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Abstract
The concept of f -lacunary statistical convergence which is, in fact, a generalization of
lacunary statistical convergence, has been introduced recently by Bhardwaj and
Dhawan (Abstr. Appl. Anal. 2016:9365037, 2016). The main object of this paper is to
prove Korovkin type approximation theorems using the notion of f -lacunary
statistical convergence. A relationship between the newly established Korovkin type
approximation theorems via f -lacunary statistical convergence, the classical Korovkin
theorems and their lacunary statistical analogs has been studied. A new concept of
f -lacunary statistical convergence of degree β (0 < β < 1) has also been introduced,
and as an application a corresponding Korovkin type theorem is established.
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1 Introduction
1.1 Density by moduli and statistical convergence
The idea of statistical convergence, which is, in fact, a generalization of the usual no-
tion of convergence, was first introduced by Fast [14] and Steinhaus [37] indepen-
dently in 1951 and since then several generalizations and applications of this concept
have been investigated by various authors, namely S̆alát [35], Fridy [16], Aizpuru et al.
[1], Aktuğlu [2], Gadjiev and Orhan [18], Mursaleen and Alotaibi [28], and many oth-
ers.

Statistical convergence depends on the natural density of subsets of the set N =
{1, 2, 3, . . .}. The natural density d(K) of a set K ⊆N (see [29, Chap. 11]) is defined by

d(K) = lim
n→∞

1
n

∣
∣{k ≤ n : k ∈ K}∣∣,

where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding n. Obviously,
we have d(K) = 0 if K is finite.

Definition 1.1 ([22]) Let X be a normed space. A sequence (xk) in X is said to be statisti-
cally convergent to some x ∈ X, if for each ε > 0 the set {k ∈ N : ‖xk – x‖ ≥ ε} has natural
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density zero, i.e.,

lim
n→∞

1
n

∣
∣
{

k ≤ n : ‖xk – x‖ ≥ ε
}∣
∣ = 0,

and we write it as st – lim xk = x.

Recall [25, 34] that a modulus f is a function from R
+ to R

+ such that (i) f (x) = 0 if
and only if x = 0, (ii) f (x + y) ≤ f (x) + f (y) for x ≥ 0, y ≥ 0, (iii) f is increasing, (iv) f is
continuous from the right at 0. If f , g are moduli and a, b are positive real numbers, then
f ◦g , af +bg , and f ∨g are moduli. A modulus may be unbounded or bounded. For example,
the modulus f (x) = xp where 0 < p ≤ 1, is unbounded, but g(x) = x

(1+x) is bounded. For the
work related to sequence spaces defined by a modulus, one may refer to [1, 5–7, 9, 10, 25]
and many others.

Aizpuru et al. [1] have recently introduced a new concept of density by moduli, and
consequently obtained a new concept of non-matrix convergence, namely, f -statistical
convergence which is, in fact, a generalization of the concept of statistical convergence
and intermediate between the ordinary and statistical convergence. This idea of replacing
the natural density with a density by moduli has also been used to study the concepts of
f -statistical convergence of order α [5], f -lacunary statistical convergence [6], f -statistical
boundedness [10], and deferred f -statistical convergence [19].

Definition 1.2 ([1]) For any unbounded modulus f , the f -density of a set K ⊂N is denoted
by df (K) and is defined by

df (K) = lim
n→∞

f (|{k ≤ n : k ∈ K}|)
f (n)

whenever this limit exists.

Definition 1.3 ([1]) Let f be an unbounded modulus and X be a normed space. A se-
quence (xk) in X is said to be f -statistically convergent to x ∈ X, if, for each ε > 0,

df ({k ∈N : ‖xk – x‖ ≥ ε
})

= 0,

i.e., lim
n→∞

1
f (n)

f
(∣
∣
{

k ≤ n : ‖xk – x‖ ≥ ε
}∣
∣
)

= 0,

and we write it as f – st lim xk = x.

Remark 1.4 ([1]) For any unbounded modulus f , every convergent sequence is f -statisti-
cally convergent which, in turn, is statistically convergent, but not conversely.

By a lacunary sequence θ = (kr); r = 0, 1, 2, . . . , where k0 = 0, we shall mean an increasing
sequence of non-negative integers with kr –kr–1 → ∞ as r → ∞. The intervals determined
by θ will be denoted by Ir = (kr–1, kr], and we let hr = kr – kr–1. The ratio kr/kr–1, which also
occurs frequently, will be denoted by qr .

Fridy and Orhan [17] introduced the concept of lacunary statistical convergence as fol-
lows:
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Definition 1.5 Let θ = (kr) be a lacunary sequence. A number sequence (xk) is said to be
lacunary statistically convergent to l, or Sθ -convergent to l, if for each ε > 0,

lim
r→∞

1
hr

∣
∣
{

k ∈ Ir : |xk – l| ≥ ε
}∣
∣ = 0.

In this case, we write Sθ – lim xk = l.

Quite recently, Bhardwaj and Dhawan [6] have extended the concept of lacunary statis-
tical convergence to that of f -lacunary statistical convergence as follows:

Definition 1.6 Let f be an unbounded modulus and θ = (kr) be a lacunary sequence.
A number sequence (xk) is said to be f -lacunary statistically convergent to l, or Sf

θ -
convergent to l, if for each ε > 0,

lim
r→∞

1
f (hr)

f
(∣
∣
{

k ∈ Ir : |xk – l| ≥ ε
}∣
∣
)

= 0.

In this case, we write Sf
θ – lim xk = l.

An extension of the concepts of lacunary statistical convergence and f -lacunary statisti-
cal convergence in a more general setting of normed spaces shall be needed in the present
work and is given below.

Definition 1.7 Let X be a normed space and θ = (kr) a lacunary sequence. A sequence
(xk) in X is said to be lacunary statistically convergent to x ∈ X, if, for each ε > 0,

lim
r→∞

1
hr

∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣ = 0.

In this case, we write Sθ (X) – lim xk = x. However, if there is no confusion regarding the
scalar- or vector-valued sequences, we may avoid writing X explicitly, i.e., we may simply
write Sθ – lim xk = x. The set of all X-valued lacunary statistically convergent sequences is
denoted by Sθ (X).

Definition 1.8 Let f be an unbounded modulus, X a normed space, and θ = (kr) a lacunary
sequence. A sequence (xk) in X is said to be f -lacunary statistically convergent to x ∈ X,
if, for each ε > 0,

lim
r→∞

1
f (hr)

f
(∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣
)

= 0.

In this case, we write Sf
θ (X) – lim xk = x, or simply Sf

θ – lim xk = x, as mentioned above. The
set of all X-valued f -lacunary statistically convergent sequences is denoted by Sf

θ (X).

1.2 Korovkin-type approximation theorems
The theory of approximation is an area of mathematical analysis, which, at its core, is
concerned with the approximation of functions by simpler and more easily calculated
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functions. In the 1950s, the theory of approximation of functions by positive linear op-
erators developed a lot, when Popoviciu [33], Bohman [11] and Korvokin [23, 24] inde-
pendently discovered a simple and easily applicable criterion to check if a sequence of
positive linear operators converges uniformly to the function to be approximated. This
criterion says that the necessary and sufficient condition for the uniform convergence of
the sequence (Ln) of positive linear operators to the continuous function g on the compact
interval [a, b] is the uniform convergence of the sequence (Lng) to g for only the three func-
tions en(x) = xn, n = 0, 1, 2. This classical result of approximation theory is mostly known
under the name of Bohman–Korovkin theorem, because Popoviciu’s contribution in [33]
remained unknown for a long time.

