y)+ \sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(x,y,s,t) \\ &\hphantom{u(x,y)\leq{}}{}\cdot h_{j}\bigl(u(s,t)\bigr)\bar{h}_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t) \Bigr)\,dt\,ds,\quad (x,y) \in\Delta, \\ &u(x,y)\leq \psi (x,y), \quad (x,y)\in\Xi. \end{aligned} $$
(2.8)

Concerning (2.8), we consider the auxiliary inequality

$$ \begin{aligned} &u(x,y) \leq \eta_{1}(x,y)+ \sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(\xi,\eta,s,t) \\ &\hphantom{u(x,y) \leq{}}{} \times h_{j}\bigl(u(s,t)\bigr) \bar{h}_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t) \Bigr)\,dt\,ds, \quad (x,y)\in[x_{0},\xi]\times[y_{0}, \eta], \\ &u(x,y) \leq \psi(x,y), \quad (x,y)\in \bigl[b_{*}(x_{0})-h, x_{0}\bigr]\times[y_{0},\eta], \end{aligned} $$
(2.9)

where \(x_{0}\leq\xi\le X^{*}_{1}\) and \(y_{0}\leq\eta\le Y^{*}_{1}\) are chosen arbitrarily. Having (2.9) we claim

$$ u(x,y)\leq H_{m}^{-1} \biggl(H_{m} \bigl(\eta_{m}(\xi,\eta,x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(\xi,\eta,s,t)\,dt \,ds \biggr) $$
(2.10)

for \(x_{0}\le x \le\min\{\xi, X^{*}_{2}\}\), \(y_{0}\le y \le\min\{\eta, Y^{*}_{2}\}\), where \(\tilde{\eta}_{j}(\xi,\eta,x,y)\) is defined inductively by \(\tilde {\eta}_{1}(\xi,\eta,x,y):=\eta_{1}(x,y)\) and

$$ \tilde{\eta}_{j}(\xi,\eta,x,y):= H_{j-1}^{-1} \biggl(H_{j-1}\bigl(\tilde{\eta }_{j-1}(\xi,\eta,x,y)\bigr)+ \int_{b_{j-1}(x_{0})}^{b_{j-1}(x)} \int _{c_{j-1}(y_{0})}^{c_{j-1}(y)} g_{j-1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$

for \(j=2,\ldots, m\), and \(X^{*}_{2}\in[x_{0},x_{1})\), \(Y^{*}_{2}\in[y_{0},y_{1})\) are chosen such that

$$\begin{aligned} &H_{j}\bigl(\tilde{\eta}_{j}\bigl(\xi, \eta,X^{*}_{2},Y^{*}_{2}\bigr)\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(X^{*}_{2})} \int_{c_{j}(y_{0})}^{c_{j}(Y^{*}_{2})} g_{j}(\xi,\eta,s,t) \\ &\quad \le \int_{t_{j}}^{\infty}\frac{ds}{{h_{j}(s)}\bar{h}_{j}(s)} \end{aligned}$$
(2.11)

for \(j=1,2,\ldots,m\). Note that \(X^{*}_{2}\ge X^{*}_{1}\) and \(Y^{*}_{2}\ge Y^{*}_{1}\). In fact, both \(\tilde{\eta}_{j}(\xi,\eta,x,y)\) and \(g_{j}(\xi,\eta,x,y)\) are nondecreasing in ξ and η. Thus \(X^{*}_{2}\), \(Y^{*}_{2}\) satisfying (2.11) will get smaller as ξ, η are chosen larger.

Since \(\max_{s\in[b^{*}(x_{0})-h,x_{0}]}\psi(s,t)\le b(x_{0},t)\) and \(b(x_{0},t)\le \eta_{1}(x_{0},t)\le\eta_{1}(x,t)\), we obtain

$$ \max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,t)\leq\eta _{1}(x,t), \quad (x,t)\in[x_{0},x_{1}) \times[y_{0},y_{1}). $$
(2.12)

First, (2.10) holds for \(m=1\). In fact,(2.9) for \(m=1\) is written as

$$ u(x,y)\leq z_{1}(x,y),\quad (x,y)\in \bigl[b_{*}(x_{0})-h, \xi\bigr]\times[y_{0}, \eta], $$
(2.13)

where

$$ z_{1}(x,y)= \textstyle\begin{cases} \eta_{1}(x,y)+ \int_{b_{1}(x_{0})}^{b_{1}(x)}\int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}(\xi,\eta,s,t) h_{1}(u(s,t)) \\ \quad {}\times\bar{h}_{1} (\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t) )\,dt\,ds, \quad (x,y)\in[x_{0},\xi]\times[y_{0},\eta] \\ \eta_{1}(x_{0},y), \quad (x,y)\in[b_{*}(x_{0})-h, x_{0}]\times[y_{0},\eta], \end{cases} $$
(2.14)

\(z_{1}(x,y)\) is a nondecreasing function on \([x_{0}, \xi]\times[y_{0},\eta]\). Then

$$\begin{aligned} \frac{\partial}{\partial x}z_{1}(x,y) =&\frac{\partial }{\partial x} \eta_{1}(x,y)+ \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr) h_{1}\bigl(u\bigl(b_{1}(x),t \bigr)\bigr) \\ &{}\times\bar{h}_{1} \Bigl(\max_{\tilde{\eta }\in[b_{1}(x)-h, b_{1}(x)]}u(\tilde{ \eta},t) \Bigr)\, dtb'(x) \end{aligned}$$

for all \((x,y)\in[x_{0},\xi]\times[y_{0},\eta] \). We have \(0< h_{1}(u(s,t))\bar{h}_{1}(u(s,t))\le h_{1}(z_{1}(s,t))\bar{h}_{1}(z_{1}(s,t)) \le h_{1}(z_{1}(x,y))\bar{h}_{1}(z_{1}(x,y)) \) by (C3) and (2.13) \(s\le b_{1}(x)\le x\), \(t\le c_{1}(y)\le y\) and both \(z_{1}\) and \(h_{1}\tilde{h}_{1}\) are nondecreasing. Thus

$$\begin{aligned}& \frac{\frac{\partial}{\partial x}z_{1}(x,y)}{h_{1}(z_{1}(x,y))\bar{h}_{1}(z_{1}(x,y))} \\& \quad \le \frac{\frac{\partial}{\partial x}\eta _{1}(x,y)}{h_{1}(\eta_{1}(x,y))\bar{h}_{1}(\eta_{1}(x,y))}+\frac {b'(x)}{h_{1}(z_{1}(x,y))\bar{h}_{1}(z_{1}(x,y))} \\& \qquad {}\times \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr) h_{1}\bigl(u\bigl(b_{1}(x),t \bigr)\bigr)\bar{h}_{1} \Bigl(\max_{\tilde{\eta}\in [b_{1}(x)-h, b_{1}(x)]}u(\tilde{ \eta},t) \Bigr)\,dt \\& \quad \le \frac{\frac{\partial}{\partial x}\eta_{1}(x,y)}{h_{1}(\eta_{1}(x,y))\bar {h}_{1}(\eta_{1}(x,y))}+b'(x) \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr)\,dt. \end{aligned}$$
(2.15)

Integrating inequality (2.15) from \(x_{0}\) to x, from (2.4) we get

$$\begin{aligned} H_{1}\bigl(Z_{1}(x,y)\bigr) \le& H_{1}\bigl( \eta_{1}(x,y)\bigr)+ \int _{x_{0}}^{x}b'(s) \int_{c_{1}(y_{0})}^{c_{1}(y)} g_{1}\bigl(\xi, \eta,b_{1}(s),t\bigr)\,dt\,ds \\ =& H_{1}\bigl(\eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)} g_{1}(\xi,\eta,s,t)\,dt \,ds \end{aligned}$$
(2.16)

for all \((x,y)\in[x_{0},\xi]\times[y_{0},\eta]\). From (2.14), (2.16), and the monotonicity of \(H^{-1}_{1}\), we have

$$ u(x,y))\le H^{-1}_{1}\biggl( H_{1}\bigl(\eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)} g_{1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$
(2.17)

for \(x_{0}\le x\le\xi< X^{*}_{2}\), \(Y_{0}\le y \le\eta< Y^{*}_{2}\), implying that (2.7) is true for \(m=1\).

Assume that (2.10) holds for \(m=k\). Consider

$$\begin{aligned}& u(x,y) \leq \eta_{1}(x,y)+\sum_{j=1}^{k+1} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(\xi,\eta,s,t) \\& \hphantom{u(x,y) \leq{}}{}\times h_{j}\bigl(u(s,t)\bigr)\bar{h}_{j} \Bigl(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t)\Bigr)\,dt\,ds,\quad (x,y) \in[x_{0},\xi]\times[y_{0},\eta] \\& u(x,y) \leq \psi (x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h, x_{0}\bigr]\times[y_{0},\eta] . \end{aligned}$$
(2.18)

Let

$$ z_{2}(x,y)= \textstyle\begin{cases} \eta_{1}(x,y) +\sum_{j=1}^{k+1} \int_{b_{j}(x_{0})}^{b_{j}(x)}\int _{c_{j}(y_{0})}^{c_{j}(y)} g_{j}(\xi,\eta, s,t)h_{j}(u(s,t)) \\ \quad {}\cdot\bar{h}_{j}(\max_{\tilde{\eta}\in[s-h, s]}u(\tilde {\eta},t))\,dt\,ds,\quad (x,y)\in[x_{0},\xi]\times[y_{0},\eta], \\ \eta_{1}(x_{0},y),\quad (x,y)\in [b_{*}(x_{0})-h, x_{0}]\times[y_{0},\eta]. \end{cases} $$
(2.19)

Then \(z_{2}\) is a nondecreasing function on \([x_{0}, x]\times[y_{0},\eta]\). By (2.19) and the definition of \(z_{2}\), it follows that

$$ u(x,y)\leq z_{2}(x,y),\quad (x,y)\in \bigl[b_{*}(x_{0})-h, \xi\bigr]\times [y_{0}, \eta]. $$
(2.20)

Since \(h_{j}\bar{h}_{j}\) is nondecreasing and \(z_{2}(x,y)>0\), \(b'_{j}(x)\ge 0\), and \(b_{j}(x)\le x\), we have

$$\begin{aligned}& \frac{\frac{\partial}{\partial x}z_{2}(x,y)}{h_{1}(z_{2}(x,y))\bar {h}_{1}(z_{2}(x,y))} \\& \quad \le\frac{\frac{\partial}{\partial x}\eta _{1}(x,y)}{h_{1}(z_{2}(x,y))\bar{h}_{1}(z_{2}(x,y))}+\sum_{j=1}^{k+1} \frac{b'_{j}(x)}{ h_{1}(z_{2}(x,y))\bar{h}_{1}(z_{2}(x,y))} \\& \qquad {}\cdot \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j}\bigl(X,Y,b_{j}(x),t \bigr)h_{j}\bigl(u\bigl(b_{j}(x),t\bigr)\bigr) h_{j}\Bigl(\max_{\xi\in[b_{j}(x)-h,b_{j}(x)]}u(\tilde{\eta},t)\Bigr)\,dt \\& \quad \le\frac{\frac{\partial}{\partial x}\eta_{1}(x,y)}{h_{1}(\eta _{1}(x,y))\bar{h}_{1}(\eta_{1}(x,y))}+\sum_{j=1}^{k+1} \frac{b'_{j}(x)}{ h_{j}(z_{2}(x,y))\bar{h}_{j}(z_{2}(x,y))} \\& \qquad {}\cdot \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j}\bigl(\xi, \eta,b_{j}(x),t\bigr)h_{j}\bigl(z_{2} \bigl(b_{j}(x),t\bigr)\bigr) \bar{h}_{j}\Bigl(\max _{\tilde{\eta}\in [b_{j}(x)-h,b_{j}(x)]}z_{2}(\tilde{\eta},t)\Bigr)\,dt \\& \quad \le\frac{\frac{\partial}{\partial x}\eta_{1}(x,y)}{h_{1}(\eta _{1}(x,y))\bar{h}_{1}(\eta_{1}(x,y))} +b'_{1}(x) \int_{c_{1}(y_{0})}^{c_{1}(y)}g_{1}\bigl(\xi, \eta,b_{1}(x),t\bigr)\,dt+\sum_{j=1}^{k}b'_{j+1}(x) \\& \qquad {} \cdot \int_{c_{j}(y_{0})}^{c_{j}(y)}g_{j+1}\bigl(\xi,\eta ,b_{j+1}(x),t\bigr)\tilde{h}_{j+1}\bigl(z_{2} \bigl(b_{j+1}(x),t\bigr)\bigr) \hat{h}_{j+1}\Bigl(\max _{\tilde{\eta}\in [b_{j}(x)-h,b_{j}(x)]}z_{2}(\tilde{\eta},t)\Bigr)\,dt \end{aligned}$$

