- Research
- Open Access
Application of f-lacunary statistical convergence to approximation theorems
- Vinod K Bhardwaj^{1}Email author and
- Shweta Dhawan^{2}
https://doi.org/10.1186/s13660-018-1871-z
© The Author(s) 2018
- Received: 2 March 2018
- Accepted: 30 September 2018
- Published: 11 October 2018
Abstract
The concept of f-lacunary statistical convergence which is, in fact, a generalization of lacunary statistical convergence, has been introduced recently by Bhardwaj and Dhawan (Abstr. Appl. Anal. 2016:9365037, 2016). The main object of this paper is to prove Korovkin type approximation theorems using the notion of f-lacunary statistical convergence. A relationship between the newly established Korovkin type approximation theorems via f-lacunary statistical convergence, the classical Korovkin theorems and their lacunary statistical analogs has been studied. A new concept of f-lacunary statistical convergence of degree β (\(0 < \beta< 1\)) has also been introduced, and as an application a corresponding Korovkin type theorem is established.
Keywords
- Modulus function
- Density
- Lacunary statistical convergence
- Positive linear operator
- Korovkin type approximation theorem
MSC
- 40A35
- 41A36
- 41A25
- 47B38
- 40A30
1 Introduction
1.1 Density by moduli and statistical convergence
The idea of statistical convergence, which is, in fact, a generalization of the usual notion of convergence, was first introduced by Fast [14] and Steinhaus [37] independently in 1951 and since then several generalizations and applications of this concept have been investigated by various authors, namely S̆alát [35], Fridy [16], Aizpuru et al. [1], Aktuğlu [2], Gadjiev and Orhan [18], Mursaleen and Alotaibi [28], and many others.
Definition 1.1
([22])
Recall [25, 34] that a modulus f is a function from \(\mathbb{R^{+}}\) to \(\mathbb{R^{+}}\) such that (i) \(f(x) = 0\) if and only if \(x = 0\), (ii) \(f(x + y) \leq f(x) + f(y)\) for \(x \geq0\), \(y \geq 0\), (iii) f is increasing, (iv) f is continuous from the right at 0. If f, g are moduli and a, b are positive real numbers, then \(f\circ g\), \(af+bg\), and \(f\vee g\) are moduli. A modulus may be unbounded or bounded. For example, the modulus \(f(x) = x^{p}\) where \(0 < p \leq1\), is unbounded, but \(g(x) = \frac{x}{(1+ x)}\) is bounded. For the work related to sequence spaces defined by a modulus, one may refer to [1, 5–7, 9, 10, 25] and many others.
Aizpuru et al. [1] have recently introduced a new concept of density by moduli, and consequently obtained a new concept of non-matrix convergence, namely, f-statistical convergence which is, in fact, a generalization of the concept of statistical convergence and intermediate between the ordinary and statistical convergence. This idea of replacing the natural density with a density by moduli has also been used to study the concepts of f-statistical convergence of order α [5], f-lacunary statistical convergence [6], f-statistical boundedness [10], and deferred f-statistical convergence [19].
Definition 1.2
([1])
Definition 1.3
([1])
Remark 1.4
([1])
For any unbounded modulus f, every convergent sequence is f-statistically convergent which, in turn, is statistically convergent, but not conversely.
By a lacunary sequence \(\theta= (k_{r})\); \(r = 0,1,2,\ldots\) , where \(k_{0} = 0\), we shall mean an increasing sequence of non-negative integers with \(k_{r} - k_{r-1} \to \infty\) as \(r \to\infty\). The intervals determined by θ will be denoted by \(I_{r} = ( k_{r-1}, k_{r}]\), and we let \(h_{r} = k_{r} - k_{r-1}\). The ratio \(k_{r}/k_{r-1}\), which also occurs frequently, will be denoted by \(q_{r}\).