Due to this classical result, the monomials en, n = 0, 1, 2, play an important role in the
approximation theory of linear and positive operators on spaces of continuous functions.
These monomials are often called Korovkin test-functions. This elegant and simple result
has inspired many mathematicians to extend this result in different directions, generaliz-
ing the notion of sequence and considering different spaces. In this way a special branch
of approximation theory arose, called Korovkin-type approximation theory. A complete
and comprehensive exposure on this topic can be found in [3].

Statistical convergence had not been examined in approximation theory until 2002.
Korovkin first and second approximation theorems were first proved via statistical con-
vergence by Gadjiev and Orhan [18] and Duman [13], in 2002 and 2003, respectively.
In 2005, Patterson and Savaş [30] proved the first Korovkin approximation theorem via
lacunary statistical convergence. It is quite interesting to note that the lacunary statis-
tical analog of the Korovkin second approximation theorem has not been studied so far.
Korovkin-type approximation theorems have been studied via various summability meth-
ods by many mathematicians. Quite recently Bhardwaj and Dhawan [8] have obtained f -
statistical analogs of the classical Korovkin first and second approximation theorems. For
a detailed account one may refer to [2, 4, 12, 20, 21, 27, 28] where many more references
can be found.

1.3 Correct reformulation of the various analogs of the classical Korovkin first
theorem

The authors wish to thank Professor F. Altomare for his help in the correct reformulation
of the various analogs of the classical Korovkin first theorem.

For a given closed and bounded interval [a, b], we first introduce the following spaces:

Fc
(

[a, b]
)

=
{

g : R →R | g is continuous at every point of [a, b]
}

,

Fcb
(

[a, b]
)

=
{

g : R →R | g is bounded on R and continuous at every point of [a, b]
}

,

F∗
c
(

[a, b]
)

=
{

g : R →R | g has period π and continuous at every point of [a, b]
}

,

F∗
cb

(

[a, b]
)

=
{

g : R→R | g has period 2π , bounded on R and continuous at every

point of [a, b]
}

,

B
(

[a, b]
)

=
{

g : [a, b] →R | g is bounded
}

.

The space B([a, b]) is a Banach space with norm ‖g‖B = supx∈[a,b] |g(x)|, g ∈ B([a, b]).
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We also recall [32] that for any linear spaces X, Y of real functions
1. The mapping L : X → Y is called a linear operator if

L(αf + βg) = αL(f ) + βL(g) for f , g ∈ X and α,β ∈R.

2. If f ≥ 0, f ∈ X ⇒ Lf ≥ 0, then L is a positive linear operator.
3. In order to highlight the argument of the function Lf ∈ Y , we use the notation

L(f , x).
The classical Korovkin first theorem [24] is stated in Gadjiev and Orhan [18] as follows:

Theorem 1.9 If the sequence of positive linear operators Ln : CM[a, b] → B([a, b]) satisfies
the conditions

∥
∥Ln(1, x) – 1

∥
∥

B → 0, as n → ∞,
∥
∥Ln(t, x) – x

∥
∥

B → 0, as n → ∞,
∥
∥Ln

(

t2, x
)

– x2∥∥
B → 0, as n → ∞,

then for any function g ∈ CM[a, b], we have

∥
∥Ln(g, x) – g(x)

∥
∥

B → 0, as n → ∞,

where CM[a, b] denotes the space of all functions g which are continuous at every point of
the interval [a, b] and bounded on the entire line.

Remark 1.10 The space CM[a, b] of Gadjiev and Orhan [18] is essentially the same as the
space Fcb([a, b]) defined above. A new notation for the same space has been introduced
for the sake of notational uniformity.

Remark 1.11 There is some inaccuracy in the statement of Theorem 1.9 above, as the
equations

lim
∥
∥Ln(t, x) – x

∥
∥

B = 0, and

lim
∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0,

do not make any sense since the test functions t and t2 /∈ CM[a, b]. It is necessary, indeed,
to enlarge the domain of positive linear operators Ln by considering the linear subspace
D([a, b]) of Fc([a, b]) generated by Fcb([a, b]) and the functions 1, t and t2. (We could have
taken only t and t2 instead of 1, t and t2 since the constant function 1 already belongs to
Fcb([a, b]). This has been done just to place the three test functions 1, t and t2 together).
D([a, b]) is, surely, the minimal subspace of Fc([a, b]) on which the linear operators Ln must
be defined in order to correctly state the result.

From here onwards, D([a, b]) will denote the linear subspace of Fc([a, b]) generated by
Fcb([a, b]) ∪ {1, t, t2}.

We are now ready to give the correct reformulation of Theorem 1.9 as follows:
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Theorem 1.12 If the sequence (Ln) of positive linear operators Ln : D([a, b]) → B([a, b])
satisfies the conditions

lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

lim
∥
∥Ln(t, x) – x

∥
∥

B = 0,

lim
∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0,

then for any function g ∈ Fcb([a, b]), we have

lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0.

In the same paper [18], Gadjiev and Orhan have given the statistical analog of Korovkin
first theorem as follows:

Theorem 1.13 If the sequence of positive linear operators Ln : CM[a, b] → B([a, b]) satisfies
the conditions

st – lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

st – lim
∥
∥Ln(t, x) – x

∥
∥

B = 0,

st – lim
∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0,

then for any function g ∈ CM[a, b], we have

st – lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0.

Remark 1.14 The same inaccuracy gets repeated in the statement of Theorem 1.13. The
corrected version is as follows:

Theorem 1.15 If the sequence (Ln) of positive linear operators Ln : D([a, b]) → B([a, b])
satisfies the conditions

st – lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

st – lim
∥
∥Ln(t, x) – x

∥
∥

B = 0,

st – lim
∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0,

then for any function g ∈ Fcb([a, b]), we have

st – lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0.

Patterson and Savaş [30] have given the lacunary statistical analog of Korovkin first the-
orem as follows:

Theorem 1.16 If the sequence of positive linear operators Ln : CM[a, b] → B([a, b]) satisfies
the conditions

Sθ – lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,



Bhardwaj and Dhawan Journal of Inequalities and Applications  (2018) 2018:281 Page 7 of 25

Sθ – lim
∥
∥Ln(t, x) – x

∥
∥

B = 0,

Sθ – lim
∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0,

then for any function g ∈ CM[a, b], we have

Sθ – lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0.

Remark 1.17 The same inaccuracy gets repeated here also. The corrected version is as
follows:

Theorem 1.18 If the sequence (Ln) of positive linear operators Ln : D([a, b]) → B([a, b])
satisfies the conditions

Sθ – lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

Sθ – lim
∥
∥Ln(t, x) – x

∥
∥

B = 0,

Sθ – lim
∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0,

then for any function g ∈ Fcb([a, b]), we have

Sθ – lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0.

We conclude this section by stating the recently obtained (see [8]) f -statistical analogs
of the Korovkin first and second approximation theorems as we shall be needing them
later in this paper.