for all \((x,y)\in[x_{0},X_{1}^{*}]\times[y_{0},Y_{1}^{*}]\), where \(\tilde {h}_{j+1}(u):=h_{j+1}(u)/h_{1}(u)\), \(\hat{h}_{j+1}(u):=\bar{h}_{j+1}(u)/\bar{h}_{1}(u)\), \(j=1,\ldots,k\). Integrating the above inequality from \(x_{0}\) to x, we can obtain

$$\begin{aligned} H_{1}\bigl(z_{2}(x,y)\bigr) \le& H_{1}\bigl( \eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds \\ &{} +\sum_{j=1}^{k} \int_{b_{j+1}(x_{0})}^{b_{j+1}(x)} \int _{c_{j+1}(y_{0})}^{c_{j+1}(y)}g_{j+1}(\xi,\eta,s,t) \tilde{h}_{j+1}\bigl(z_{2}(s,t)\bigr) \\ &{} \cdot\hat{h}_{j+1} \Bigl(\max_{\tilde{\eta}\in [s-h,s]}z_{2}( \tilde{\eta},t) \Bigr)\,dt\,ds \end{aligned}$$
(2.21)

for all \((x,y)\in[x_{0},X]\times[y_{0},Y]\). Let

$$ \begin{aligned} &\eta(x,y):=H_{1}\bigl(z_{2}(x,y)\bigr), \\ &\varrho_{1}(x,y):=H_{1}\bigl(\eta_{1}(x,y) \bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds. \end{aligned} $$
(2.22)

Then inequality (2.21) can be rewritten as

$$\begin{aligned}& \eta(x,y) \le \varrho_{1}(x,y)+\sum_{j=1}^{k} \int _{b_{j+1}(x_{0})}^{b_{j+1}(x)} \int _{c_{j+1}(y_{0})}^{c_{j+1}(y)}g_{j+1}(\xi,\eta,s,t)\tilde {h}_{j+1}\bigl(H_{1}^{-1}\bigl(z_{2}(s,t) \bigr)\bigr) \\& \hphantom{\eta(x,y) \le{}}{} \cdot\hat{h}_{j+1}\Bigl(\max_{\tilde{\eta}\in [s-h,s]}H_{1}^{-1} \bigl(z_{2}(\tilde{\eta},t)\bigr)\Bigr)\,dt\,ds, \quad (x,y)\in [x_{0},X]\times[y_{0},Y], \\& \eta(x,y) = H_{1}\bigl(\eta_{(}x_{0},y)\bigr)\le \varrho_{1}(x_{0}, y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h, x_{0}\bigr]\times[y_{0},Y], \end{aligned}$$
(2.23)

the same form as (2.9) for \(m=k\). By (C3), each \((\bar {h}_{j+1}\circ H_{1}^{-1})(\tilde{h}_{j+1}\circ H_{1}^{-1})\) (\(j=1,\ldots,k\)) is a nonnegative continuous and increasing function on \(\mathbb{R}_{+}\) and positive on \((0,+\infty)\). Moreover, \((\tilde{h}_{j}\circ H_{1}^{-1})\propto(\hat{h}_{j+1}\circ H_{1}^{-1})\) for all \(j=2,\ldots, k\). By the inductive assumption, we have

$$ \eta(x,y)\le \bar{H}_{k+1}^{-1}\biggl( \bar{H}_{k+1}\bigl(\varrho _{k}(x,y)\bigr)+ \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)} g_{k+1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$
(2.24)

for \(x_{0}\le x\le\min\{\xi, X_{3}^{*}\}\), \(y_{0}\le y\le\min\{\eta, Y_{3}^{*}\}\), where

$$ \bar{H}_{j+1}(t):= \int_{\tilde{t}_{j+1}}^{t}\frac{ds}{\tilde {h}_{j+1}(H_{1}^{-1}(s))\hat{h}_{j+1}(H_{1}^{-1}(s))},\quad t>0, $$
(2.25)

\(\tilde{t}_{j+1}=H_{1}(t_{j+1})\), \(\bar{H}^{-1}_{j+1}\) is the inverse of \(\bar{H}_{j+1}\), \(j=1,\ldots, k\),

$$ \varrho_{j+1}(x,y):=\bar{H}^{-1}_{j+1} \biggl(\bar{H}_{j+1}\bigl(\varrho _{j}(x,y)\bigr)+ \int_{b_{j+1}(x_{0})}^{b_{j+1}(x)} \int_{c_{j+1}(y_{0})}^{c_{j+1}(y)}g_{j+1}(\xi,\eta,s,t)\,dt \,ds\biggr), $$
(2.26)

\(j=1,\ldots,k-1\), and \(X^{*}_{3}\), \(Y^{*}_{3}\) are chosen such that

$$\begin{aligned}& \bar{H}_{j+1}\bigl(\varrho_{j}\bigl(X^{*}_{3},Y^{*}_{3} \bigr)\bigr)+ \int _{b_{j+1}(x_{0})}^{b_{j+1}(X^{*}_{3})} \int_{c_{j+1}(y_{0})}^{c_{j+1}(Y^{*}_{3})}g_{j+1}(\xi,\eta,t,s)\,dt \,ds \\& \quad \le \int_{\tilde{t}_{j+1}}^{H_{1}(\infty)}\frac{ds}{\tilde {h}_{j+1}(H^{-1}_{1}(s))\hat{h}_{j+1}(H_{1}^{-1}(s))},\quad j=1, \ldots,k. \end{aligned}$$
(2.27)

Note that

$$\begin{aligned} \bar{H}_{j}(t) =& \int_{\tilde{t}_{j}}^{t}\frac {ds}{\tilde{h}_{j}(H_{1}^{-1}(s))\hat{h_{j}}(H_{1}^{-1}(s))} \\ =& \int_{H_{1}(t_{j})}^{t}\frac{h_{1}(H^{-1}_{1}(s))\bar {h}_{1}(H^{-1}_{1}(s))\,ds}{h_{j}(H_{1}^{-1}(s))\bar{h}_{j}(H_{1}^{-1}(s))} \\ =& \int_{H_{1}(t_{j})}^{t}\frac{h_{1}(H^{-1}_{1}(s))\bar {h}_{1}(H^{-1}_{1}(s))\,ds}{h_{j}(H_{1}^{-1}(s))\bar{h}_{j}(H_{1}^{-1}(s))} \\ =& \int_{t_{j}}^{H^{-1}_{1}(t)}\frac{ds}{h_{j}(s)\bar{h}_{j}(s)}=H_{j}\bigl(H^{-1}_{1}(t)\bigr), \quad j=2, \ldots,k+1. \end{aligned}$$
(2.28)

Then, from (2.20), (2.24), and (2.28), we get

$$\begin{aligned} u(x,y) \le& H^{-1}_{1}\bigl(\eta(x,y)\bigr) \\ \le& H_{k+1}^{-1}\biggl(H_{k+1} \bigl(H^{-1}_{1}\bigl(\varrho_{k}(x,y)\bigr) \bigr) + \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)} g_{k+1}(\xi,\eta,s,t)\,dt \,ds\biggr) \end{aligned}$$
(2.29)

for \(x_{0}\le x\le\min\{X, X_{3}^{*}\}\), \(y_{0}\le y\le\min\{Y, Y_{3}^{*}\} \). Let \(\tilde{\varrho}_{j}(x,y)=H^{-1}_{1}(\varrho_{j}(x,y))\). Then

$$\begin{aligned} \tilde{\varrho}_{1}(x,y) =&H_{1}\bigl( \varrho_{1}(x,y)\bigr) \\ =&H^{-1}_{1}\biggl(H_{1}\bigl( \eta_{1}(x,y)\bigr)+ \int_{b_{1}(x_{0})}^{b_{1}(x)} \int _{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds\biggr) \\ =&H^{-1}_{1}\biggl(H_{1}\bigl(\tilde{ \eta}_{1}(\xi,\eta,x,y)\bigr)+ \int _{b_{1}(x_{0})}^{b_{1}(x)} \int_{c_{1}(y_{0})}^{c_{1}(y)}g_{1}(\xi,\eta,s,t)\,dt \,ds\biggr) \\ =&\tilde{\eta}_{2}(X,Y,x,y). \end{aligned}$$
(2.30)

Moreover, with the assumption that \(\tilde{\varrho}_{k}(x,y)=\tilde {\eta}_{k+1}(\xi,\eta,x,y)\), we get

$$\begin{aligned} \tilde{\varrho}_{k+1}(x,y) =&H^{-1}_{1}\biggl( \bar {H}^{-1}_{k+1}\biggl(\bar{H}_{k+1}\bigl( \varrho_{k}(x,y)\bigr)+ \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr)\biggr) \\ =&H^{-1}_{k+1}\biggl(H_{k+1}\bigl(H^{-1}_{1} \bigl(\varrho_{k}(x,y)\bigr)\bigr)+ \int _{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr) \\ =&H^{-1}_{k+1}\biggl(H_{k+1}\bigl(\tilde{ \varrho}_{k}(x,y)\bigr)+ \int _{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr) \\ =&H^{-1}_{k+1}\biggl(H_{k+1}\bigl(\tilde{ \eta}_{k+1}(\xi,\eta ,x,y)\bigr)+ \int_{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)}g_{k+1}(\xi,\eta,t,s)\,dt\,ds \biggr) \\ =&\tilde{\eta}_{k+2}(\xi,\eta,x,y). \end{aligned}$$
(2.31)

This proves that

$$ \tilde{\varrho}_{j}(x,y)=\tilde{\eta}_{j+1}( \xi,\eta, x,y),\quad j=1,\ldots, k . $$
(2.32)

Therefore, (2.27) becomes

$$\begin{aligned}& H_{j+1}\bigl(\tilde{\eta}_{j+1}\bigl(\xi, \eta,X^{*}_{3},Y^{*}_{3}\bigr) \bigr)+ \int _{b_{j+1}(x_{0})}^{b_{j+1}(X^{*}_{3})} \int_{c_{j+1}(y_{0})}^{c_{j+1}(Y^{*}_{3})}g_{j+1}(\xi,\eta,t,s)\,dt \,ds \\& \quad \le \int_{\tilde{t}_{j+1}}^{H_{1}(\infty)}\frac{ds}{\tilde {h}_{j+1}(H^{-1}_{1}(s))\hat{h}_{j+1}(H_{1}^{-1}(s))} \\& \quad = \int_{t_{j+1}}^{\infty}\frac{ds}{h_{j+1}(s)\bar{h}_{j+1}(s)},\quad j=1, \ldots,k, \end{aligned}$$
(2.33)

which implies that \(X^{*}_{2}=X^{*}_{3}\), \(\xi\le X^{*}_{3}\), \(Y^{*}_{2}=Y^{*}_{3}\), \(\eta\le Y^{*}_{3}\). From (2.29) we obtain

$$ u(x,y)\le H_{k+1}^{-1}\biggl(H_{k+1}\bigl(\tilde{ \eta}_{k+1}(\xi,\eta,x,y)\bigr)+ \int _{b_{k+1}(x_{0})}^{b_{k+1}(x)} \int_{c_{k+1}(y_{0})}^{c_{k+1}(y)} g_{k+1}(\xi,\eta,s,t)\,dt \,ds\biggr) $$

for \(x_{0}\le x\le \min\{X,X_{2}^{*}\}\), \(y_{0}\le y\le \min\{Y,Y_{2}^{*}\}\). This proves (2.10) by induction.