Fridy and Orhan [17] introduced the concept of lacunary statistical convergence as follows:
Definition 1.5
Quite recently, Bhardwaj and Dhawan [6] have extended the concept of lacunary statistical convergence to that of f-lacunary statistical convergence as follows:
Definition 1.6
An extension of the concepts of lacunary statistical convergence and f-lacunary statistical convergence in a more general setting of normed spaces shall be needed in the present work and is given below.
Definition 1.7
Definition 1.8
1.2 Korovkin-type approximation theorems
The theory of approximation is an area of mathematical analysis, which, at its core, is concerned with the approximation of functions by simpler and more easily calculated functions. In the 1950s, the theory of approximation of functions by positive linear operators developed a lot, when Popoviciu [33], Bohman [11] and Korvokin [23, 24] independently discovered a simple and easily applicable criterion to check if a sequence of positive linear operators converges uniformly to the function to be approximated. This criterion says that the necessary and sufficient condition for the uniform convergence of the sequence \((L_{n})\) of positive linear operators to the continuous function g on the compact interval \([a,b]\) is the uniform convergence of the sequence \((L_{n}g)\) to g for only the three functions \(e_{n}(x) = x^{n}, n= 0,1,2\). This classical result of approximation theory is mostly known under the name of Bohman–Korovkin theorem, because Popoviciu’s contribution in [33] remained unknown for a long time.
Due to this classical result, the monomials \(e_{n}, n = 0, 1, 2\), play an important role in the approximation theory of linear and positive operators on spaces of continuous functions. These monomials are often called Korovkin test-functions. This elegant and simple result has inspired many mathematicians to extend this result in different directions, generalizing the notion of sequence and considering different spaces. In this way a special branch of approximation theory arose, called Korovkin-type approximation theory. A complete and comprehensive exposure on this topic can be found in [3].
Statistical convergence had not been examined in approximation theory until 2002. Korovkin first and second approximation theorems were first proved via statistical convergence by Gadjiev and Orhan [18] and Duman [13], in 2002 and 2003, respectively. In 2005, Patterson and Savaş [30] proved the first Korovkin approximation theorem via lacunary statistical convergence. It is quite interesting to note that the lacunary statistical analog of the Korovkin second approximation theorem has not been studied so far. Korovkin-type approximation theorems have been studied via various summability methods by many mathematicians. Quite recently Bhardwaj and Dhawan [8] have obtained f-statistical analogs of the classical Korovkin first and second approximation theorems. For a detailed account one may refer to [2, 4, 12, 20, 21, 27, 28] where many more references can be found.
1.3 Correct reformulation of the various analogs of the classical Korovkin first theorem
The authors wish to thank Professor F. Altomare for his help in the correct reformulation of the various analogs of the classical Korovkin first theorem.
- 1.The mapping \(L : X \to Y\) is called a linear operator if$$\begin{aligned} L(\alpha f+\beta g)= \alpha L(f)+\beta L(g)\quad\text{for } f, g \in X \text{ and }\alpha, \beta\in\mathbb{R}. \end{aligned}$$
- 2.
If \(f \geq0\), \(f \in X \Longrightarrow Lf\geq0\), then L is a positive linear operator.
- 3.
In order to highlight the argument of the function \(Lf \in Y\), we use the notation \(L(f,x)\).
Theorem 1.9
Remark 1.10
The space \(C_{M}[a,b]\) of Gadjiev and Orhan [18] is essentially the same as the space \(F_{cb}([a,b])\) defined above. A new notation for the same space has been introduced for the sake of notational uniformity.
Remark 1.11
From here onwards, \(D([a,b])\) will denote the linear subspace of \(F_{c}([a,b])\) generated by \(F_{cb}([a,b]) \cup\{1, t, t^{2}\}\).