Theorem 1.19 Let f be an unbounded modulus and (Ln) a sequence of positive linear
operators Ln : D([a, b]) → B([a, b]). Then, for all g ∈ D([a, b]),

f – st lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0

if and only if

f – st lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

f – st lim
∥
∥Ln(t, x) – x

∥
∥

B = 0,

f – st lim
∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0.

We shall denote by D∗([a, b]) the linear subspace of F∗
c ([a, b]) generated by F∗

cb([a, b]) and
the functions 1, cos t, sin t.

Theorem 1.20 Let f be an unbounded modulus and (Ln) a sequence of positive linear
operators Ln : D∗([a, b]) → B([a, b]). Then, for all g ∈ D∗([a, b]),

f – st lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0
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if and only if

f – st lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

f – st lim
∥
∥Ln(cos t, x) – cos x

∥
∥

B = 0,

f – st lim
∥
∥Ln(sin t, x) – sin x

∥
∥

B = 0.

1.4 Discussion of the main problem
In this paper we mainly prove Korovkin-type approximation theorems via f -lacunary sta-
tistical convergence. The lacunary statistical analog of the Korovkin second approximation
theorem is obtained as a particular case. A relationship between the newly established Ko-
rovkin type approximation theorems via f -lacunary statistical convergence, the classical
Korovkin theorems and their lacunary statistical analogs has been studied. In addition,
we also establish a relationship between the f -lacunary statistical analogs and f -statistical
analogs of classical Korovkin first and second approximation theorems. The proofs of our
main results, i.e., Theorems 2.3 and 2.13, may appear to contain same calculations from
the corresponding old ones but, in fact, there are certain gaps and mistakes in the corre-
sponding earlier published proofs which have been filled in and corrected.

2 Main results
2.1 f -lacunary statistical analog of the Korovkin first theorem
In order to prove an f -lacunary statistical analog of Korovkin first theorem, we need the
following lemma.

Lemma 2.1 ([24]) If a function f : R → R is continuous in the interval [a, b], continuous
on the right at the point b and on the left at the point a, then we can find a δ > 0 for ε > 0
such that the inequality

∣
∣f (y) – f (x)

∣
∣ < ε

is true if |y – x| < δ, a ≤ x ≤ b.

Remark 2.2 In the above lemma, there is an inaccuracy in the sense that, when Korovkin
assumes that “f is continuous in the interval [a, b]”, then this means for him that f |[a, b] is
continuous. For these reasons he adds the additional hypotheses that f is continuous on
the right at the point b and that f is continuous on the left at the point a. According to
the modern terminology, when we assume that f ∈ Fc([a, b]), then f is continuous at every
point of [a, b] and, hence, in particular at a (both on the right and on the left) as well as at b
(both on the right and on the left). Therefore, in the statement of Theorem 1.13 above, due
to Gadjiev and Orhan [18], it is correctly stated that formula st – lim‖Ln(g, x) – g(x)‖B = 0
holds for every g ∈ CM[a, b] (i.e., Fcb([a, b])) because, for such functions Lemma 2.1 can be
applied.

We are now in a position to state and prove the promised f -lacunary statistical analog
of the Korovkin first theorem.
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Theorem 2.3 Let f be an unbounded modulus, θ = (kr) a lacunary sequence and (Ln) a
sequence of positive linear operators Ln : D([a, b]) → B([a, b]). Then, for all g ∈ D([a, b]),

Sf
θ – lim

∥
∥Ln(g, x) – g(x)

∥
∥

B = 0 (2.1)

if and only if

Sf
θ – lim

∥
∥Ln(1, x) – 1

∥
∥

B = 0, (2.2)

Sf
θ – lim

∥
∥Ln(t, x) – x

∥
∥

B = 0, (2.3)

Sf
θ – lim

∥
∥Ln

(

t2, x
)

– x2∥∥
B = 0. (2.4)

Proof Since each of 1, t, t2 belongs to D([a, b]), conditions (2.2)–(2.4) follow immediately
from (2.1). Now, let conditions (2.2)–(2.4) hold. To prove (2.1), we first prove that for any
g ′ ∈ Fcb([a, b]),

Sf
θ – lim

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B = 0.

We follow the proof of Theorem 1 of Korovkin [24] up to a certain stage. Since the function
g ′ is bounded on the whole real axis, we can write

∣
∣g ′(t) – g ′(x)

∣
∣ < 2M, –∞ < t, x < ∞. (2.5)

Further, in view of Lemma 2.1, there exists a δ > 0 for each ε > 0 such that

∣
∣g ′(t) – g ′(x)

∣
∣ < ε for a ≤ x ≤ b, |t – x| < δ. (2.6)

Putting ψ(t) = (t – x)2 (x an arbitrary but fixed number in the interval [a, b]) and using
inequalities (2.5) and (2.6), we have

∣
∣g ′(t) – g ′(x)

∣
∣ < ε +

2M
δ2 ψ(t) for all t ∈ (–∞,∞).

This means

–ε –
2M
δ2 ψ(t) < g ′(t) – g ′(x) < ε +

2M
δ2 ψ(t) for all t ∈ (–∞,∞). (2.7)

In fact, if |t – x| < δ, then (2.6) implies (2.7) since ψ(t) = (t – x)2 ≥ 0, and if |t – x| ≥ δ, then

2M
δ2 ψ(t) ≥ 2M

δ2 δ2 = 2M,

and (2.7) follows from (2.5) since ε > 0.
In view of monotonicity and linearity of the operators Ln(g ′, x), inequality (2.7) implies

–εLn(1, x) –
2M
δ2 Ln(ψ , x) ≤ Ln

(

g ′, x
)

– Ln
(

g ′(x), x
) ≤ εLn(1, x) +

2M
δ2 Ln(ψ , x).
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Note that x is fixed and so g ′(x) is a constant number. Therefore,

–εLn(1, x) –
2M
δ2 Ln(ψ , x) ≤ Ln

(

g ′, x
)

– g ′(x)Ln(1, x) ≤ εLn(1, x) +
2M
δ2 Ln(ψ , x). (2.8)

But

Ln
(

g ′, x
)

– g ′(x) =
[

Ln
(

g ′, x
)

– g ′(x)Ln(1, x)
]

+ g ′(x)
[

Ln(1, x) – 1
]

. (2.9)

Using (2.8) and (2.9), we have

Ln
(

g ′, x
)

– g ′(x) ≤ εLn(1, x) +
2M
δ2 Ln(ψ , x) + g ′(x)

[

Ln(1, x) – 1
]

. (2.10)

Now, let us estimate Ln(ψ , x) as follows:

Ln(ψ , x) = Ln
(

t2 – 2tx + x2, x
)

= Ln
(

t2, x
)

– 2xLn(t, x) + x2Ln(1, x)

=
[

Ln
(

t2, x
)

– x2] – 2x
[

Ln(t, x) – x
]

+ x2[Ln(1, x) – 1
]

. (2.11)

Using (2.11) in (2.10), we have

Ln
(

g ′, x
)

– g ′(x)

≤ εLn(1, x) +
2M
δ2

{[

Ln
(

t2, x
)

– x2] – 2x
[

Ln(t, x) – x
]

+ x2[Ln(1, x) – 1
]}

+ g ′(x)
[

Ln(1, x) – 1
]

=
(

ε +
2M
δ2 x2 + g ′(x)

)
[

Ln(1, x) – 1
]

+
2M
δ2

[

Ln
(

t2, x
)

– x2] –
4M
δ2 x

[

Ln(t, x) – x
]

+ ε.