Taking \(x=\xi,\eta\), \(y=\xi,\eta\) in (2.10), we have

$$\begin{aligned} u(\xi,\eta) \leq&H_{m}^{-1} \biggl(H_{m}\bigl( \tilde{\eta}_{m}(\xi,\eta ,\xi,\eta)\bigr)+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int _{c_{m}(y_{0})}^{c_{m}(\eta)} g_{m}(\xi,\eta,s,t)\,dt \,ds \biggr) \\ = &H_{m}^{-1} \biggl(H_{m}\bigl( \eta_{m}(\xi,\eta)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(\xi)} \int_{c_{m}(y_{0})}^{c_{m}(\eta)} g_{m}(\xi,\eta,s,t)\,dt \,ds \biggr) \end{aligned}$$
(2.34)

for \(x_{0}\le\xi\le X^{*}_{1}\), \(y_{0}\le\eta\le Y^{*}_{1}\), since \(x^{*}_{2}\ge X^{*}_{1}\), \(Y^{*}_{2}\ge Y^{*}_{1}\) and \(\tilde{\eta}_{m}(\xi,\eta,\xi,\eta)= \eta_{m}(\xi,\eta)\). Since ξ, η are arbitrary, replacing ξ and η with x and y, respectively, we have

$$ u(x,y) \le H_{m}^{-1} \biggl(H_{m}\bigl( \eta_{m}(x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(x,y,s,t)\,dt\,ds \biggr) $$
(2.35)

for all \((x,y)\in[x_{0}, X^{*}_{1}]\times[y_{0},Y^{*}_{1}]\).

Let \(b(x,y)=0\) for some \((x,y)\in\Delta\). Let \(\eta_{1,\epsilon }(x,y):=r_{1}(x,y)+\epsilon\) for any \(\epsilon>0\). Then \(\eta_{1,\epsilon}(x,y)>0\). Using the same arguments as above, where \(\eta_{1}(x,y)\) is replaced with \(\eta_{1,\epsilon}(x,y)\), we get

$$ u(x,y)\leq H_{m}^{-1}\biggl(H_{m}\bigl( \eta_{n,\epsilon}(x,y)\bigr)+ \int _{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} g_{m}(x,y,s,t)\,dt\,ds \biggr) $$

for \(x_{0}\le x\le X^{*}_{1}\), \(y_{0}\le Y^{*}_{1}\). Then consider the continuity of \(\eta_{i,\epsilon}\) in ϵ and the continuity of \(H_{j}\) and \(H_{j}^{-1}\) for \(j=1,\ldots, m\), and let \(\epsilon\rightarrow0^{+}\). Then we obtain (2.7). This completes the proof. □

Theorem 2.1

Suppose that (A1)(A4) hold. \(\max_{s\in [b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq\varphi^{-1}( (1+m)^{1-1/q}a(x_{0}, y))\) for \(y\in[y_{0},y_{1})\) and \(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) are satisfied (1.4). Then, for all \((x,y)\in[x_{0}, X_{1})\times[y_{0},Y_{1})\), we have

$$ u(x,y)\leq\varphi^{-1}\biggl(\biggl(W_{m}^{-1} \bigl(W_{m}\bigl(r_{m}(x,y)\bigr)\bigr)+ \int_{\alpha _{m}(x_{0})}^{\alpha_{m}(x)} \int_{\beta_{m}(y_{0})}^{\beta_{m}(y)} \tilde{f}_{m}(x,y,s,t)\,dt \,ds\biggr)^{1/q}\biggr), $$
(2.36)

where \(W_{j}^{-1}\)is the inverse of the function

$$ W_{j}(t):= \int_{t_{j}}^{t}\frac{ds}{\tilde{\omega}^{q}_{j}(\varphi ^{-1}(s^{1/q}))}, \quad t\ge t_{j}>0, j=1,\ldots,m. $$
(2.37)

In (2.36) and (2.37), \(t_{j}\) is a given constant, \(\frac {1}{p}+\frac{1}{q}=1\), \(\tilde{\omega}_{j}\) (\(j=1,2,\ldots,m\)) are defined by (2.1),

$$\begin{aligned}& r_{1}(x,y) := (1+m)^{q-1}\Bigl(\max_{(\tau,\xi)\in [x_{0}, x]\times[y_{0},y] } \bigl\{ a(\tau,\xi)\bigr\} \Bigr)^{q}, \\& r_{j}(x,y): = W_{j-1}^{-1} \biggl[W_{j-1} \bigl(r_{j-1}(x,y)\bigr)+ \int_{b_{i-1}(x_{0})}^{b_{i-1}(x)} \int _{c_{i-1}(y_{0})}^{c_{i-1}(y)} \tilde{f}_{i-1}(x,y,s,t) \,dt\,ds \biggr], \\& \quad j=2,\ldots, m, \end{aligned}$$
(2.38)
$$\begin{aligned}& \begin{aligned}[b] &\tilde{f}_{j}(x,y,s,t):=(1+m)^{q-1} \bigl({M_{j}} x^{\theta_{j}}{\bar{M}_{j}} y^{\bar{\theta}_{j}}\bigr)^{q/p}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]}f_{j}( \iota,\xi,s,t)\Bigr)^{q}, \\ &\quad (x,y)\in [x_{0},x_{1})\times[y_{0},y_{1}), \end{aligned} \end{aligned}$$
(2.39)
$$\begin{aligned}& \begin{aligned} &M_{j}=\alpha_{j}^{-1}B \biggl(\frac{p(\gamma_{j}-1)+1}{\alpha_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\bar{M}_{j}=\bar{\alpha}_{j}^{-1}B\biggl( \frac{p(\bar{\gamma }_{j}-1)+1}{\bar{\alpha}_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\theta_{j}=p\bigl(\alpha_{j}(\beta_{j}-1)+ \gamma_{j}-1\bigr)+1, \\ &\bar{\theta}_{j}=p\bigl(\bar{\alpha}_{j}(\bar{ \beta}_{j}-1)+\bar{\gamma }_{j}-1\bigr)+1, \quad j=1, \ldots,m, \end{aligned} \end{aligned}$$
(2.40)

\(X_{1}\in[x_{0}, x_{1})\), \(Y_{1}\in[y_{0}, y_{1})\) are chosen such that

$$ W_{j}\bigl(r_{j}(X_{1},Y_{1}) \bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(X_{1})} \int _{c_{j}(y_{0})}^{c_{j}(Y_{1})} \tilde{f}_{j}(x,y,s,t) \,dt\,ds\le \int_{t_{j}}^{\infty}\frac{ds}{\tilde {\omega}^{q}_{j}(\varphi^{-1}(s^{1/q}))} $$
(2.41)

for \(j=1,\ldots,m\).

Proof

Above all, we monotonize functions \(f_{j}\), \(\omega_{j}\), \(\mu_{j}\), g, and a in (1.4). Let

$$ \hat{a}(x,y): = \max_{(\tau,\xi)\in[x_{0}, x]\times[y_{0},y] }\bigl\{ a(\tau,\xi) \bigr\} ,\quad (x,y)\in[x_{0},x_{1})\times[y_{0},y_{1}), $$

which is increasing in x and y. The sequence \(\{\tilde{\omega}_{j}\}\), defined by \(\omega_{j}(s)\) and \(\mu_{j}(s)\) in (2.1), consists of nonnegative and nondecreasing functions on \(\mathbb{R}_{+} \) and satisfies

$$ \omega_{j}(t)\le\hat{ {\omega}}_{j}(t),\qquad \mu_{j}(t)\le\hat{\mu}_{j}(t),\qquad \hat{\omega}_{j}(t) \hat{{\mu}}_{j}\bigl(\tilde{g}(t)\bigr)\le\tilde{\omega }_{j}(t), \quad j=1,\ldots,m. $$
(2.42)

Moreover, because the ratios \({\tilde{\omega}_{j+1}}/{\tilde{\omega }_{j}}\) (\(j=1,\ldots,m-1\)) are all nondecreasing, we have

$$ \tilde{\omega}_{j}\varpropto\tilde{\omega}_{j+1}, \quad j=1,2,\ldots,m-1. $$
(2.43)

Let

$$ \hat{f}_{j}(x,y,s,t) :=\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]}f_{j}( \iota ,\xi,s,t), $$
(2.44)

which are increasing in x and y and satisfy \(\tilde {f}_{j}(x,y,s,t)\geq f_{j}(x,y,s,t)\geq0\) for \(j=1,2,\ldots,m\). Since is nondecreasing, we obtain

$$ \max_{\tilde{\eta}\in[s-h,s]} g\bigl(u(\xi,y)\bigr)\le\max _{\tilde{\eta}\in[s-h,s]} \tilde{g}\bigl(u(\xi,y)\bigr) \le\tilde{g}\Bigl(\max _{\tilde{\eta}\in[s-h,s]} u(\xi,y)\Bigr) $$
(2.45)

for all \((s,y)\in[b_{*}(x_{0}), x_{1})\times[y_{0},y_{1})\). From (1.4), (2.42), (2.45), and the definition of \(\hat{f}_{j}\), we can obtain

$$ \begin{aligned} &\varphi\bigl(u(x,y)\bigr)\leq \hat{a}(x,y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} t^{\bar{\gamma}_{j}-1} \\ &\hphantom{\varphi(u(x,y))\leq{}}{}\times\hat{f}_{j}(x,y,s,t) \hat{ \omega}_{j}\bigl(u(s,t)\bigr)\hat{\mu}_{j}\Bigl(\tilde{g} \Bigl(\max_{\tilde {\eta}\in[s-h,s]}u(\tilde{\eta},t)\Bigr)\Bigr)\,dt\,ds, \quad \\ &\hphantom{\varphi(u(x,y))\leq{}}{}(x,y)\in[x_{0},x_{1}) \times[y_{0}, y_{1}), \\ &u(x,y) \leq \psi (x,y),\quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}). \end{aligned} $$
(2.46)

Let \(\frac{1}{p}+\frac{1}{q}=1\), \(p>1\), then \(q>0\). By Lemma 1, Hölder’s inequality, (A4) and (2.46), we obtain, for all \((x,y)\in[x_{0},x_{1})\times[y_{0}, y_{1})\),

$$\begin{aligned}& \varphi\bigl(u(x,y)\bigr) \\& \quad \leq \hat{a}(x,y)+\sum _{j=1}^{m} \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{p(\bar{\beta}_{j}-1)} t^{(\bar{\gamma}_{j}-1)}\,dt\,ds\biggr)^{1/p} \\& \qquad {}\cdot\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat{f}^{q}_{j}(x,y,s,t) \hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl(\hat{ \mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u(\tilde{ \eta},t)\Bigr)\Bigr)\Bigr)^{q} \,dt\,ds\biggr)^{1/q} \\& \quad \leq \hat{a}(x,y)+\sum_{j=1}^{m} \biggl( \int _{0}^{x} \int_{0}^{y} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\beta}_{j}} \bigr)^{p(\bar{\gamma}_{j}-1)} t^{{p(\bar{\gamma}_{j}-1)}}\,dt\,ds\biggr)^{1/p} \\& \qquad {}\cdot\biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat {f}^{q}_{j}(x,y,s,t) \hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl(\hat{ \mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u(\tilde{ \eta},t)\Bigr)\Bigr)\Bigr)^{q}dtds\biggr)^{1/q} \\& \quad \leq \hat{a}(x,y)+ \sum_{j=1}^{m} \bigl(M_{j}x^{\theta_{j}}\bar{M}_{j}y^{\bar{\theta}_{j}} \bigr)^{1/p}\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat{f}^{q}_{j}(x,y,s,t) \\& \qquad {} \cdot\hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl( \hat{\mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)\Bigr)\Bigr)\Bigr)^{q} \,dt\,ds\biggr)^{1/q}, \end{aligned}$$
(2.47)

where \(0\le b_{j}(t)\le t \), \(0\le c_{j}(t)\le t\), \(M_{j}\), \(\bar {M}_{j}\), \(\theta_{j}\), and \(\bar{\theta}_{j}\) are given by (2.40) for \(j=1,\ldots,m\).