We are now ready to give the correct reformulation of Theorem 1.9 as follows:
Theorem 1.12
In the same paper [18], Gadjiev and Orhan have given the statistical analog of Korovkin first theorem as follows:
Theorem 1.13
Remark 1.14
The same inaccuracy gets repeated in the statement of Theorem 1.13. The corrected version is as follows:
Theorem 1.15
Patterson and Savaş [30] have given the lacunary statistical analog of Korovkin first theorem as follows:
Theorem 1.16
Remark 1.17
The same inaccuracy gets repeated here also. The corrected version is as follows:
Theorem 1.18
We conclude this section by stating the recently obtained (see [8]) f-statistical analogs of the Korovkin first and second approximation theorems as we shall be needing them later in this paper.
Theorem 1.19
We shall denote by \(D^{*}([a,b])\) the linear subspace of \(F_{c}^{*}([a,b])\) generated by \(F_{cb}^{*}([a,b])\) and the functions \(1, \cos t, \sin t\).
Theorem 1.20
1.4 Discussion of the main problem
In this paper we mainly prove Korovkin-type approximation theorems via f-lacunary statistical convergence. The lacunary statistical analog of the Korovkin second approximation theorem is obtained as a particular case. A relationship between the newly established Korovkin type approximation theorems via f-lacunary statistical convergence, the classical Korovkin theorems and their lacunary statistical analogs has been studied. In addition, we also establish a relationship between the f-lacunary statistical analogs and f-statistical analogs of classical Korovkin first and second approximation theorems. The proofs of our main results, i.e., Theorems 2.3 and 2.13, may appear to contain same calculations from the corresponding old ones but, in fact, there are certain gaps and mistakes in the corresponding earlier published proofs which have been filled in and corrected.
2 Main results
2.1 f-lacunary statistical analog of the Korovkin first theorem
In order to prove an f-lacunary statistical analog of Korovkin first theorem, we need the following lemma.
Lemma 2.1
([24])
Remark 2.2
In the above lemma, there is an inaccuracy in the sense that, when Korovkin assumes that “f is continuous in the interval \([a, b]\)”, then this means for him that \(f |[a,b]\) is continuous. For these reasons he adds the additional hypotheses that f is continuous on the right at the point b and that f is continuous on the left at the point a. According to the modern terminology, when we assume that \(f \in F_{c}([a, b])\), then f is continuous at every point of \([a, b]\) and, hence, in particular at a (both on the right and on the left) as well as at b (both on the right and on the left). Therefore, in the statement of Theorem 1.13 above, due to Gadjiev and Orhan [18], it is correctly stated that formula \(st-\lim\|L_{n}(g,x) - g(x)\|_{B} = 0\) holds for every \(g \in C_{M}[a,b]\) (i.e., \(F_{cb}([a, b]) \)) because, for such functions Lemma 2.1 can be applied.
We are now in a position to state and prove the promised f-lacunary statistical analog of the Korovkin first theorem.
Theorem 2.3
Proof
Remark 2.4
Since every convergent sequence is f-lacunary statistically convergent [6], it immediately follows that any sequence satisfying the conditions of the classical Korovkin first theorem automatically satisfies the conditions of its f-lacunary statistical analog.
Our next example shows that there may exist a sequence of positive linear operators which satisfies the conditions of Theorem 2.3 but does not satisfy the conditions of Theorem 1.12, thereby showing that our result is stronger than the classical one.
Example 2.5
Remark 2.6
Since every f-lacunary statistically convergent sequence is lacunary statistically convergent [6], it immediately follows that any sequence satisfying the conditions of the f-lacunary statistical analog of the classical Korovkin first theorem (Theorem 2.3) automatically satisfies the conditions of the lacunary statistical analog of the classical Korovkin first theorem (Theorem 1.18).
We next claim that the lacunary statistical analog of the classical Korovkin first theorem is stronger than the f-lacunary statistical analog of the classical Korovkin first theorem. For this we first provide an example of a lacunary statistically convergent sequence which is not f-lacunary statistically convergent.