Therefore,

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B

≤
(

ε +
2M
δ2 k1 + M

)
∥
∥Ln(1, x) – 1

∥
∥

B +
2M
δ2

∥
∥Ln

(

t2, x
)

– x2∥∥
B

+
4M
δ2 k2

∥
∥Ln(t, x) – x

∥
∥

B + ε

≤ K
(∥
∥Ln(1, x) – 1

∥
∥

B +
∥
∥Ln(t, x) – x

∥
∥

B +
∥
∥Ln

(

t2, x
)

– x2∥∥
B

)

+ ε, (2.12)

where k1 = max{a2, b2}, k2 = max{|a|, |b|} and K = max{ε + 2M
δ2 k1 + M, 4M

δ2 k2, 2M
δ2 }. For any

ε′ > 0, choose ε > 0 such that ε < ε′. Now, from inequality (2.12), we have

∣
∣
{

n ∈ Ir :
∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B ≥ ε′}∣∣

≤
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B +
∥
∥Ln(t, x) – x

∥
∥

B +
∥
∥Ln

(

t2, x
)

– x2∥∥
B ≥ ε′ – ε

K

}∣
∣
∣
∣
. (2.13)
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Now, write

D :=
{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B +
∥
∥Ln(t, x) – x

∥
∥

B +
∥
∥Ln

(

t2, x
)

– x2∥∥
B ≥ ε′ – ε

K

}

,

D1 :=
{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B ≥ ε′ – ε

3K

}

,

D2 :=
{

n ∈ Ir :
∥
∥Ln(t, x) – x

∥
∥

B ≥ ε′ – ε

3K

}

,

D3 :=
{

n ∈ Ir :
∥
∥Ln

(

t2, x
)

– x2∥∥
B ≥ ε′ – ε

3K

}

.

Then it is easy to see that D ⊂ D1 ∪ D2 ∪ D3. Now, from (2.13), we have

∣
∣
{

n ∈ Ir :
∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B ≥ ε′}∣∣ ≤
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

+
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(t, x) – x

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

+
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln

(

t2, x
)

– x2∥∥
B ≥ ε′ – ε

3K

}∣
∣
∣
∣
,

which yields

1
f (hr)

f
(∣
∣
{

n ∈ Ir :
∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B ≥ ε′}∣∣)

≤ 1
f (hr)

f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)

+
1

f (hr)
f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(t, x) – x

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)

+
1

f (hr)
f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln

(

t2, x
)

– x2∥∥
B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)

and, using (2.2)–(2.4), we get

Sf
θ – lim

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B = 0, for all g ′ ∈ Fcb
(

[a, b]
)

. (2.14)

Now let g ∈ D([a, b]). This implies that g = α1g1 + α2g2 + · · · + αmgm for some m ∈N, where
αi ∈R, and gi ∈ Fcb([a, b]) ∪ {1, t, t2}, 1 ≤ i ≤ m.

Now,

∥
∥Ln(g, x) – g(x)

∥
∥

B

=
∥
∥Ln(α1g1 + α2g2 + · · · + αmgm, x) – (α1g1 + α2g2 + · · · + αmgm)(x)

∥
∥

B

≤ K ′(∥∥Ln(g1, x) – g1(x)
∥
∥

B +
∥
∥Ln(g2, x) – g2(x)

∥
∥

B + · · · +
∥
∥Ln(gm, x) – gm(x)

∥
∥

B

)

,

where K ′ = max{|α1|, |α2|, . . . , |αm|}.
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Thus, for any ε′′ > 0, we have

1
f (hr)

f
(∣
∣
{

n ∈ Ir :
∥
∥Ln(g, x) – g(x)

∥
∥

B ≥ ε′′}∣∣)

≤ 1
f (hr)

f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(g1, x) – g1(x)

∥
∥

B ≥ ε′′

mK ′

}∣
∣
∣
∣

)

+
1

f (hr)
f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(g2, x) – g2(x)

∥
∥

B ≥ ε′′

mK ′

}∣
∣
∣
∣

)

+ · · · +
1

f (hr)
f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(gm, x) – gm(x)

∥
∥

B ≥ ε′′

mK ′

}∣
∣
∣
∣

)

and, using (2.14), get

Sf
θ – lim

∥
∥Ln(g, x) – g(x)

∥
∥

B = 0 for all g ∈ D
(

[a, b]
)

. �

Remark 2.4 Since every convergent sequence is f -lacunary statistically convergent [6], it
immediately follows that any sequence satisfying the conditions of the classical Korovkin
first theorem automatically satisfies the conditions of its f -lacunary statistical analog.

Our next example shows that there may exist a sequence of positive linear operators
which satisfies the conditions of Theorem 2.3 but does not satisfy the conditions of The-
orem 1.12, thereby showing that our result is stronger than the classical one.

Example 2.5 Following Gadjiev and Orhan [18], consider the sequence Qn : D([0, 1]) →
B([0, 1]) of positive linear operators defined by

Qn(g, x) = (1 + αn)Bn(g, x),

where (Bn) is the sequence of classical Bernstein polynomials defined by

Bn(g, x) =
n

∑

k=0

g
(

k
n

)(

n
k

)

xk(1 – x)n–k ; 0 ≤ x ≤ 1,

and (αn) is the sequence of scalars which is f -lacunary statistically convergent to zero for
some unbounded modulus f but not convergent to zero. Before proceeding further, we
give a specific example of such type of a sequence (αn) as follows.

Let f be an unbounded modulus, for which limt→∞ f (t)
t > 0 and there is a positive con-

stant c such that f (xy) ≥ cf (x)f (y) for all x ≥ 0, y ≥ 0. Proceeding as in [15, p. 511], let
θ = (kr) be a lacunary sequence and (kr(j)) a subsequence of lacunary sequence θ such that
qr(j) > j. Define a bounded sequence α = (αk) by

αk =

⎧

⎨

⎩

1 if kr(j)–1 < k ≤ 2kr(j)–1, for some j = 1, 2, 3, . . . ;

0 otherwise.

Then α ∈ N0
θ (the space of all sequences which are lacunary strongly convergent to zero).

By Theorem 3 of [31], we have N0
θ ⊂ Nf

θ ,0 (the space of all sequences which are lacu-
nary strongly convergent to zero with respect to f ) and, by Theorem 14 of [6], we have
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Nf
θ ,0 ⊂ Sf

θ ,0 (the space of all sequences which are f -lacunary statistically convergent to
zero), from where it follows that α ∈ Sf

θ ,0. Also, clearly, α /∈ c. Hence α = (αk) is an exam-
ple of a sequence of scalars which is f -lacunary statistically convergent to zero for some
unbounded modulus f but not convergent to zero.

It is known (see [24]) that

Bn(1, x) = 1, Bn(t, x) = x and Bn
(

t2, x
)

= x2 +
(x – x2)

n
.

Hence, for the sequence (Qn) of positive linear operators, conditions (2.2)–(2.4) of Theo-
rem 2.3 are apparently satisfied. So, we have

Sf
θ – lim

∥
∥Qn(g, x) – g(x)

∥
∥

B = 0 for all g ∈ D
(

[0, 1]
)

.