By Jensen’s inequality and (2.47), we get, for all \((x,y)\in \Delta\),

$$\begin{aligned} \varphi^{q}\bigl(u(x,y)\bigr) \leq& (1+m)^{q-1}\Biggl( \hat{a}^{q}(x,y)+ \sum_{j=1}^{m} \bigl(M_{j}x^{\theta_{j}}\bar{M}_{j}y^{\bar{\theta}_{j}} \bigr)^{q/p} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\hat{f}^{q}_{j}(x,y,s,t) \\ &{} \times\hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \Bigl( \hat{\mu}_{j}\Bigl(\tilde{g}\Bigl(\max_{\tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)\Bigr)\Bigr)\Bigr)\Biggr)^{q} \,dt\,ds. \end{aligned}$$
(2.48)

Then, from (2.38), \(r_{1}\) is increasing on Δ. Then, by the definition of \(r_{1}\) and \(\tilde{f}_{j}\), from (2.48) we have

$$\begin{aligned} \varphi^{q}\bigl(u(x,y)\bigr) \leq& r_{1}(x,y)+ \sum _{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\tilde{f}_{j}(x,y,s,t) \hat{\omega}^{q}_{j}\bigl(u(s,t)\bigr) \\ &{}\cdot\Bigl(\hat{\mu}_{j}\Bigl(\tilde{g}\Bigl(\max _{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t)\Bigr)\Bigr)\Bigr)^{q}\,dt \,ds, \quad (x,y)\in\Delta. \end{aligned}$$
(2.49)

According to (2.49), we consider the inequalities

$$ \begin{aligned} &\varphi^{q}\bigl(u(x,y)\bigr) \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \\ &\hphantom{\varphi^{q}(u(x,y)) \leq{}}{}\cdot\hat{\omega}^{q}_{j}\bigl(u(s,t) \bigr) \Bigl(\hat{\mu}_{j}\Bigl(\hat{g}\Bigl(\max_{\tilde{\eta}\in[\tilde{\eta}-h,s]}u( \tilde{\eta },t)\Bigr)\Bigr)\Bigr)^{q} \,dt\,ds, \\ &\hphantom{\varphi^{q}(u(x,y)) \leq{}}{} (x,y) \in[x_{0},X]\times[y_{0},Y], \\ &u(x,y) \leq \psi(x,y), \quad (x,y)\in \bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0},Y], \end{aligned} $$
(2.50)

where \(x_{0}\leq X\le X_{1}\) and \(y_{0}\leq Y\le Y_{1}\) are chosen arbitrarily.

Since \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq\varphi ^{-1}((1+m)^{1-1/q}a(x_{0},y)) \) for \(y\in[y_{0},y_{1})\), \(a(x_{0},y)\le\hat{ a}(x_{0},y)\), we have \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq\varphi ^{-1}(r^{1/q}_{1}(X,Y))\), \(y\in[y_{0},Y]\). Define a function \(z(x,y): [b_{*}(x_{0})-h, X)\times[y_{0},Y)\rightarrow \mathbb {R}_{+}\) by

$$ z(x,y)= \textstyle\begin{cases} r_{1}(X,Y)+\sum_{j=1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)}\int _{c_{j}(y_{0})}^{c_{j}(y)}\tilde{f}_{j}(X,Y,s,t) \hat{\omega}^{q}_{j}(u(s,t)) \\ \quad {}\times (\hat{\mu}_{j}(\hat{g}(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t))))^{q}\,dt\,ds, \quad (x,y)\in[x_{0},X]\times [y_{0},Y], \\ r_{1}(X,Y), \quad (x,y)\in[b_{*}(x_{0})-h,x_{0}]\times [y_{0}, Y]. \end{cases} $$

Clearly, \(z(x,y)\) is increasing in x. By the definition of \(z(x,y)\) and (2.50), we have

$$ u(x,y)\leq\varphi^{-1}\bigl(z^{1/q}(x,y) \bigr), \quad (x,y)\in\bigl[b_{*}(x_{0})-h, X\bigr]\times[y_{0},Y]. $$
(2.51)

Since \(\varphi(t)\) is strictly increasing and \(z(x,y)\) is nondecreasing, from (2.51) we get, for \((s,y)\in[b_{*}(x_{0}), X]\times[y_{0},Y]\),

$$ \max_{\xi\in[s-h, s]} u(\xi,y) \leq \max _{\xi\in[s-h, s]} \varphi^{-1}\bigl(z^{1/q}(\xi,y) \bigr) \leq \varphi^{-1}\bigl(z^{1/q}(s,y)\bigr). $$
(2.52)

From the definition of \(z(x,y)\), (2.42), (2.51), and (2.52), it follows that

$$\begin{aligned}& z(x,y) \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \hat{\omega}^{q}_{j}\bigl(\varphi^{-1} \bigl(z^{1/q}(s,t)\bigr)\bigr) \\& \hphantom{z(x,y) \leq{}} {}\cdot\Bigl(\hat{\mu}_{j}\Bigl(\hat{g}\Bigl(\max _{\tilde{\eta}\in[s-h, s]} \varphi^{-1}\bigl(z^{1/q}(\tilde{ \eta},t)\bigr)\Bigr)\Bigr)\Bigr)^{q}\,dt\,ds \\& \hphantom{z(x,y) } \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \hat{\omega}^{q}_{j}\bigl(\varphi^{-1} \bigl(z^{1/q}(s,t)\bigr)\bigr) \\& \hphantom{z(x,y) \leq{}} {}\cdot\bigl(\hat{\mu}_{j}\bigl(\tilde{g}\bigl( \varphi^{-1}\bigl(z^{1/q}(s,t)\bigr)\bigr)\bigr) \bigr)^{q}\,dt\,ds \\& \hphantom{z(x,y) } \leq r_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{f}_{j}(X,Y,s,t) \tilde{\omega}^{q}_{j}\bigl(\varphi^{-1} \bigl(z^{1/q}(s,t)\bigr)\bigr) \\& \hphantom{z(x,y) \leq{}} {} \cdot\vartheta_{j}\Bigl(\max_{\tilde{\eta}\in[s-h, s]} u(\tilde {\eta},t)\Bigr)\,dt\,ds, \quad (x,y)\in[x_{0}, X] \times[y_{0},Y], \\& z(x,y) \leq r_{1}(X,Y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0}, Y], \end{aligned}$$
(2.53)

where \(\vartheta_{j}(t)\equiv1\), \(t\ge0\).

Let \(v(t):=\varphi^{-1}(t^{1/q})\), which is a continuous and increasing function on \(\mathbb {R}_{+}\). Thus \(\tilde{\omega }^{q}_{j}(h(t))\) (\(j=1,\ldots, m\)) are continuous and increasing on \(\mathbb {R}_{+}\) and satisfy \(\tilde{\omega}_{j}(v(t))>0 \) for \(t>0\). Moreover, since \(\tilde {\omega}_{j}(t)\propto\tilde{\omega}_{j+1}(t)\), \(\tilde{\omega}^{q}_{j+1}(v(t))/\tilde{\omega}^{q}_{j}(v(t))\) are continuous and increasing on \(\mathbb {R}_{+}\) and positive on \((0,\infty)\), then \((\tilde{\omega}_{j}\circ v)\vartheta_{j}\propto (\tilde{\omega}_{j+1}\circ v)\vartheta_{j+1}\) for \(j=1,2,\ldots,m-1\).

Applying Lemma 2 to specified \(g_{j}(x,y,s,t)=\tilde{f}_{j}(X,Y,s,t)\), \(h_{j}(t)=\tilde{\omega}^{q}_{j}(\varphi^{-1}(t^{1/q}))\), \(\bar{h}_{j}(t)=\vartheta_{j}(t)\equiv1\) (\(j=1,2,\ldots,m\)), and (2.53), we obtain

$$\begin{aligned} z(x,y) \le& W_{m}^{-1}\biggl[W_{n}\bigl(\tilde {r}_{m}(X,Y,x,y)\bigr) \\ &{} + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr] \end{aligned}$$
(2.54)

for \(x_{0}\le x \le\min\{X, X_{2}\}\), \(y_{0}\le y \le\min\{Y, Y_{2}\}\), where \(\tilde{r}_{j}\) is defined inductively by \(\tilde{r}_{1}(X,Y, x,y):=\gamma _{1}(X,Y)\) and

$$ \tilde{r}_{j}(X,Y,x,y):= W_{i-1}^{-1} \biggl(W_{i-1}\bigl(\tilde {r}_{i-1}(X,Y,x,y)\bigr)+ \int_{b_{i-1}(x_{0})}^{b_{i-1}(x)} \int _{c_{i-1}(y_{0})}^{c_{i-1}(y)} \tilde{f}_{i-1}(X,Y,s,t) \,dt\,ds\biggr) $$

for \(j=2,\ldots, m\), and \(\bar{X}_{1}\), \(\bar{Y}_{1}\) are chosen such that

$$\begin{aligned}& W_{j}\bigl(\tilde{r}_{j}(X,Y,\bar{X}_{1}, \bar{Y}_{1})\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(X_{2})} \int_{c_{j}(y_{0})}^{c_{j}(\bar{Y}_{1})} \tilde{f}_{j}(X,Y,s,t) \\& \quad \le \int_{t_{j}}^{\infty}\frac{ds}{\tilde{\omega}^{q}_{j}(\varphi ^{-1}(s^{1/q}))} \end{aligned}$$
(2.55)

for \(j=1,\ldots,m\).

Note that \(X_{2}\ge X_{1}\) and \(Y_{2}\ge Y_{1}\). In fact, both \(\tilde {r}_{j}(X,Y,x,y)\) and \(\tilde{f}_{j}(X,Y,x,y)\) are increasing in X and Y. Thus \(X_{2}\), \(Y_{2}\) satisfying (2.55) get smaller as X, Y are chosen larger.

According to (2.51) and (2.54),

$$\begin{aligned} u(x,y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(\tilde {r}_{m}(X,Y,x,y)\bigr) \\ &{}+ \int_{\alpha_{m}(x_{0})}^{\alpha_{m}(x)} \int_{\beta _{m}(y_{0})}^{\beta_{m}(y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr) \end{aligned}$$
(2.56)

for \(x_{0}\le x \le\min\{X, X_{2}\}\), \(y_{0}\le y \le\min\{Y, Y_{2}\}\).

Taking \(x=X\), \(y=Y\) in (2.56), we have

$$\begin{aligned} u(X,Y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(\tilde {r}_{m}(X,Y,X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr) \end{aligned}$$
(2.57)

for \(x_{0}\le X\le X_{1}\), \(y_{0}\le Y\le Y_{1}\). It is easy to verify \(\tilde {r}_{m}(X,Y,X,Y)= r_{m}(X,Y)\). Thus, (2.57) can be written as

$$\begin{aligned} u(X,Y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(r_{m}(X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ f}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr). \end{aligned}$$
(2.58)

Since X, Y are arbitrary, replacing Y and X with y and x, respectively, we have

$$\begin{aligned} u(x,y) \le& \varphi^{-1}\biggl(W_{m}^{-1} \biggl(W_{n}\bigl(r_{m}(x,y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ f}_{m}(x,y,s,t) \,dt\,ds\biggr)\biggr) \end{aligned}$$
(2.59)

for all \((x,y)\in[x_{0}, X^{*}_{1}]\times[y_{0},Y^{*}_{1}]\).

This completes the proof. □

Theorem 2.2

We make the following assumptions:

(S1):

\(c(x,y)\in C(\Delta, \mathbb{R}_{+}) \) and \(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\), and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing with \(b_{j}(x)\leq x\) on \([x_{0},x_{1})\) and \(c_{j}(y)\le y\) on \([y_{0},y_{1})\), and \(c_{j}(y_{0})=y_{0}\) for \(j=1,\ldots,m\);

(S2):

\(\hat{\psi}\in C(\Xi,\mathbb {R}_{+})\), \(\hat{g}_{j}\in C(\Delta\times[b_{*}(x_{0}),x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) (\(j=1,2,\ldots, m\));

(S3):

\(\phi_{j}, \hat{\phi}_{j}\in C(\mathbb {R}_{+},\mathbb{R}_{+})\) (\(j=1,\ldots ,m\)) are all nondecreasing with \(\{\phi_{j},\hat{\phi}_{j}\}(t)>0\) for \(t>0\), and \(\phi_{j}\hat{\phi}_{j}\propto\phi_{j+1}\hat{\phi}_{j+1}\) (\(j=1,\ldots,m-1\));

(S4):

\(k\ge1\), \(\alpha_{j}, \bar{\alpha}_{j}\in(0,1]\), \(\beta_{j},\bar{\beta }_{j}\in(0,1)\), \(\gamma_{j}>1-\frac{1}{p}\), \(\bar{\gamma}_{j}>1-\frac{1}{p}\) such that \(\frac{1}{p}+\alpha_{j}(\beta_{j}-1)+\gamma_{j}-1\ge0\), \(\frac {1}{p}+\bar{\alpha}_{j}(\bar{\beta}_{j}-1)+\bar{\gamma}_{j}-1\ge0\), \(p(\beta_{j}-1)+1>0\), \(p(\bar{\beta}_{j}-1)+1>0\), \(p>1\) for all \(j=1,\ldots,m\).