Example 2.7
Now consider the unbounded modulus function \(f(x)=\log(1+x)\). We will show that \(S^{f}_{\theta}-\lim x_{k}\neq0\), whence it will follow that \((x_{k})\) is not f-lacunary statistically convergent. Indeed, suppose \((x_{k})\) were f-lacunary statistically convergent to some number l, then by Theorem 11 of [6], \((x_{k})\) would be lacunary statically convergent to l and, finally, by the uniqueness of \(S_{\theta}\)-limit for a fixed θ (see [17], page 48), this l had to be 0.
Therefore, \(x=(x_{k})\) is not f-lacunary statistically convergent, and hence the inclusion \(S^{f}_{\theta}\subset S_{\theta}\) may be strict, in general.
Our next example shows that there exists a sequence of positive linear operators which satisfies the conditions of Theorem 1.18 but does not satisfy the conditions of Theorem 2.3, thereby implying that the lacunary statistical analog of the classical Korovkin first theorem is stronger than the f-lacunary statistical analog of the classical Korovkin first theorem.
Example 2.8
We now study a relationship between the f-lacunary statistical analog and the f-statistical analog of the Korovkin first theorem. In other words, we characterize those θ for which these two analogs become equivalent, of course, under certain restrictions on f. In order to do this, we need the following lemmas which are actually simple extensions of Lemmas 17 and 19 of Bhardwaj and Dhawan [6] to an arbitrary normed space.
Lemma 2.9
In a normed space X, for any lacunary sequence θ and unbounded modulus f, for which \(\lim_{t \to\infty}\frac{f(t)}{t} > 0\) and there is a positive constant c such that \(f(xy)\geq cf(x)f(y)\) for all \(x\geq0, y \geq0\), one has \(S^{f}(X) \subset S_{\theta}^{f}(X)\) if and only if \(\liminf_{r} q_{r} >1\).
Lemma 2.10
In a normed space X, for any lacunary sequence θ and unbounded modulus f, for which \(\lim_{t \to\infty}\frac{f(t)}{t} > 0\) and there is a positive constant c such that \(f(xy)\geq cf(x)f(y)\) for all \(x\geq0, y \geq0\), one has \(S_{\theta}^{f}(X) \subset S^{f}(X)\) if and only if \(\limsup_{r} q_{r} < \infty\).
Combining Lemmas 2.9 and 2.10, we have the following.
Theorem 2.11
In a normed space X, for any lacunary sequence θ and unbounded modulus f, for which \(\lim_{t \to\infty}\frac{f(t)}{t} > 0\) and there is a positive constant c such that \(f(xy)\geq cf(x)f(y)\) for all \(x\geq0, y \geq0\), one has \(S_{\theta}^{f}(X) = S^{f}(X)\) if and only if \(1 <\liminf_{r} q_{r} \leq\limsup_{r} q_{r} < \infty\).
In view of Theorems 1.19, 2.3 and 2.11, we immediately have the following.
Theorem 2.12
Let f be any unbounded modulus, for which \(\lim_{t \to\infty}\frac{f(t)}{t} > 0\) and there is a positive constant c such that \(f(xy)\geq cf(x)f(y)\) for all \(x\geq0, y \geq0\). Then, the f-lacunary statistical analog and f-statistical analog of the Korovkin first theorem are equivalent for those θ for which \(1 <\liminf_{r} q_{r} \leq\limsup_{r} q_{r} < \infty\).
2.2 f-lacunary statistical analog of Korovkin second theorem
The classical Korovkin second theorem [24] may be stated as follows.
Theorem 2.13
We now prove an f-lacunary statistical analog of the Korovkin second theorem, from which the lacunary statistical analog is obtained as a particular case.
Theorem 2.14
Proof
The totality of these subintervals covers without any gap the whole real axis, and thus the inequality (2.21), whose validity on every subinterval follows from (2.22), is proved for all values of t.
Remark 2.15
If we take \(f(x) = x\) in Theorem 2.14, we obtain the lacunary statistical analog of the classical Korovkin second theorem as follows.