On the other hand,

Qn(1, x) = (1 + αn)Bn(1, x) = (1 + αn),

and so

lim
∥
∥Qn(1, x) – 1

∥
∥

B = lim‖1 + αn – 1‖ = lim‖αn‖ = lim |αn| �= 0,

from where it follows that (Qn) does not satisfy the conditions of classical Korovkin first
theorem.

Remark 2.6 Since every f -lacunary statistically convergent sequence is lacunary statisti-
cally convergent [6], it immediately follows that any sequence satisfying the conditions
of the f -lacunary statistical analog of the classical Korovkin first theorem (Theorem 2.3)
automatically satisfies the conditions of the lacunary statistical analog of the classical Ko-
rovkin first theorem (Theorem 1.18).

We next claim that the lacunary statistical analog of the classical Korovkin first theorem
is stronger than the f -lacunary statistical analog of the classical Korovkin first theorem.
For this we first provide an example of a lacunary statistically convergent sequence which
is not f -lacunary statistically convergent.

Example 2.7 Consider the lacunary sequence θ = (kr) defined as follows:

k0 = 0,

kr = r + kr–1, r = 1, 2, . . . .

Then hr = r, r = 1, 2, . . . . Now we define a sequence x = (xk) of scalars by defining it on the
intervals Ir = (kr–1, kr], r = 1, 2, . . . determined by θ . Set x0 = 0 and let

xkr = xkr–1 = · · · = xkr–[
√

r] = 1,

xkr–[
√

r]–1 = · · · = xkr–1+1 = 0,

where [
√

r] denotes the greatest integer less than or equal to
√

r.
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Aside. For a better understanding let us write down first a few terms of θ and x:

θ = (0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, . . . ),

x = ( 0
︸︷︷︸

x0

, 1
︸︷︷︸

I1

, 1, 1
︸︷︷︸

I2

, 0, 1, 1
︸ ︷︷ ︸

I3

, 0, 1, 1, 1
︸ ︷︷ ︸

I4

, 0, 0, 1, 1, 1
︸ ︷︷ ︸

I5

, 0, 0, 0, 1, 1, 1
︸ ︷︷ ︸

I6

, 0, 0, 0, 0, 1, 1, 1
︸ ︷︷ ︸

I7

, . . .).

Now for any ε > 1,

∣
∣
{

k ∈ Ir : |xk| ≥ ε
}∣
∣ = 0 ⇒ lim

r→∞
|{k ∈ Ir : |xk| ≥ ε}|

hr
= 0.

For 0 < ε ≤ 1, by construction of the sequence x = (xk), we have

∣
∣
{

k ∈ Ir : |xk| ≥ ε
}∣
∣ = [

√
r] ⇒ lim

r→∞
|{k ∈ Ir : |xk| ≥ ε}|

hr
= lim

r→∞
[
√

r]
r

= 0

because
√

r – 1
r

≤ [
√

r]
r

≤
√

r
r

.

Therefore,

Sθ – lim xk = 0.

Now consider the unbounded modulus function f (x) = log(1 + x). We will show that
Sf

θ – lim xk �= 0, whence it will follow that (xk) is not f -lacunary statistically convergent.
Indeed, suppose (xk) were f -lacunary statistically convergent to some number l, then by
Theorem 11 of [6], (xk) would be lacunary statically convergent to l and, finally, by the
uniqueness of Sθ -limit for a fixed θ (see [17], page 48), this l had to be 0.

It is clear that for ε > 1, f (|{k ∈ Ir : |xk| ≥ ε}|) = f (0) = 0, and hence

lim
r→∞

f (|{k ∈ Ir : |xk| ≥ ε}|)
f (hr)

= 0.

Now note that

log
√

r
log(r + 1)

≤ log([
√

r] + 1)
log(r + 1)

≤ log(
√

r + 1)
log(r + 1)

,

and so

lim
r→∞

log
√

r
log(r + 1)

=
1
2

= lim
r→∞

log(
√

r + 1)
log(r + 1)

.

Therefore, for 0 < ε ≤ 1,

lim
r→∞

f (|{k ∈ Ir : |xk| ≥ ε}|)
f (hr)

= lim
r→∞

f ([
√

r])
f (r)

= lim
r→∞

log([
√

r] + 1)
log(r + 1)

=
1
2

.

Therefore, x = (xk) is not f -lacunary statistically convergent, and hence the inclusion
Sf

θ ⊂ Sθ may be strict, in general.
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Our next example shows that there exists a sequence of positive linear operators which
satisfies the conditions of Theorem 1.18 but does not satisfy the conditions of Theo-
rem 2.3, thereby implying that the lacunary statistical analog of the classical Korovkin
first theorem is stronger than the f -lacunary statistical analog of the classical Korovkin
first theorem.

Example 2.8 Consider the sequence Qn : D([0, 1]) → B([0, 1]) of positive linear operators
defined by

Qn(g, x) = (1 + αn)Bn(g, x),

where (Bn) is the sequence of classical Bernstein polynomials and (αn) is any sequence of
scalars which is lacunary statistically convergent to zero but not f -lacunary statistically
convergent to zero for some unbounded modulus f . It is easy to see, as in Example 2.5,
that the sequence (Qn) satisfies the lacunary statistical analog of Korovkin first theorem
but does not satisfy the f -lacunary statistical analog of Korovkin first theorem.

We now study a relationship between the f -lacunary statistical analog and the f -
statistical analog of the Korovkin first theorem. In other words, we characterize those θ

for which these two analogs become equivalent, of course, under certain restrictions on
f . In order to do this, we need the following lemmas which are actually simple extensions
of Lemmas 17 and 19 of Bhardwaj and Dhawan [6] to an arbitrary normed space.

Lemma 2.9 In a normed space X, for any lacunary sequence θ and unbounded modulus f ,
for which limt→∞ f (t)

t > 0 and there is a positive constant c such that f (xy) ≥ cf (x)f (y) for
all x ≥ 0, y ≥ 0, one has Sf (X) ⊂ Sf

θ (X) if and only if lim infr qr > 1.

Lemma 2.10 In a normed space X, for any lacunary sequence θ and unbounded modu-
lus f , for which limt→∞ f (t)

t > 0 and there is a positive constant c such that f (xy) ≥ cf (x)f (y)
for all x ≥ 0, y ≥ 0, one has Sf

θ (X) ⊂ Sf (X) if and only if lim supr qr < ∞.

Combining Lemmas 2.9 and 2.10, we have the following.

Theorem 2.11 In a normed space X, for any lacunary sequence θ and unbounded modu-
lus f , for which limt→∞ f (t)

t > 0 and there is a positive constant c such that f (xy) ≥ cf (x)f (y)
for all x ≥ 0, y ≥ 0, one has Sf

θ (X) = Sf (X) if and only if 1 < lim infr qr ≤ lim supr qr < ∞.

In view of Theorems 1.19, 2.3 and 2.11, we immediately have the following.

Theorem 2.12 Let f be any unbounded modulus, for which limt→∞ f (t)
t > 0 and there is

a positive constant c such that f (xy) ≥ cf (x)f (y) for all x ≥ 0, y ≥ 0. Then, the f -lacunary
statistical analog and f -statistical analog of the Korovkin first theorem are equivalent for
those θ for which 1 < lim infr qr ≤ lim supr qr < ∞.