If \(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) satisfies the integral inequality

$$\begin{aligned}& u^{k}(x,y)\leq c(x,y)+\sum_{j=1}^{M} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\& \hphantom{u^{k}(x,y)\leq{}}{} \times t^{\bar{\gamma}_{j}-1} \hat{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi}_{j} \Bigl(\max _{\tilde{\eta}\in [s-h, s]}g\bigl(u(\tilde{\eta},t)\bigr) \Bigr) \\& \hphantom{u^{k}(x,y)\leq{}}{} +\sum_{j=M+1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\hat{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi }_{j} \Bigl(\max _{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta },t) \Bigr), \\& \hphantom{u^{k}(x,y)\leq{}}{}(x,y)\in[x_{0},x_{1})\times [y_{0}, y_{1}), \\& u(x,y) \leq \hat{ \psi }(x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}), \end{aligned}$$
(2.60)

where \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\hat{\psi}(s,y)\leq( (1+m)^{1-1/q}c(x_{0},y))^{1/k}\) for all \(y\in[y_{0},y_{1})\).

Then

$$ u(x,y) \leq \biggl(G_{m}^{-1} \bigl(G_{m}\bigl(e_{m}(x,y)\bigr)\bigr) + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{g}_{m}(x,y,s,t)\,dt \,ds\biggr)^{1/(kq)} $$
(2.61)

for all \((x,y)\in[x_{0}, X_{2})\times[y_{0},Y_{2})\), where \(G_{j}^{-1}\)is the inverse of the function

$$ G_{j}(u):= \int_{t_{j}}^{t}\frac{ds}{\phi^{q}_{j}(s^{1/(kq)})\hat{\phi }^{q}_{j}(s^{1/(kq)})}, \quad t\ge t_{j}>0, j=1,\ldots,m. $$
(2.62)

In (2.61) and (2.62), \(t_{j}>0\) is a given constant, \(\frac{1}{p}+\frac{1}{q}=1\), \(e_{j}(x,y)\) is defined recursively by

$$\begin{aligned}& \begin{aligned}[b] &e_{1}(x,y)=(1+m)^{q-1}\Bigl( \max_{(\iota,\xi)\in[x_{0}, x ]\times [y_{0},y]}c(\iota,\xi)\Bigr)^{q},\quad \textit{and} \\ &e_{j+1}(x,y):=G_{j}^{-1}\biggl[G_{j} \bigl(e_{j}(x,y)\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \tilde{g}_{j}(x,y,s,t) \,dt\,ds\biggr], \\ &\quad j=1,\ldots, m-1, \end{aligned} \end{aligned}$$
(2.63)
$$\begin{aligned}& \begin{aligned}[b] &\tilde{g}_{j}(x,y,s,t):=(1+m)^{q-1} \bigl({M_{j}} x^{\theta_{j}}{\bar{M}_{j}} y^{\bar{\theta}_{j}}\bigr)^{q/p}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]} \hat{g}_{j}(\iota,\xi,s,t)\Bigr)^{q}, \\ &\quad (x,y)\in [x_{0},x_{1})\times[y_{0},y_{1}), \end{aligned} \end{aligned}$$
(2.64)
$$\begin{aligned}& \begin{aligned} &M_{j}=\alpha_{j}^{-1}B \biggl(\frac{p(\gamma_{j}-1)+1}{\alpha_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\bar{M}_{j}=\bar{\alpha}_{j}^{-1}B\biggl( \frac{p(\bar{\gamma }_{j}-1)+1}{\bar{\alpha}_{j}}, p(\beta_{j}-1)+1\biggr), \\ &\theta_{j}=p\bigl(\alpha_{j}(\beta_{j}-1)+ \gamma_{j}-1\bigr)+1, \\ &\bar{\theta}_{j}=p\bigl(\bar{\alpha}_{j}(\bar{ \beta}_{j}-1)+\bar{\gamma}_{j}-1\bigr)+1, \quad j=1, \ldots,M \\ &M_{j}=\bar{M}_{j}=1, \qquad \theta_{j}= \bar{\theta}_{j}=1, \quad j=M+1,\ldots,m, \end{aligned} \end{aligned}$$
(2.65)

\(X_{2}\in[x_{0}, x_{1})\), \(Y_{2}\in[y_{0}, y_{1})\) are chosen such that

$$\begin{aligned}& G_{j}\bigl(r_{j}(X_{2},Y_{2})\bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(X_{1})} \int _{c_{j}(y_{0})}^{c_{j}(Y_{2})} \tilde{g}_{j}(X_{2},Y_{2},s,t) \,dt\,ds \\& \quad \le \int_{t_{j}}^{\infty}\frac{ds}{\phi^{q}_{j}(s^{1/q})\hat{\phi }^{q}_{j}(s^{1/q})} \end{aligned}$$
(2.66)

for \(j=1,2,\ldots,m\).

Proof

Let

$$ \begin{aligned} &\hat{c}(x,y):=\max_{(\tau,\xi)\in[x_{0}, x]\times[y_{0},y] }\bigl\{ a(\tau,\xi)\bigr\} , \quad (x,y)\in[x_{0},x_{1}) \times[y_{0},y_{1}). \\ &\bar{g}_{j}(x,y,s,t) :=\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]}g_{j}( \iota ,\xi,s,t), \end{aligned} $$
(2.67)

which are increasing in x and y and satisfy \(\bar {g}_{j}(x,y,s,t)\geq g_{j}(x,y,s,t)\geq0\) for \(j=1,2,\ldots,m\). From (2.60), (2.67), and the definition of \(\tilde {g}_{j}\), we obtain

$$\begin{aligned}& u^{k}(x,y) \leq \hat{c}(x,y)+\sum_{j=1}^{M} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\& \hphantom{u^{k}(x,y) \leq{}}{} \times t^{\bar{\gamma}_{j}-1} \bar{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi}_{j}\Bigl(\max _{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t)\Bigr) \\& \hphantom{u^{k}(x,y) \leq{}}{} +\sum_{j=M+1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}_{j}(x,y,s,t) \phi_{j}\bigl(u(s,t)\bigr)\hat{\phi}_{j}\Bigl(\max _{\tilde{\eta}\in[s-h, s]}u(\tilde{\eta},t)\Bigr), \\& \hphantom{u^{k}(x,y) \leq{}}{} (x,y)\in[x_{0},x_{1})\times [y_{0}, y_{1}), \\& u(x,y) \leq \hat{ \psi }(x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}). \end{aligned}$$
(2.68)

Let \(\frac{1}{p}+\frac{1}{q}=1\), \(p>1\), then \(q>0\). By Lemma 1, Hölder’s inequality, (S4), and (2.68), we obtain, for all \((x,y)\in\Delta\),

$$\begin{aligned}& u^{k}(x,y) \\& \quad \leq \hat{c}(x,y)+\sum_{j=1}^{M} \biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{p(\bar{\beta}_{j}-1)}t^{(\bar{\gamma}_{j}-1)}\,dt\,ds\biggr)^{1/p} \\& \qquad {}\times\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr)\hat{\phi}^{q}_{j} \Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \qquad {}+\sum_{j=M+1}^{m} \biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)} 1^{p}\,dt\,ds \biggr)^{1/p}\biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr) \\& \qquad {}\times\hat{\phi}^{q}_{j}\Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{ \eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \quad \leq \hat{c}(x,y)+\sum_{j=1}^{M} \biggl( \int _{b_{j}(0)}^{x} \int_{0}^{y} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{p(\beta_{j}-1)}s^{p(\gamma_{j}-1)}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{p(\bar{\beta}_{j}-1)}t^{(\bar{\gamma}_{j}-1)}\,dt\,ds\biggr)^{1/p} \\& \qquad {} \times\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr)\hat{\phi}^{q}_{j} \Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{\eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \qquad {}+\sum_{j=M+1}^{m} \biggl( \int_{0}^{x} \int_{0)}^{y} 1^{p}\,dt\,ds \biggr)^{1/p}\biggl( \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \phi^{q}_{j}\bigl(u(s,t)\bigr) \\& \qquad {}\times\hat{\phi}^{q}_{j}\Bigl(\max_{\tilde{\eta}\in [s-h,s]}u(\tilde{ \eta},t)\Bigr) \,dt\,ds\biggr)^{1/q} \\& \quad \leq \hat{c}(x,y)+ \sum_{j=1}^{m} \bigl(M_{j}x^{\theta_{j}}\bar{M}_{j}y^{\bar{\theta}_{j}} \bigr)^{1/p}\biggl( \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \\& \qquad {} \times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{ \phi}^{q}_{j}\Bigl(\max_{\tilde {\eta}\in[s-h,s]}u(\tilde{ \eta},t)\Bigr) \,dt\,ds\biggr)^{1/q}, \end{aligned}$$
(2.69)

where \(0\le b_{j}(t)\le t \), \(0\le c_{j}(t)\le t\), \(M_{j}\), \(\bar {M}_{j}\), \(\theta_{j}\), and \(\bar{\theta}_{j}\) are given by (2.65) for \(j=1,\ldots,m\).

By Jensen’s inequality and (2.69), we get, for all \((x,y)\in \Delta\),

$$\begin{aligned} u^{kq}(x,y) \leq& (1+m)^{q-1}( \hat{c}^{q}(x,y)+ \sum_{j=1}^{m}\bigl(M_{j}x^{\theta_{j}} \bar{M}_{j}y^{\bar{\theta}_{j}}\bigr)^{q/p} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\bar{g}^{q}_{j}(x,y,s,t) \\ &{} \times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{ \phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{\eta},t)\bigr) \,dt\,ds. \end{aligned}$$
(2.70)

By the definition of \(e_{1}\) and \(\tilde{g}_{j}\), from (2.70) we obtain

$$\begin{aligned} u^{kq}(x,y) \leq& e_{1}(x,y)+ \sum _{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\tilde{g}_{j}(x,y,s,t) \\ &{}\times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{ \phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{\eta},t)\bigr) \,dt\,ds,\quad (x,y)\in\Delta. \end{aligned}$$
(2.71)

Concerning (2.71), we consider the auxiliary inequalities

$$\begin{aligned}& u^{kq}(x,y)\leq e_{1}(X,Y)+ \sum _{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)}\tilde{g}_{j}(X,Y,s,t) \\& \hphantom{u^{kq}(x,y)\leq{}}{}\times\phi^{q}_{j}\bigl(u(s,t)\bigr) \hat{\phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{ \eta},t)\bigr) \,dt\,ds, \quad (x,y)\in[x_{0},X] \times[y_{0},Y], \\& u(x,y)\leq \hat{\psi}(x,y), \quad (x,y)\in \bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0},Y], \end{aligned}$$
(2.72)

where \(x_{0}\leq X\le X_{2}\) and \(y_{0}\leq Y\le Y_{2}\) are chosen arbitrarily.