Theorem 2.16
Remark 2.17
Since every convergent sequence is f-lacunary statistically convergent [6], it immediately follows that any sequence satisfying the conditions of the classical Korovkin second theorem automatically satisfies the conditions of its f-lacunary statistical analog.
Our next example shows that there exists a sequence of positive linear operators which satisfies the conditions of Theorem 2.14 but does not satisfy the conditions of Theorem 2.13, thereby showing that our result is stronger than the classical one.
Example 2.18
Remark 2.19
Since every f-lacunary statistically convergent sequence is lacunary statistically convergent [6], it immediately follows that any sequence satisfying the conditions of the f-lacunary statistical analog of the classical Korovkin second theorem (Theorem 2.14) automatically satisfies the conditions of the lacunary statistical analog of the classical Korovkin second theorem (Theorem 2.16).
Remark 2.20
In Example 2.18, if we take \((\alpha_{n})\) to be any sequence which is lacunary statistically convergent to zero but not f-lacunary statistically convergent to zero for some unbounded modulus f, then we obtain a sequence of positive linear operators which satisfies the conditions of Theorem 2.16 but does not satisfy the conditions of Theorem 2.14, thereby showing that the lacunary statistical analog of the classical Korovkin second theorem is stronger than the f-lacunary statistical analog of the classical Korovkin second theorem.
We conclude this section by studying a relationship between the f-lacunary statistical analog and the f-statistical analog of the Korovkin second theorem. In other words, we characterize those θ for which these two analogs are equivalent, of course, under certain restrictions on f. In view of Theorems 1.20, 2.11 and 2.14, we have the following.
Theorem 2.21
Let f be any unbounded modulus, for which \(\lim_{t \to\infty}\frac{f(t)}{t} > 0\) and there is a positive constant c such that \(f(xy)\geq cf(x)f(y)\) for all \(x\geq0, y \geq0\). Then, the f-lacunary statistical analog and f-statistical analog of the Korovkin second theorem are equivalent for those θ for which \(1 <\liminf_{r} q_{r} \leq\limsup_{r} q_{r} < \infty\).
2.3 The order of f-lacunary statistical convergence
The idea of lacunary statistical convergence with degree β \((0<\beta<1)\) for sequences of numbers was introduced by Patterson and Savaş [30] as follows:
Definition 2.22
The concept of lacunary statistical convergence of order α was introduced by Şengül and Et [36] as follows:
Definition 2.23
From Definitions 2.22 and 2.23, we have the following
Remark 2.24
A sequence is lacunary statistically convergent of degree β if and only if it is lacunary statistically convergent of order \(1-\beta\), where \(0<\beta<1\).
We now introduce a new concept of f-lacunary statistical convergence with degree β \((0<\beta<1)\) for X-valued sequences, where X is a normed space.
Definition 2.25
Remark 2.26
In case \(f(x) = x\), the concept of f-lacunary statistical convergence with degree β \((0<\beta<1)\) reduces to that of lacunary statistical convergence with degree β \((0<\beta<1)\).
Theorem 2.27
- (i)
\((x_{k} +y_{k}) - (x+y) = S^{f}_{\theta}-o(k^{-\beta})\), where \(\beta= \min{(\beta_{1}, \beta_{2})}\),
- (ii)
\(\alpha(x_{k} - x) =S^{f}_{\theta}-o(k^{-\beta_{1}}) \) for any real number α.
The proof is a routine verification by using standard techniques and hence omitted.
Theorem 2.28
Every f-lacunary statistically convergent sequence with degree \(0<\beta<1\) is f-lacunary statistically convergent for any unbounded modulus f.
Proof
Theorem 2.29
Let \(0 < \alpha\leq\beta<1\). If a sequence is f-lacunary statistically convergent with degree β then it is lacunary statistically convergent with degree α.
Proof
Maddox [26] proved that for any modulus f, \(\lim_{t \to\infty }\frac{f(t)}{t}\) exists. Making use of this result, we are now in a position to find the degree of f-lacunary statistical convergence of the sequence of positive linear operators in Theorem 2.3.