2.2 f -lacunary statistical analog of Korovkin second theorem
The classical Korovkin second theorem [24] may be stated as follows.
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Theorem 2.13 If the sequence (Ln) of positive linear operators Ln : D∗([a, b]) → B([a, b])
satisfies the conditions

lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

lim
∥
∥Ln(cos t, x) – cos x

∥
∥

B = 0,

lim
∥
∥Ln(sin t, x) – sin x

∥
∥

B = 0,

then for any function g ∈ F∗
cb([a, b]), we have

lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0.

We now prove an f -lacunary statistical analog of the Korovkin second theorem, from
which the lacunary statistical analog is obtained as a particular case.

Theorem 2.14 Let f be an unbounded modulus and (Ln) be a sequence of positive linear
operators Ln : D∗([a, b]) → B([a, b]). Then, for all g ∈ D∗([a, b]),

Sf
θ – lim

∥
∥Ln(g, x) – g(x)

∥
∥

B = 0 (2.15)

if and only if

Sf
θ – lim

∥
∥Ln(1, x) – 1

∥
∥

B = 0, (2.16)

Sf
θ – lim

∥
∥Ln(cos t, x) – cos x

∥
∥

B = 0, (2.17)

Sf
θ – lim

∥
∥Ln(sin t, x) – sin x

∥
∥

B = 0. (2.18)

Proof Since each of 1, cos t, sin t belongs to D∗([a, b]), conditions (2.16)–(2.18) follow im-
mediately from (2.15). Now, let the conditions (2.16)–(2.18) hold. To prove (2.15), we first
prove that for any g ′ ∈ F∗

cb([a, b]),

Sf
θ – lim

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B = 0.

We follow the proof of Theorem 2 of Korovkin [24] up to a certain stage. Since the function
g ′ is bounded on the whole real axis, we can write

∣
∣g ′(t) – g ′(x)

∣
∣ < 2M, –∞ < t, x < ∞. (2.19)

Further, in view of Lemma 2.1, there exists a δ > 0 for each ε > 0 such that

∣
∣g ′(t) – g ′(x)

∣
∣ < ε for a ≤ x ≤ b, |t – x| < δ. (2.20)

Now we take the subinterval x – δ < t ≤ 2π + x – δ of length 2π , where x ∈ [a, b] is fixed.
Taking ψ(t) = sin2 (t–x)

2 and using (2.19) and (2.20), we have

∣
∣g ′(t) – g ′(x)

∣
∣ < ε +

2M
sin2 δ

2
ψ(t) for all t ∈ (x – δ, 2π + x – δ].
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This means

–ε –
2M

sin2 δ
2
ψ(t) < g ′(t) – g ′(x) < ε +

2M
sin2 δ

2
ψ(t)

for all t ∈ (x – δ, 2π + x – δ]. (2.21)

In fact, if |t – x| < δ, then inequality (2.21) follows from (2.20), since ψ(t) = sin2 (t–x)
2 ≥ 0. If

δ ≤ t – x ≤ 2π – δ, then δ
2 ≤ t–x

2 ≤ π – δ
2 , and thus sin( t–x

2 ) ≥ sin δ
2 , ψ(t) = sin2( t–x

2 ) ≥ sin2 δ
2 ,

2M
sin2 δ

2
ψ(t) ≥ 2M, and inequality (2.21) follows from inequality (2.19) since ε > 0.

Thus inequality (2.21), on which the proof of this theorem is based, has not yet been
established for all t, but it holds for t belonging to the subinterval (x – δ, 2π + x – δ] of
length 2π . In order to prove validity of inequality (2.21) for all t ∈ (–∞,∞), we note that
the function

ψ(t) = sin2
(

t – x
2

)

=
1 – cos(t – x)

2

has period 2π and, according to the conditions of the theorem, the function g ′(t) also has
period 2π , i.e.,

ψ(t + 2kπ ) = ψ(t) and g ′(t + 2kπ ) = g ′(t).

Therefore, we find from (2.21) that

–ε –
2M

sin2 δ
2
ψ(t + 2kπ ) < g ′(t + 2kπ ) – g ′(x) < ε +

2M
sin2 δ

2
ψ(t + 2kπ ). (2.22)

But if t varies in the subinterval (x – δ, 2π + x – δ], then t + 2π will vary in the subinterval
(2π + x – δ, 4π + x – δ], t + 4π in the subinterval (4π + x – δ, 6π + x – δ], and, in general,
t + 2kπ will vary in the subinterval (2kπ + x – δ, 2kπ + 2π + x – δ], k = 0,±1,±2,±3, . . . .

The totality of these subintervals covers without any gap the whole real axis, and thus
the inequality (2.21), whose validity on every subinterval follows from (2.22), is proved for
all values of t.

Using inequality (2.21) and monotonicity of the operator Ln(g ′, x), we obtain

–εLn(1, x) –
2M

sin2 δ
2

Ln(ψ , x) ≤ Ln
(

g ′, x
)

– Ln
(

g ′(x), x
) ≤ εLn(1, x) +

2M
sin2 δ

2
Ln(ψ , x).

As we know x is fixed and so g ′(x) is a constant number. Therefore,

–εLn(1, x) –
2M

sin2 δ
2

Ln(ψ , x)

≤ Ln
(

g ′, x
)

– g ′(x)Ln(1, x) ≤ εLn(1, x) +
2M

sin2 δ
2

Ln(ψ , x). (2.23)

Also,

Ln
(

g ′, x
)

– g ′(x) =
[

Ln
(

g ′, x
)

– g ′(x)Ln(1, x)
]

+ g ′(x)
[

Ln(1, x) – 1
]

. (2.24)
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From (2.23) and (2.24), we have

Ln
(

g ′, x
)

– g ′(x) ≤ εLn(1, x) +
2M

sin2 δ
2

Ln(ψ , x) + g ′(x)
[

Ln(1, x) – 1
]

. (2.25)

Now,

Ln(ψ , x) = Ln

(

sin2 (t – x)
2

, x
)

= Ln

(
1
2

(1 – cos t cos x – sin t sin x), x
)

=
1
2
{

Ln(1, x) – cos xLn(cos t, x) – sin xLn(sin t, x)
}

=
1
2
{[

Ln(1, x) – 1
]

– cos x
[

Ln(cos t, x) – cos x
]

– sin x
[

Ln(sin t, x) – sin x
]}

.

Substituting the value of Ln(ψ , x) in (2.25), we get

Ln
(

g ′, x
)

– g ′(x)

≤ εLn(1, x)

+
M

sin2 δ
2

{[

Ln(1, x) – 1
]

– cos x
[

Ln(cos t, x) – cos x
]

– sin x
[

Ln(sin t, x) – sin x
]}

+ g ′(x)
[

Ln(1, x) – 1
]

=
M

sin2 δ
2

{[

Ln(1, x) – 1
]

– cos x
[

Ln(cos t, x) – cos x
]

– sin x
[

Ln(sin t, x) – sin x
]}

+ ε
[

Ln(1, x) – 1
]

+ ε + g ′(x)
[

Ln(1, x) – 1
]

=
(

ε +
M

sin2 δ
2

+ g ′(x)
)

[

Ln(1, x) – 1
]

–
M

sin2 δ
2

cos x
[

Ln(cos t, x) – cos x
]

–
M

sin2 δ
2

sin x
[

Ln(sin t, x) – sin x
]

+ ε.