Since \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\hat{\psi}(s,y)\leq ((1+m)^{1-1/q}a(x_{0},y))^{\frac{1}{k}}\) for \(y\in[y_{0},y_{1})\), \(a(x_{0},y)\le\hat{ c}(x_{0},y)\), we have \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\psi(s,y)\leq (e^{1/q}_{1}(X,Y))^{\frac{1}{k}}\), \(y\in[y_{0},Y]\). Define a function \(z(x,y): [b_{*}(x_{0})-h, X)\times[y_{0},Y)\rightarrow \mathbb {R}_{+}\) by

$$ z(x,y)= \textstyle\begin{cases} e_{1}(X,Y)+ \sum_{j=1}^{m}\int_{b_{j}(x_{0})}^{b_{j}(x)}\int _{c_{j}(y_{0})}^{c_{j}(y)}\tilde{g}_{j}(X,Y,s,t) \\ \quad {}\times\phi^{q}_{j}(u(s,t))\hat{\phi}^{q}_{j}\bigl(\max_{\tilde{\eta }\in[s-h,s]}u(\tilde{\eta},t)\bigr) \,dt\,ds, \quad (x,y)\in[x_{0},X]\times [y_{0},Y], \\ e_{1}(X,Y), \quad (x,y)\in[b_{*}(x_{0})-h,x_{0}]\times [y_{0}, Y]. \end{cases} $$

Clearly, \(z(x,y)\) is increasing in x. From (2.72) and the definition of z, we have

$$ u(x,y)\leq z^{1/(kq)}(x,y),\quad (x,y)\in \bigl[b_{*}(x_{0})-h, X\bigr]\times[y_{0},Y]. $$
(2.73)

Then, noting that z is increasing, from (2.51) we get for \((s,y)\in[b_{*}(x_{0}), X]\times[y_{0},Y]\)

$$ \max_{\tilde{\eta}\in[s-h, s]} u(\tilde{\eta},y) \leq\max _{\tilde{\eta}\in[s-h, s]} z^{1/(kq)}(\tilde{\eta},y)\le\bigl( \max_{\tilde{\eta}\in[s-h, s]} z(\tilde{\eta},y)\bigr)^{1/(kq)}. $$
(2.74)

From (2.42), (2.73), (2.74), and the definition of z, we have

$$\begin{aligned}& z(x,y)\leq e_{1}(X,Y)+\sum_{j=1}^{m} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{b_{j}(y_{0})}^{b_{j}(y)} \tilde{g}_{j}(X,Y,s,t) \phi^{q}_{j}\bigl(z^{1/(kq)}(s,t)\bigr) \\& \hphantom{z(x,y)\leq{}}{}\times\hat{\phi}^{q}_{j} \Bigl(\max _{\tilde{\eta}\in[s-h, s]} \bigl(z^{1/(kq)}(\tilde{\eta},t)\bigr) \Bigr)\,dt\,ds \\& \hphantom{z(x,y)}\leq e_{1}(X,Y)+\sum_{j=1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{b_{j}(y_{0})}^{b_{j}(y)} \tilde{g}_{j}(X,Y,s,t) \phi^{q}_{j}\bigl(z^{1/(kq)}(s,t)\bigr) \\& \hphantom{z(x,y)\leq{}}{}\times\hat{\phi}^{q}_{j} \Bigl(\bigl(\max _{\tilde{\eta}\in[s-h, s]} z(\tilde{\eta},t)\bigr)^{1/(kq)}\Bigr) \,dt\,ds, \quad (x,y)\in[x_{0}, X] \times[y_{0},Y], \\& z(x,y) \leq e_{1}(X,Y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times[y_{0}, Y]. \end{aligned}$$
(2.75)

Let \(v(t):=t^{1/(kq)}\), which is a continuous and increasing function on \(\mathbb {R}_{+}\). Thus \(\phi^{q}_{j}(v(t)) \) and \(\hat {\phi}^{q}_{j}(v(t))\) (\(j=1,\ldots, m\)) are continuous and increasing on \(\mathbb {R}_{+}\) and positive on \((0,\infty)\). Moreover, since \(\phi_{j}\hat{\phi}_{j}\propto\phi_{j+1}\hat{\phi}_{j+1}\), we have \((\phi_{j+1}\circ v)^{q}(\hat{\phi}_{j+1}\circ v)^{q} \propto(\phi _{j}\circ v)^{q}(\hat{\phi}_{j}\circ v)^{q}\) (\(j=1,\ldots,m-1\)). Taking \(g_{j}(x,y,s,t)=\tilde{g}_{j}(X,Y,s,t)\) and \(h_{j}(t)=\phi^{q}_{j}(v(t))\), \(\bar{h}_{j}(t)=\hat{\phi}^{q}_{j}(v(t))\), \(j=1,2,\ldots,m\), in Lemma 2 and (2.75),we obtain

$$\begin{aligned} z(x,y) \le& G_{m}^{-1}\biggl(G_{m} \bigl(\tilde{e}_{m}(X,Y,x,y)\bigr) \\ &{} + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr) \end{aligned}$$
(2.76)

for \(x_{0}\le x \le\min\{X, X^{*}_{2}\}\), \(y_{0}\le y \le\min\{Y, Y^{*}_{2}\}\), where \(\tilde{e}_{j}(X,Y,x,y)\) is defined inductively by \(\tilde {e}_{1}(X,Y,x,y):=e_{1}(X,Y)\) and

$$ \tilde{e}_{j}(X,Y,x,y):= G_{j-1}^{-1} \biggl(G_{j-1}\bigl(\tilde {e}_{j-1}(X,Y,x,y)\bigr)+ \int_{b_{j-1}(x_{0})}^{b_{j-1}(x)} \int _{c_{j-1}(y_{0})}^{c_{j-1}(y)} \tilde{g}_{j-1}(X,Y,s,t) \,dt\,ds\biggr) $$

for \(j=2,\ldots, m\), and \(X^{*}_{2}\), \(Y^{*}_{2}\) are chosen such that

$$\begin{aligned}& G_{j}\bigl(\tilde{e}_{j}(X,Y,\bar{X}_{1}, \bar{Y}_{1})\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(X_{2})} \int_{c_{j}(y_{0})}^{c_{j}(\bar{Y}_{1})} \tilde{g}_{j}(X,Y,s,t) \\& \quad \le \int_{t_{j}}^{\infty}\frac{ds}{\tilde{\omega}^{q}_{j}(\varphi ^{-1}(s^{1/q}))} \end{aligned}$$
(2.77)

for \(j=1,\ldots,m\).

Note that \(X^{*}_{2}=X_{2}\) and \(Y^{*}_{2}=Y_{2}\). It follows from (2.73) and (2.76) that

$$\begin{aligned} u(x,y) \le& \biggl(G_{m}^{-1}\biggl(G_{n}\bigl( \tilde{g}_{m}(X,Y,x,y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)} \end{aligned}$$
(2.78)

for \(x_{0}\le x \le\min\{X, X^{*}_{2}\}\), \(y_{0}\le y \le\min\{Y, Y^{*}_{2}\}\).

Taking \(x=X\), \(y=Y\) in (2.56), we have

$$\begin{aligned} u(X,Y) \le& \biggl(G_{m}^{-1}\biggl(G_{m}\bigl( \tilde{e}_{m}(X,Y,X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)} \end{aligned}$$
(2.79)

for \(x_{0}\le X\le X_{2}\), \(y_{0}\le Y\le Y_{2}\). It is easy to verify \(\tilde {e}_{m}(X,Y,X,Y)= e_{m}(X,Y)\). Thus, (2.57) can be written as

$$\begin{aligned} u(X,Y) \le& \biggl(G_{m}^{-1}\biggl(G_{n} \bigl(r_{m}(X,Y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(X)} \int_{c_{m}(y_{0})}^{c_{m}(Y)} \tilde{ g}_{m}(X,Y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)}. \end{aligned}$$
(2.80)

Since \(X,Y\) are arbitrary, replacing X and Y with x and y, respectively, we get

$$\begin{aligned} u(x,y) \le& \biggl(G_{m}^{-1}\biggl(G_{n} \bigl(e_{m}(x,y)\bigr) \\ &{}+ \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{ g}_{m}(x,y,s,t) \,dt\,ds\biggr)\biggr)^{1/(kq)} \end{aligned}$$
(2.81)

for all \((x,y)\in[x_{0}, X_{2}]\times[y_{0},Y_{2}]\). This completes the proof. □

Corollary 2.3

Let the following conditions be fulfilled:

(B1):

all \(b_{j}\in C^{1}([x_{0},x_{1}),\mathbb {R}_{+})\) and \(c_{j}\in C^{1}([y_{0},y_{1}), [y_{0},y_{1}))\) are nondecreasing with \(b_{j}(x)\leq x\) on \([x_{0},x_{1})\), \(c_{j}(y)\le y\) on \([y_{0},y_{1})\), and \(c_{j}(y_{0})=y_{0}\) for all \(j=1,\ldots,m\);

(B2):

\(a\in C(\Delta, \mathbb{R}_{+})\) and \(\hat{\psi}\in C(\Xi,\mathbb {R}_{+})\), \(\varphi_{1} \in C(\mathbb {R}_{+},\mathbb {R}_{+})\), and \(\varphi_{1}\) is strictly increasing such that \(\lim_{t\rightarrow\infty}\varphi(t)=\infty\),and \(f_{j}\in C(\Delta\times[b_{*}(x_{0}),x_{1})\times[y_{0},y_{1}),\mathbb{R}_{+})\) for all \(j=1,\ldots, m\);

(B3):

all \(\psi_{j}\) (\(j=1,\ldots,m\)) are continuous and increasing functions on \(\mathbb {R}_{+}\) and positive on \((0,+\infty)\) such that \(\psi_{1}\propto\psi_{2}\propto\ldots\propto\psi_{m}\);

(B4):

\(\alpha_{j}, \bar{\alpha}_{j}\in(0,1]\), \(\beta_{j},\bar{\beta}_{j}\in(0,1)\), \(\gamma_{j}>1-\frac{1}{p}\), \(\bar{\gamma}_{j}>1-\frac{1}{p}\) such that \(\frac{1}{p}+\alpha_{j}(\beta_{j}-1)+\gamma_{j}-1\ge0\), \(\frac {1}{p}+\bar{\alpha}_{j}(\bar{\beta}_{j}-1)+\bar{\gamma}_{j}-1\ge0\), \(p(\beta_{j}-1)+1>0\), \(p(\bar{\beta}_{j}-1)+1>0\), \(p>1\), \(j=1,2,\ldots,m\);

(B5):

\(u\in C([b_{*}(x_{0})-h,x_{1})\times[y_{0},y_{1}),\mathbb {R}_{+})\) satisfies the integral inequality

$$ \begin{aligned} &\varphi_{1}\bigl(u(x,y) \bigr) \leq a(x,y)+\sum_{j=1}^{M} \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1}\bigl(y^{\bar {\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} \times t^{\bar{\gamma}_{j}-1} f_{j}(x,y,s,t) \psi_{j}\bigl(u(s,t)\bigr)\,dt\,ds \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} +\sum_{j=M+1}^{m} \int_{b_{j}(x_{0})}^{b_{j}(x)} \int _{c_{j}(y_{0})}^{c_{j}(y)}\bigl(x^{\alpha_{j}}-s^{\alpha_{j}} \bigr)^{\beta_{j}-1}s^{\gamma_{j}-1} \bigl(y^{\bar{\alpha}_{j}}-t^{\bar{\alpha}_{j}} \bigr)^{\bar{\beta}_{j}-1} \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} \times t^{\bar{\gamma}_{j}-1}f_{j}(x,y,s,t) \psi_{j} \Bigl(\max_{\tilde {\eta}\in[s-h,s]}u(\tilde{\eta},t) \Bigr) \,dt\,ds, \\ &\hphantom{\varphi_{1}(u(x,y)) \leq{}}{} (x,y)\in[x_{0},x_{1})\times [y_{0}, y_{1}), \\ &u(x,y) \leq \hat{\psi }(x,y), \quad (x,y)\in\bigl[b_{*}(x_{0})-h,x_{0} \bigr]\times [y_{0}, y_{1}), \end{aligned} $$
(2.82)

where \(\max_{s\in[b_{*}(x_{0})-h,x_{0}]}\hat{\psi}(s,y)\leq \varphi_{1}^{-1}( (1+m)^{1-1/q}a(x_{0},y))\) for all \(y\in[y_{0},y_{1})\).