Theorem 2.30
Proof
3 Conclusion
New versions of Korovkin type approximation theorems using the notion of f-lacunary statistical convergence have been established. It is shown that any sequence satisfying the conditions of the classical Korovkin first (second) theorem satisfies the conditions of its corresponding f-lacunary statistical analog whereas there exists a sequence of positive linear operators which satisfies the conditions of f-lacunary statistical analog of Korovkin first (second) theorem without satisfying the conditions of the corresponding classical Korovkin theorem, thereby showing that our results are stronger than the classical ones.
We have also shown that lacunary statistical analog of Korovkin first (second) theorem is stronger than the f-lacunary statistical analog of Korovkin first (second) theorem.
Finally, we have characterized those θ for which f-lacunary statistical analog and the f-statistical analog of the Korovkin first (second) theorem are equivalent, of course, under certain restrictions on f.
Declarations
Acknowledgements
The authors wish to thank the referees for their valuable suggestions, which have improved the presentation of the paper.
Funding
Not applicable.
Authors’ contributions
VKB and SD contributed equally. All authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
- Aizpuru, A., Listàn-Garcìa, M.C., Rambla-Barreno, F.: Density by moduli and statistical convergence. Quaest. Math. 37, 525–530 (2014) MathSciNetView ArticleGoogle Scholar
- Aktuğlu, H.: Korovkin-type approximation theorems proved via αβ-statistical convergence. J. Comput. Appl. Math. 259, 174–181 (2014) MathSciNetView ArticleGoogle Scholar
- Altomare, F.: Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory 5, 92–164 (2010) MathSciNetMATHGoogle Scholar
- Belen, C., Mohiuddine, S.A.: Generalized weighted statistical convergence and application. Appl. Math. Comput. 219(18), 9821–9826 (2013) MathSciNetMATHGoogle Scholar
- Bhardwaj, V.K., Dhawan, S.: f-statistical convergence of order α and strong Cesàro summability of order α with respect to a modulus. J. Inequal. Appl. 2015, 332 (2015) View ArticleGoogle Scholar
- Bhardwaj, V.K., Dhawan, S.: Density by moduli and lacunary statistical convergence. Abstr. Appl. Anal. 2016, 9365037 (2016) MathSciNetMATHGoogle Scholar
- Bhardwaj, V.K., Dhawan, S.: Density by moduli and Wijsman lacunary statistical convergence of sequences of sets. J. Inequal. Appl. 2017, 25 (2017) MathSciNetView ArticleGoogle Scholar
- Bhardwaj, V.K., Dhawan, S.: Korovkin type approximation theorem via f-statistical convergence. J. Math. Anal. 9(2), 99–117 (2018) MathSciNetGoogle Scholar
- Bhardwaj, V.K., Dhawan, S., Dovgoshey, O.: Density by moduli and Wijsman statistical convergence. Bull. Belg. Math. Soc. Simon Stevin 24(3), 393–415 (2017) MathSciNetMATHGoogle Scholar
- Bhardwaj, V.K., Dhawan, S., Gupta, S.: Density by moduli and statistical boundedness. Abstr. Appl. Anal. 2016, 2143018 (2016) MathSciNetMATHGoogle Scholar
- Bohman, H.: On approximation of continuous and of analytic functions. Ark. Mat. 2, 43–56 (1952) MathSciNetView ArticleGoogle Scholar
- Braha, N.L.: Some weighted equi-statistical convergence and Korovkin type-theorem. Results Math. 70, 433–446 (2016) MathSciNetView ArticleGoogle Scholar
- Duman, O.: Statistical approximation for periodic functions. Demonstr. Math. 36, 873–878 (2003) MathSciNetMATHGoogle Scholar
- Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951) MathSciNetView ArticleGoogle Scholar