Since |g ′(x)| ≤ M, | cos x| ≤ 1 and | sin x| ≤ 1, for all x ∈ [a, b],

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B

≤
(

ε +
M

sin2 δ
2

+ M
)

∥
∥Ln(1, x) – 1

∥
∥

B +
M

sin2 δ
2

∥
∥Ln(cos t, x) – cos x

∥
∥

B

+
M

sin2 δ
2

∥
∥Ln(sin t, x) – sin x

∥
∥

B + ε

≤ K
(∥
∥Ln(1, x) – 1

∥
∥

B +
∥
∥Ln(cos t, x) – cos x

∥
∥

B +
∥
∥Ln(sin t, x) – sin x

∥
∥

B

)

+ ε, (2.26)

where K = max{ε + M
sin2 δ

2
+ M, M

sin2 δ
2
}.



Bhardwaj and Dhawan Journal of Inequalities and Applications  (2018) 2018:281 Page 19 of 25

For any ε′ > 0, choose ε > 0 such that ε < ε′. Now, from inequality (2.26), we have

∣
∣
{

n ∈ Ir :
∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B ≥ ε′}∣∣

≤
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B +
∥
∥Ln(cos t, x) – cos x

∥
∥

B

+
∥
∥Ln(sin t, x) – sin x

∥
∥

B ≥ ε′ – ε

K

}∣
∣
∣
∣
. (2.27)

Now write

D :=
{

n :
∥
∥Ln(1, x) – 1

∥
∥

B +
∥
∥Ln(cos t, x) – cos x

∥
∥

B +
∥
∥Ln(sin t, x) – sin x

∥
∥

B ≥ ε′ – ε

K

}

,

D1 :=
{

n :
∥
∥Ln(1, x) – 1

∥
∥

B ≥ ε′ – ε

3K

}

,

D2 :=
{

n :
∥
∥Ln(cos t, x) – cos x

∥
∥

B ≥ ε′ – ε

3K

}

,

D3 :=
{

n :
∥
∥Ln(sin t, x) – sin x

∥
∥

B ≥ ε′ – ε

3K

}

.

Then it is easy to see that D ⊂ D1 ∪ D2 ∪ D3. Now, from (2.27), we have

∣
∣
{

n ∈ Ir :
∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B ≥ ε′}∣∣ ≤
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

+
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(cos t, x) – cos x

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

+
∣
∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(sin t, x) – sin x

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣
,

which yields

1
f (hr)

f
(∣
∣
{

n ∈ Ir :
∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B ≥ ε′}∣∣)

≤ 1
f (hr)

f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)

+
1

f (hr)
f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(cos t, x) – cos x

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)

+
1

f (hr)
f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(sin t, x) – sin x

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)

and, using (2.16)–(2.18)), we get

Sf
θ – lim

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B = 0 for all g ′ ∈ F∗
cb

(

[a, b]
)

.

From here onwards, we proceed as in the proof of Theorem 2.3 to get

Sf
θ – lim

∥
∥Ln(g, x) – g(x)

∥
∥

B = 0 for all g ∈ D∗([a, b]
)

. �
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Remark 2.15 If we take f (x) = x in Theorem 2.14, we obtain the lacunary statistical analog
of the classical Korovkin second theorem as follows.

Theorem 2.16 Let (Ln) be a sequence of positive linear operators Ln : D∗([a, b]) →
B([a, b]). Then, for all g ∈ D∗([a, b]),

Sθ – lim
∥
∥Ln(g, x) – g(x)

∥
∥

B = 0

if and only if

Sθ – lim
∥
∥Ln(1, x) – 1

∥
∥

B = 0,

Sθ – lim
∥
∥Ln(cos t, x) – cos x

∥
∥

B = 0,

Sθ – lim
∥
∥Ln(sin t, x) – sin x

∥
∥

B = 0.

Remark 2.17 Since every convergent sequence is f -lacunary statistically convergent [6], it
immediately follows that any sequence satisfying the conditions of the classical Korovkin
second theorem automatically satisfies the conditions of its f -lacunary statistical analog.

Our next example shows that there exists a sequence of positive linear operators which
satisfies the conditions of Theorem 2.14 but does not satisfy the conditions of Theo-
rem 2.13, thereby showing that our result is stronger than the classical one.

Example 2.18 Following Duman [13], consider the sequence Qn : D∗([–π ,π ]) →
B([–π ,π ]) of positive linear operators defined by

Qn(g, x) = (1 + αn)Fn(g, x),

where (Fn) is the sequence of Fejer operators defined by

Fn(g, x) =
1

nπ

∫ π

–π

g(t)
sin2( n

2 (t – x))
2 sin2( t–x

2 )
dt, g ∈ D∗([–π ,π ]

)

,

and (αn) is the sequence of scalars which is f -lacunary statistically convergent to zero for
some unbounded modulus f but not convergent to zero. It is known [24] that

Fn(1, x) = 1, Fn(cos t, x) =
n – 1

n
cos x and Fn(sin t, x) =

n – 1
n

sin x.

Hence, the sequence (Qn) satisfies conditions (2.16)–(2.18) of Theorem 2.14. So, we have

Sf
θ – lim

∥
∥Qn(g, x) – g(x)

∥
∥

B = 0 for all g ∈ D∗([–π ,π ]
)

.

On the other hand,

Qn(1, x) = (1 + αn)Fn(1, x) = (1 + αn),
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and so,

lim
∥
∥Qn(1, x) – 1

∥
∥

B = lim‖1 + αn – 1‖ = lim‖αn‖ = lim |αn| �= 0,

from where it follows that (Qn) does not satisfy the conditions of classical Korovkin second
theorem.

Remark 2.19 Since every f -lacunary statistically convergent sequence is lacunary statisti-
cally convergent [6], it immediately follows that any sequence satisfying the conditions of
the f -lacunary statistical analog of the classical Korovkin second theorem (Theorem 2.14)
automatically satisfies the conditions of the lacunary statistical analog of the classical Ko-
rovkin second theorem (Theorem 2.16).

Remark 2.20 In Example 2.18, if we take (αn) to be any sequence which is lacunary sta-
tistically convergent to zero but not f -lacunary statistically convergent to zero for some
unbounded modulus f , then we obtain a sequence of positive linear operators which sat-
isfies the conditions of Theorem 2.16 but does not satisfy the conditions of Theorem 2.14,
thereby showing that the lacunary statistical analog of the classical Korovkin second the-
orem is stronger than the f -lacunary statistical analog of the classical Korovkin second
theorem.

We conclude this section by studying a relationship between the f -lacunary statistical
analog and the f -statistical analog of the Korovkin second theorem. In other words, we
characterize those θ for which these two analogs are equivalent, of course, under certain
restrictions on f . In view of Theorems 1.20, 2.11 and 2.14, we have the following.

Theorem 2.21 Let f be any unbounded modulus, for which limt→∞ f (t)
t > 0 and there is

a positive constant c such that f (xy) ≥ cf (x)f (y) for all x ≥ 0, y ≥ 0. Then, the f -lacunary
statistical analog and f -statistical analog of the Korovkin second theorem are equivalent
for those θ for which 1 < lim infr qr ≤ lim supr qr < ∞.

2.3 The order of f -lacunary statistical convergence
The idea of lacunary statistical convergence with degree β (0 < β < 1) for sequences of
numbers was introduced by Patterson and Savaş [30] as follows:

Definition 2.22 The number sequence (xk) is said to be lacunary statistically convergent
to the number l with degree 0 < β < 1 if, for each ε > 0,

lim
r→∞

1
h1–β

r

∣
∣
{

k ∈ Ir : |xk – l| ≥ ε
}∣
∣ = 0.