Then

$$\begin{aligned} u(x,y) \leq& \varphi_{1}^{-1}\biggl(\check{G}_{m}^{-1} \biggl(\check{G}_{m}\bigl(r_{m}(x,y)\bigr) \\ &{} + \int_{b_{m}(x_{0})}^{b_{m}(x)} \int_{c_{m}(y_{0})}^{c_{m}(y)} \tilde{f}_{m}(x,y,s,t)\,dt \,ds\biggr)^{1/q}\biggr) \end{aligned}$$
(2.83)

for all \((x,y)\in[x_{0}, X_{2})\times[y_{0},Y_{2})\), where \(G_{j}^{-1}\) is the inverse of the function

$$ \check{G}_{j}(t):= \int_{t_{j}}^{t}\frac{ds}{\psi^{q}_{j}(\varphi _{1}^{-1}(s^{1/q}))},\quad t\ge t_{j}>0, j=1,2,\ldots,m, $$
(2.84)

\(t_{j}\) is a given constant, \(r_{j}(x,y)\) is defined recursively by

$$\begin{aligned}& r_{1}(x,y)=(1+m)^{q-1}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times [y_{0},y]}a( \iota,\xi)\Bigr)^{q},\quad \textit{and} \\& r_{j+1}(x,y):= \check{G}_{j}^{-1}\biggl[ \check{G}_{j}\bigl(r_{j}(x,y)\bigr)+ \int _{b_{j}(x_{0})}^{b_{j}(x)} \int_{c_{j}(y_{0})}^{c_{j}(y)} \tilde{f}_{j}(x,y,s,t) \,dt\,ds\biggr], \\& \quad j=1,\ldots, m-1, \end{aligned}$$
(2.85)
$$\begin{aligned}& \begin{aligned}[b] &\tilde{f}_{j}(x,y,s,t):=(1+m)^{q-1} \bigl({M_{j}} x^{\theta_{j}}{\bar{M}_{j}} y^{\bar{\theta}_{j}}\bigr)^{q/p}\Bigl(\max_{(\iota,\xi)\in[x_{0}, x ]\times[y_{0},y]} \check{f}_{j}(\iota,\xi,s,t)\Bigr)^{q}, \\ &\quad (x,y)\in [x_{0},x_{1})\times[y_{0},y_{1}), \end{aligned} \end{aligned}$$
(2.86)

\(M_{j}:=\alpha_{j}^{-1}B(\frac{p(\gamma_{j}-1)+1}{\alpha_{j}}, p(\beta_{j}-1)+1)\), \(\bar{M}_{j}:=\bar{\alpha}_{j}^{-1}B(\frac{p(\bar {\gamma}_{j}-1)+1}{\bar{\alpha}_{j}}, p(\beta_{j}-1)+1)\), \(\theta_{j}:=p(\alpha_{j}(\beta_{j}-1)+\gamma _{j}-1)+1\), \(\bar{\theta}_{j}:=p(\bar{\alpha}_{j}(\bar{\beta }_{j}-1)+\bar{\gamma}_{j}-1)+1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(X_{2}\in[x_{0}, x_{1})\), \(Y_{2}\in[y_{0}, y_{1})\) are chosen such that

$$ \check{G}_{j}\bigl(r_{j}(X_{2},Y_{2}) \bigr)+ \int_{b_{j}(x_{0})}^{b_{j}(X_{1})} \int _{c_{j}(y_{0})}^{c_{i-1}(Y_{2})} \tilde{f}_{j}(X_{2},Y_{2},s,t) \,dt\,ds\le \int_{t_{j}}^{\infty}\frac {ds}{\tilde{\omega}^{q}_{j}(\varphi^{-1}(s^{1/q}))} $$
(2.87)

for \(j=1,2,\ldots,m\).

Proof

Applying Theorem 2.1 to specified \(\omega_{j}(u)\equiv\psi _{j}(u)\) (\(j=1,\ldots,M\)), \(\mu_{j}(u)\equiv1\) (\(j=1,\ldots,M\)), \(\omega_{j}(u)\equiv1\) (\(j=M+1,\ldots,m\)), \(\mu_{j}(u)\equiv\psi_{j}(u)\) (\(j=M+1,\ldots,m\)), \(f_{j}(x,y,s,t)=\check{f}_{j}(x,y,s,t)\), \(g(t)=t\), from (2.82) we obtain estimate (2.83). The proof is complete. □

3 Applications

Consider a nonlinear weakly singular integral equation with maxima

$$ \textstyle\begin{cases} z(x,y)=a(x,y)+\int_{x_{0}}^{x}\int_{y_{0}}^{y}(x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} \\ \hphantom{z(x,y)={}}{}\times F(x,y, s,t,z(s,t),\max_{ \tilde{\eta}\in [s-h,s]}z( \tilde{\eta},t))\, ds\, dt, \quad (x,y)\in\Delta, \\ z(x,y)=\psi(x,y), \quad (x,y)\in[x_{0}-h,x_{0}]\times[y_{0}, y_{1}), \end{cases} $$
(3.1)

where \(F\in C(\Delta\times\mathbb {R}^{4},\mathbb {R})\), h is a positive constant, \(\psi\in C([x_{0}-h,x_{0}]\times[y_{0},y_{1}),\mathbb{R})\), \(a\in C(\Delta, \mathbb {R})\), \(\theta_{j}\in(0,1)\), and \(p(\gamma_{j}-1)+1>0\) such that \(\frac{1}{p}+\theta_{j}+\gamma_{j}-2\ge0\) and \(p(\theta _{j}-1)+1>0\), \(p>1\), \(j=1,2\).

The following result gives an estimate for its solutions.

Corollary 3.1

Suppose that functions F in (3.1) satisfy

$$ \bigl\vert F(x,y,s,t,u,v) \bigr\vert \le h_{1}(x,y,s,t) \mu_{1}\bigl( \vert u \vert \bigr)+h_{2}(x,y,s,t) \mu_{2}\bigl( \vert v \vert \bigr), $$
(3.2)

where \(h_{j}\in C([x_{0},x_{1})\times[y_{0},y_{1})\times\mathbb {R}^{2},\mathbb {R}_{+})\), and \(h_{j}(x,y,s,t)\) is nondecreasing in x and y for each fixed s and t, and \(\mu_{j}\in C(\mathbb {R}_{+},(0,\infty))\) (\(j=1,2\)) such that \(\mu_{1}\propto\mu_{2}\), \(\max_{s\in[x_{0}-h,x_{0}]}\psi(s,y)\le3^{1-1/q}|a(x_{0}, y)|\) for all \(y\in[y_{0}, y_{1})\).

Then any solution \(z(x,y)\) of (3.1) has the estimate

$$\begin{aligned}& \bigl\vert z(x,y) \bigr\vert \\& \quad \le \biggl[ {Q_{2}}^{-1} \biggl(Q_{2}\bigl(\gamma(x,y)\bigr)+3^{q-1} \bigl(M_{1}x^{\delta _{1}}M_{2}y^{\delta_{2}} \bigr)^{q/p} \int_{x_{0}}^{x} \int_{y_{0}}^{y}h_{2}(x,y,s,t)dt \,ds \biggr) \biggr]^{1/q} \end{aligned}$$
(3.3)

for all \((x,y)\in[x_{0},X_{1})\times[y_{0},Y_{1})\), where

$$\begin{aligned}& \gamma(x,y) := Q_{1}^{-1} \biggl(Q_{1}\bigl( \eta _{1}(x,y)\bigr)+3^{q-1}\bigl(M_{1}x^{\delta_{1}}M_{2}y^{\delta_{2}} \bigr)^{q/p} \int _{x_{0}}^{x} \int_{y_{0}}^{y}h^{q}_{1}(x,y,s,t) \,dt\,ds \biggr), \\ & \eta_{1}(x,y) := 3^{q-1}\Bigl(\max_{(s,t)\in [x_{0},x]\times[y_{0},y]} \bigl\vert a(s,t) \bigr\vert \Bigr)^{q},\qquad Q_{1}(u):= \int_{u_{1}}^{u}\frac{ds}{\mu_{1}^{q}(s^{\frac{1}{q}})}, \quad u\ge u_{1}>0, \\ & Q_{2}(u) := \int_{u_{1}}^{u}\frac{ds}{\mu_{2}^{q}(s^{\frac{1}{q}})},\quad u\ge u_{2}>0, \end{aligned}$$

\(M_{j}:=B(p(\gamma_{j}-1)+1, p(\theta_{j}-1)+1)\) (\(j=1,2\)), \(\delta _{j}:=p(\theta_{j}+\gamma_{j}-2)+1\), \(j=1,2\), \(\frac{1}{p}+\frac{1}{q}=1\), and constants \(u_{1}\), \(u_{2}\) are given arbitrarily, \(X_{1}\in[x_{0}, x_{1})\), \(Y_{1}\in[y_{0}, y_{1})\) are chosen such that

$$\begin{aligned}& Q_{1}\bigl(\gamma_{1}(X_{1},Y_{1}) \bigr)+3^{q-1}\bigl(M_{1}X_{1}^{\delta_{1}}M_{2}Y_{1}^{\delta _{2}} \bigr)^{q/p} \int_{x_{0}}^{X_{1}} \int_{y_{0}}^{Y_{1}}h^{q}_{1}(X_{1},Y_{1},s,t) \,dt\,ds \le \int_{u_{1}}^{\infty}\frac{ds}{\mu_{1}^{q}(s^{\frac{1}{q}})}, \\& Q_{2}\bigl(\gamma_{2}(X_{1},Y_{1}) \bigr)+3^{q-1}\bigl(M_{1}X_{1}^{\delta_{1}}M_{2}Y_{1}^{\delta _{2}} \bigr)^{q/p} \int_{x_{0}}^{x} \int_{y_{0}}^{y}h^{q}_{2}(X_{1},Y_{1},s,t) \,dt\,ds \le \int_{u_{2}}^{\infty}\frac{ds}{\mu_{2}^{q}(s^{\frac{1}{q}})}. \end{aligned}$$

Proof

From (3.1) we obtain

$$ \begin{aligned} & \bigl\vert z(x,y) \bigr\vert \le \bigl\vert a(x,y) \bigr\vert + \int_{x_{0}}^{x} \int _{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta _{2}-1}t^{\gamma_{2}-1} \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}\cdot \Bigl\vert F\Bigl(x,y, s,t,z(s,t),\max _{ \tilde{\eta}\in[s-h,s]}z( \tilde{\eta},t)\Bigr) \Bigr\vert \,dt\,ds \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert }\le \bigl\vert a(x,y) \bigr\vert + \int_{x_{0}}^{x} \int_{y_{0}}^{y}(x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}\cdot h_{1}(x,y,s,t) \mu _{1}\bigl( \bigl\vert z(s,t) \bigr\vert \bigr)\,dt\,ds \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} h_{2}(x,y,s,t) \\ &\hphantom{ \bigl\vert z(x,y) \bigr\vert \le{}}{}\cdot\mu_{2}\Bigl( \Bigl\vert \max _{ \tilde{\eta}\in[s-h,s]}z( \tilde {\eta},t)\Bigr) \Bigr\vert )\,dt\,ds,\quad (x,y)\in\Delta, \\ & \bigl\vert z(x,y) \bigr\vert \le \bigl\vert \psi(x,y) \bigr\vert , \quad (x,y)\in [x_{0}-h,x_{0}]\times[y_{0},y_{1}). \end{aligned} $$
(3.4)

Set \(v(x,y)=|z(x,y)|\) for all \((x,y)\in[x_{0}-h,x_{1})\times[y_{0},y_{1})\). From (3.4) we get

$$\begin{aligned}& v(x,y) \le \bigl\vert a(x,y) \bigr\vert + \int_{x_{0}}^{x} \int _{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1} \\& \hphantom{v(x,y) \le{}}{} \cdot h_{1}(x,y,s,t) \mu_{1}\bigl(v(s,t)\bigr)\,dt\,ds \\& \hphantom{v(x,y) \le{}}{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} h_{2}(x,y,s,t) \\& \hphantom{v(x,y) \le{}}{}\cdot\mu_{2}\Bigl(\max_{ \tilde{\eta}\in[s-h,s]} \bigl\vert v( \tilde {\eta},t) \bigr\vert \Bigr)\,dt\,ds,\quad (x,y)\in\Delta, \\& v(x,y) \le \bigl\vert \psi(x,y) \bigr\vert ,\quad (x,y) \in[x_{0}-h,x_{0}]\times[y_{0},y_{1}). \end{aligned}$$
(3.5)

Applying Corollary 2.3 to the specified \(M=1\), \(m=2\), \(\varphi_{1} (u)=u\), \(f_{j}(x,y,s,t)=h_{j}(x,y,s,t)\), \(b_{j}(t)=t\), \(c_{j}(t)=t\), \(\alpha_{j}=\bar{\alpha}_{j}=1\), \(g(t)=t\), we obtain (3.3) from (3.5). □

Corollary 3.2

Suppose that functions F and ψ in (3.1) satisfy

$$ \bigl\vert F(x,y,s_{1},t_{1})-F(x,y,s_{2},t_{2}) \bigr\vert \leq h_{1}(x,y) \vert s_{1}-s_{2} \vert +h_{2}(x,y) \vert t_{1}-t_{2} \vert $$
(3.6)

for all \((x,y)\in\Delta\) and \(s_{j},t_{j}\in\mathbb {R}\) (\(i =1,2\)), where \(h_{j}\in C(\Delta,\mathbb {R}_{+})\). Then system (3.1) has at most one solution on Δ.