- Freedman, A.R., Sember, J.J., Raphael, M.: Some Cesàro type summability spaces. Proc. Lond. Math. Soc. 37(3), 508–520 (1978) View ArticleGoogle Scholar
- Fridy, J.A.: On statistical convergence. Analysis 5, 301–313 (1985) MathSciNetView ArticleGoogle Scholar
- Fridy, J.A., Orhan, C.: Lacunary statistical convergence. Pac. J. Math. 160, 43–51 (1993) MathSciNetView ArticleGoogle Scholar
- Gadjiev, A.D., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32, 129–138 (2002) MathSciNetView ArticleGoogle Scholar
- Gupta, S., Bhardwaj, V.K.: On deferred f-statistical convergence. Kyungpook Math. J. 58, 91–103 (2018) MathSciNetGoogle Scholar
- Kadak, U., Braha, N.L., Srivastava, H.M.: Statistical weighted \(\mathfrak{B}\)-summability and its applications to approximation theorems. Appl. Math. Comput. 302, 80–96 (2017) MathSciNetGoogle Scholar
- Karakaya, V., Karaisa, A.: Korovkin-type approximations theorems for weighted αβ-statistical convergence. Bull. Math. Sci. 5, 159–169 (2015) MathSciNetView ArticleGoogle Scholar
- Kolk, E.: Statistically convergent sequences in normed spaces, Reports of convergence “Methods of algebra and analysis”. Tartu, 63–66 (1988) (in Russian) Google Scholar
- Korovkin, P.P.: Convergence of linear positive operators in the space of continuous functions (Russian). Dokl. Akad. Nauk SSSR 90, 961–964 (1953) Google Scholar
- Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publ. Corp., Delhi (1960) Google Scholar
- Maddox, I.J.: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100, 161–166 (1986) MathSciNetView ArticleGoogle Scholar
- Maddox, I.J.: Inclusion between FK spaces and Kuttner’s theorem. Math. Proc. Comb. Philos. Soc. 101, 523–527 (1987) MathSciNetView ArticleGoogle Scholar
- Mohiuddine, S.A.: Statistical weighted A-summability with application to Korovkin’s type approximation theorem. J. Inequal. Appl. 2016, 101 (2016) MathSciNetView ArticleGoogle Scholar
- Mursaleen, M., Alotaibi, A.: Statistical lacunary summability and Korovkin-type approximation theorem. An. Univ. Ferrera 57, 373–381 (2011) MathSciNetView ArticleGoogle Scholar
- Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers. 5th (ed.). Willey, New York (1991) MATHGoogle Scholar
- Patterson, R.F., Savaş, E.: Korovkin and Weierstrass approximation via lacunary statistical sequences. J. Math. Stat. 1(2), 165–167 (2005) MathSciNetView ArticleGoogle Scholar
- Pehlivan, S., Fisher, B.: On some sequence spaces. Indian J. Pure Appl. Math. 25(10), 1067–1071 (1994) MathSciNetMATHGoogle Scholar
- Piţul, P.A.: Evaluation of the approximation order by positive linear operators, Babeş–Bolyai University, Cluj-Napoca, Romania. PhD thesis (2007) Google Scholar
- Popoviciu, T.: Asupra demonstra’tiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare. In: Lucraările Sesiunii Generale Ştiinţifice din 2-12 iunie 1950, pp. 1664–1667. Editura Academiei Republicii Populare Romǎne, Bucureşti (1951) (in Romanian) Google Scholar
- Ruckle, W.H.: FK spaces in which the sequence of coordinate vectors is bounded. Can. J. Math. 25, 973–978 (1973) MathSciNetView ArticleGoogle Scholar
- S̆alát, T.: On statistically convergent sequences of real numbers. Math. Slovaca 30(2), 139–150 (1980) MathSciNetGoogle Scholar
- Şengül, H., Et, M.: On lacunary statistical convergence of order α. Acta Math. Sci. Ser. B Engl. Ed. 34(2), 473–482 (2014) MathSciNetView ArticleGoogle Scholar
- Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951) View ArticleGoogle Scholar