In this case, we write

xk – l = Sθ – o
(

k–β
)

.

The concept of lacunary statistical convergence of order α was introduced by Şengül and
Et [36] as follows:
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Definition 2.23 Let 0 < α ≤ 1. The number sequence (xk) is said to be lacunary statisti-
cally convergent of order α to the number l if, for each ε > 0,

lim
r→∞

1
hα

r

∣
∣
{

k ∈ Ir : |xk – l| ≥ ε
}∣
∣ = 0.

From Definitions 2.22 and 2.23, we have the following

Remark 2.24 A sequence is lacunary statistically convergent of degree β if and only if it is
lacunary statistically convergent of order 1 – β , where 0 < β < 1.

We now introduce a new concept of f -lacunary statistical convergence with degree β

(0 < β < 1) for X-valued sequences, where X is a normed space.

Definition 2.25 Let X be a normed space. A sequence (xk) in X is said to be f -lacunary
statistically convergent to some x ∈ X with degree 0 < β < 1 if, for each ε > 0,

lim
r→∞

1
f (h1–β

r )
f
(∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣
)

= 0.

In this case, we write

xk – x = Sf
θ – o

(

k–β
)

.

Remark 2.26 In case f (x) = x, the concept of f -lacunary statistical convergence with de-
gree β (0 < β < 1) reduces to that of lacunary statistical convergence with degree β

(0 < β < 1).

Theorem 2.27 Let f be an unbounded modulus and θ = (kr) be a lacunary sequence. Let
(xk) and (yk) be any two sequences such that xk – x = Sf

θ – o(k–β1 ) and yk – y = Sf
θ – o(k–β2 ).

Then
(i) (xk + yk) – (x + y) = Sf

θ – o(k–β ), where β = min (β1,β2),
(ii) α(xk – x) = Sf

θ – o(k–β1 ) for any real number α.

The proof is a routine verification by using standard techniques and hence omitted.

Theorem 2.28 Every f -lacunary statistically convergent sequence with degree 0 < β < 1 is
f -lacunary statistically convergent for any unbounded modulus f .

Proof Since 0 < β < 1, we get 0 < 1 – β < 1. This implies that f (h1–β
r ) ≤ f (hr) and hence,

1
f (hr)

f
(∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣
) ≤ 1

f (h1–β
r )

f
(∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣
)

. �

Theorem 2.29 Let 0 < α ≤ β < 1. If a sequence is f -lacunary statistically convergent with
degree β then it is lacunary statistically convergent with degree α.

Proof Suppose (xk) is f -lacunary statistically convergent with degree β to l. Then,

lim
r→∞

1
f (h1–β

r )
f
(∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣
)

= 0.
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This implies that for a given p ∈N, there exists an no ∈N such that for n ≥ no, we have

f
(∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣
) ≤ 1

p
f
(

h1–β
r

) ≤ 1
p

f
(

h1–α
r

) ≤ 1
p

pf
(

h1–α
r
p

)

= f
(

h1–α
r
p

)

and, since f is increasing, we have

1
h1–α

r

∣
∣
{

k ∈ Ir : ‖xk – x‖ ≥ ε
}∣
∣ ≤ 1

p
.

Hence, (xk) is lacunary statistically convergent with degree α. �

Maddox [26] proved that for any modulus f , limt→∞ f (t)
t exists. Making use of this result,

we are now in a position to find the degree of f -lacunary statistical convergence of the
sequence of positive linear operators in Theorem 2.3.

Theorem 2.30 Let f be an unbounded modulus such that limt→∞ f (t)
t > 0. Let (Ln) be a

sequence of positive linear operators Ln : D([a, b]) → B([a, b]) satisfy the conditions

∥
∥Ln(1, x) – 1

∥
∥

B = Sf
θ – o

(

n–β1
)

, (2.28)
∥
∥Ln(t, x) – x

∥
∥

B = Sf
θ – o

(

n–β2
)

, (2.29)
∥
∥Ln

(

t2, x
)

– x2∥∥
B = Sf

θ – o
(

n–β3
)

. (2.30)

Then, for all g ′ ∈ Fcb([a, b]), we have

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B = Sf
θ – o

(

n–β
)

,

where β = min (β1,β2,β3).

Proof Proceeding as in the proof of Theorem 2.3, from inequality (2.13), we have

1
f (h1–β

r )
f
(∣
∣
{

n ∈ Ir :
∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B ≥ ε′}∣∣)

≤ 1
f (h1–β1

r )
f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(1, x) – 1

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)
f (h1–β1

r )
f (h1–β

r )

+
1

f (h1–β2
r )

f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln(t, x) – x

∥
∥

B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)
f (h1–β2

r )
f (h1–β

r )

+
1

f (h1–β3
r )

f
(∣

∣
∣
∣

{

n ∈ Ir :
∥
∥Ln

(

t2, x
)

– x2∥∥
B ≥ ε′ – ε

3K

}∣
∣
∣
∣

)
f (h1–β3

r )
f (h1–β

r )

=
f (|{n ∈ Ir : ‖Ln(1, x) – 1‖B ≥ ε′–ε

3K }|)
f (h1–β1

r )

(
f (h1–β1

r )
h1–β1

r

)(
h1–β

r

f (h1–β
r )

)(
h1–β1

r

h1–β
r

)

+
f (|{n ∈ Ir : ‖Ln(t, x) – x‖B ≥ ε′–ε

3K }|)
f (h1–β2

r )

(
f (h1–β2

r )
h1–β2

r

)(
h1–β

r

f (h1–β
r )

)(
h1–β2

r

h1–β
r

)

+
f (|{n ∈ Ir : ‖Ln(t2, x) – x2‖B ≥ ε′–ε

3K }|)
f (h1–β3

r )

(
f (h1–β3

r )
h1–β3

r

)(
h1–β

r

f (h1–β
r )

)(
h1–β3

r

h1–β
r

)

.
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By using conditions (2.28)–(2.30) and the fact that limt→∞ f (t)
t > 0, we have

∥
∥Ln

(

g ′, x
)

– g ′(x)
∥
∥

B = Sf
θ – o

(

n–β
)

,

where β = min (β1,β2,β3). �

3 Conclusion
New versions of Korovkin type approximation theorems using the notion of f -lacunary
statistical convergence have been established. It is shown that any sequence satisfying the
conditions of the classical Korovkin first (second) theorem satisfies the conditions of its
corresponding f -lacunary statistical analog whereas there exists a sequence of positive
linear operators which satisfies the conditions of f -lacunary statistical analog of Korovkin
first (second) theorem without satisfying the conditions of the corresponding classical
Korovkin theorem, thereby showing that our results are stronger than the classical ones.

We have also shown that lacunary statistical analog of Korovkin first (second) theorem
is stronger than the f -lacunary statistical analog of Korovkin first (second) theorem.

Finally, we have characterized those θ for which f -lacunary statistical analog and the
f -statistical analog of the Korovkin first (second) theorem are equivalent, of course, under
certain restrictions on f .
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Sesiunii Generale Ştiinţifice din 2-12 iunie 1950, pp. 1664–1667. Editura Academiei Republicii Populare Romǎne,
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