Proof

Assume that equation (3.1) has two solutions \(u(x,y)\), \(v(x,y)\). By the equivalent integral equation (3.1), we have

$$\begin{aligned} \bigl\vert u(x,y)-v(x,y) \bigr\vert \le& \int_{x_{0}}^{x} \int _{y_{0}}^{y}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1} h_{1}(s,t) \bigl\vert u(s,t)-v(s,t) \bigr\vert \,dt\,ds \\ &{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{2}(s,t) \\ &{} \cdot \Bigl\vert \max_{ \tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)-\max _{ \tilde{\eta}\in[s-h,s]}v( \tilde{\eta},t) \Bigr\vert \,dt\,ds \end{aligned}$$
(3.7)

for all \((x,y)\in[x_{0},x_{1})\times[y_{0},y_{1})\). Since \(u(x, y)\) is a continuous function, it implies that, for any fixed \(t \in[y_{0}, y]\) and \(s \in[x_{0}, x]\), there exists \(\tau\in [s-h, s]\) such that \(\max_{ \tilde{\eta}\in[s-h,s]}u( \tilde{\eta },t) = u(\tau,t)\) holds. Now we suppose \(\max_{ \tilde{\eta }\in[s-h,s]}u( \tilde{\eta},t)\ge\max_{ \tilde{\eta}\in [s-h,s]}v( \tilde{\eta},t)\) and have

$$\begin{aligned} \Bigl\vert \max_{ \tilde{\eta}\in[s-h,s]}u( \tilde{\eta},t)-\max _{ \tilde{\eta}\in[s-h,s]}v( \tilde{\eta},t) \Bigr\vert =& \Bigl\vert u( \tau,t)-\max_{ \tilde{\eta}\in[s-h,s]}v( \tilde{\eta},t) \Bigr\vert \\ \le& \bigl\vert u(\tau,t)-v(\tau,t) \bigr\vert \le\max_{ \tilde{\eta}\in [s-h,s]} \bigl\vert u( \tilde{\eta},t)-v( \tilde{\eta},t) \bigr\vert . \end{aligned}$$
(3.8)

It follows from (3.7) and (3.8) that

$$\begin{aligned} \bigl\vert u(x,y)-v(x,y) \bigr\vert \le& \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1}h_{1}(s,t) \bigl\vert u(s,t)-v(s,t) \bigr\vert \,dt\,ds \\ &{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{2}(s,t) \\ &{} \cdot\max_{ \tilde{\eta}\in[s-h,s]} \bigl\vert u( \tilde{\eta },t)-v( \tilde{\eta},t) \bigr\vert \,dt\,ds. \end{aligned}$$
(3.9)

Let

$$\phi(x,y):= \bigl\vert u(x,y)-v(x,y) \bigr\vert , \quad (x,y)\in\bigl[ \alpha(x_{0})-h, x_{0}\bigr]\times [y_{0}, y_{1}). $$

From (3.7) we obtain

$$\begin{aligned}& \phi(x,y) \le \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta _{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{1}(s,t) \phi(s,t)\,dt\,ds \\& \hphantom{\phi(x,y) \le{}}{} + \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}(x-s)^{\theta_{1}-1}s^{\gamma_{1}-1} \\& \hphantom{\phi(x,y) \le{}}{} \cdot(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1}h_{2}(s,t) \max_{ \tilde{\eta}\in[s-h,s]}\phi( \tilde{\eta},t)\, dt \, d\eta, \\& \hphantom{\phi(x,y) \le{}}{}(x,y)\in[x_{0},x_{1}) \times[y_{0},y_{1}), \\& \phi(x,y) \le 0, \quad (x,y)\in [x_{0}-h,x_{0}] \times[y_{0},y_{1}). \end{aligned}$$
(3.10)

Let \(\varepsilon>0\) be an arbitrary number. Then from (3.10) we have

$$ \begin{aligned} &\phi(x,y)\le \varepsilon+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta_{1}-1}s^{\gamma_{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma _{2}-1}h_{1}(s,t) \phi(s,t)\,dt\,ds \\ &\hphantom{\phi(x,y)\le{}}{}+ \int_{x_{0}}^{x} \int_{y_{0}}^{y} (x-s)^{\theta_{1}-1}s^{\gamma _{1}-1}(y-t)^{\theta_{2}-1}t^{\gamma_{2}-1} \\ &\hphantom{\phi(x,y)\le{}}{} \cdot h_{2}(s,t) \max_{ \tilde{\eta}\in[\alpha(s)-h,\alpha(s)]}\phi( \tilde{\eta},t)\, dt\, d\eta, \\ &\hphantom{\phi(x,y)\le{}}{} (x,y)\in[x_{0},x_{1}) \times[y_{0},y_{1}), \\ &\phi(x,y)\le 0, \quad (x,y)\in [x_{0}-h,x_{0}] \times[y_{0},y_{1}). \end{aligned} $$
(3.11)

Applying Corollary 2.3 to specified \(N=1\), \(m=2\), \(\varphi _{1}(u)=u\), \(g(t)=t\), \(b_{j}(t)=c_{j}(t)=t\), \(f_{j}(x,y,s,t)=h_{2}(s,t)\), \(j=12\), \(a(x,y)=\epsilon\), from (3.11) we obtain, for all \((x,y)\in\Delta\),

$$\begin{aligned}& \phi(x,y) \\& \quad \leq 3^{\frac{q-1}{q}}\varepsilon\exp \biggl(q^{-1}\biggl(3^{\frac {q-1}{q}}\bigl(M_{1}x^{\delta_{1}} \bar{M}_{1}y^{\delta_{2}}\bigr)^{\frac{q}{p}} \int_{x_{0}}^{x} \int_{y_{0}}^{y}\bigl(h_{1}^{q}(s,t)+h_{2}^{q}(s,t) \bigr)\,dt\,ds\biggr)\biggr), \end{aligned}$$
(3.12)

where \(\frac{1}{p}+\frac{1}{q}=1\), \(M_{j}\) and \(\delta_{j}\) (\(j=1,2\)) are defined as in Corollary 3.1. Letting \(\varepsilon\rightarrow 0\), we obtain the uniqueness of the solution of equation (3.1). The uniqueness is proved. □

References

  1. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292–296 (1919)

    Article  MathSciNet  Google Scholar 

  2. Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10, 643–647 (1943)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R.P., Deng, S., Zhang, W.: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599–612 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Pinto, M.: Integral inequalities of Bihari-type and applications. Funkc. Ekvacioj 33, 387–403 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Wang, W.: A generalized retarded Gronwall-like inequality in two variables and applications to BVP. Appl. Math. Comput. 191, 144–154 (2007)

    Article  MathSciNet  Google Scholar 

  6. Pachpatte, B.G.: Integral inequalities of the Bihari type. Math. Inequal. Appl. 5, 649–657 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Kim, Y.H.: Gronwall, Bellman and Pachpatte type integral inequalities with applications. Nonlinear Anal. 71, 2641–2656 (2009)

    Article  MathSciNet  Google Scholar 

  8. Lipovan, O.: A retarded integral inequality and its applications. J. Math. Anal. Appl. 285, 436–443 (2003)

    Article  MathSciNet  Google Scholar 

  9. Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, London (1998)

    MATH  Google Scholar 

  10. Zhou, J., Shen, J., Zhang, W.: A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete Contin. Dyn. Syst. 36, 7207–7234 (2016)

    Article  MathSciNet  Google Scholar 

  11. Boudeliou, A.: On certain new nonlinear retarded integral inequalities in two independent variables and applications. Appl. Math. Comput. 335, 103–111 (2018)

    MathSciNet  Google Scholar 

  12. McKee, S.: The analysis of a variable step, variable coefficient linear multistep method for solving a singular integro differential equation arising from the diffusion of discrete particles in a turbulent fluid. J. Inst. Math. Appl. 23, 373–388 (1979)

    Article  MathSciNet  Google Scholar 

  13. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math., vol. 840. Springer, New York (1981)

    MATH  Google Scholar 

  14. Medveď, M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214, 349–366 (1997)

    Article  MathSciNet  Google Scholar 

  15. Medveď, M.: Singular integral inequalities with several nonlinearities and integral equations with singular kernels. Nonlinear Oscil. 11, 70–79 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ma, Q.H., Yang, E.H.: Estimations on solutions of some weakly singular Volterra integral inequalities. Acta Math. Appl. Sin. 25(3), 505–515 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Ma, Q.H., Pečarić, J.: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations. J. Math. Anal. Appl. 341, 894–905 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ye, H., Gao, J.: Henry–Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay. Appl. Math. Comput. 218(8), 4152–4160 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Liu, L., Meng, F.: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, 209 (2015)

    Article  MathSciNet  Google Scholar 

  20. Cheung, W.S., Ma, Q.H., Tseng, S.: Some new nonlinear weakly singular integral inequalities of Wendroff type with applications. J. Inequal. Appl. 2008, Article ID 909156 (2008)

    Article  MathSciNet  Google Scholar 

  21. Popov, E.P.: Automatic Regulation and Control. Nauka, Moscow (1966)

    Google Scholar 

  22. Bainov, D., Hristova, S.: Differential Equations with Maxima. Taylor & Francis, London (2011)

    MATH  Google Scholar 

  23. Bainov, D., Minchev, E.: Forced oscillations of solutions of hyperbolic equations of neutral type with maxima. Appl. Anal. 70, 259–267 (1999)

    Article  MathSciNet  Google Scholar 

  24. Mishev, D.P., Musa, S.M.: Distribution of the zeros of the solutions of hyperbolic differential equations with maxima. Rocky Mt. J. Math. 37, 1271–1281 (2007)

    Article  MathSciNet  Google Scholar 

  25. Agarwal, R.P., Hristova, S.: Quasilinearization for initial value problems involving differential equations with maxima. Math. Comput. Model. 55, 2096–2105 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Y., Wang, J.: Existence and finite-time stability results for impulsive fractional differential equations with maxima. J. Appl. Math. Comput. 51, 67–79 (2016)

    Article  MathSciNet  Google Scholar 

  27. Bohner, M., Hristova, S., Stefanova, K.: Nonlinear integral inequalities involving maxima of the unknown scalar functions. Math. Inequal. Appl. 15, 811–825 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Henderson, J., Hristova, S.: Nonlinear integral inequalities involving maxima of unknown scalar functions. Math. Comput. Model. 53, 871–882 (2011)

    Article  MathSciNet  Google Scholar 

  29. Hristova, S., Stefanova, K.: Some integral inequalities with maximum of the unknown functions. Adv. Dyn. Syst. Appl. 6, 57–69 (2011)

    MathSciNet  Google Scholar 

  30. Yan, Y.: On some new weakly singular Volterra integral inequalities with maxima and their applications. J. Inequal. Appl. 2015, 369 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 11461058).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Yan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhou, D. & Zhao, J. Generalized nonlinear weakly singular retarded integral inequalities with maxima and their applications. J Inequal Appl 2018, 294 (2018). https://doi.org/10.1186/s13660-018-1885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-018-1885-6

MSC

Keywords