Skip to content

Advertisement

  • Research
  • Open Access

On the Lawson–Lim means and Karcher mean for positive invertible operators

Journal of Inequalities and Applications20182018:229

https://doi.org/10.1186/s13660-018-1817-5

  • Received: 7 February 2018
  • Accepted: 16 August 2018
  • Published:

Abstract

This note aims to generalize the reverse weighted arithmetic–geometric mean inequality of n positive invertible operators due to Lawson and Lim. In addition, we make comparisons between the weighted Karcher mean and Lawson–Lim geometric mean for higher powers.

Keywords

  • Karcher mean
  • Lawson–Lim geometric mean
  • Ando–Li–Mathias geometric mean
  • Kantorovich constant

MSC

  • 15A45
  • 47A63
  • 47A64

1 Introduction

Let \(B(\mathcal{H})\) be the \(C^{*}\)-algebra of all bounded linear operators on a complex separable Hilbert space \(\mathcal{H}\). \(B(\mathcal{H})^{+}\) stands for the set of positive elements in \(B(\mathcal{H})\). A linear map Φ: \(B(\mathcal{H})\rightarrow B(\mathcal{H})\) is said to be positive (strictly positive) if \(\Phi (A)\ge0\) (\(\Phi(A)>0\)) whenever \(A\ge0\) (\(A>0\)). A positive linear map is said to be normalized (unital) if \(\Phi(I)=I\). Note that a positive linear map Φ is monotone in the sense that \(A\le B\) implies \(\Phi(A)\le\Phi(B)\). \(\mathbb{P}\) stands for the convex cone of positive invertible operators. \(\Delta_{n}\) denotes the simplex of positive probability vectors in \(\mathbb{R}^{n}\) convexly spanned by the unit coordinate vectors. \(\|\cdot\|\) and \(|\!\|\cdot|\!\|\) denote the operator norm and the unitarily invariant norm, respectively.

Since the pioneering papers of Pusz and Woronowicz [18], Ando [1], and Kubo and Ando [11], an extensive theory of two-variable geometric mean has sprung up for positive operators: For two positive operators A and B, the operator geometric mean is defined by \(A\sharp B:=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac {1}{2}} A^{\frac{1}{2}}\) for \(A>0\). But the n-variable case for \(n> 2\) was a long standing problem and many authors studied the geometric mean of n-variable.

In 2004, Ando et al. [2] succeeded in the formulation of the geometric mean for n positive definite matrices, and they showed that it satisfies ten important properties.

Definition 1.1

(Ando–Li–Mathias geometric mean [2])

Let \(A_{i}\) \((i=1,2,\ldots,n)\) be positive definite matrices. Then the geometric mean \(G_{\mathrm{ALM}}(A_{1},A_{2},\ldots,A_{n})\) is defined by induction as follows:
  1. (i)

    \(G_{\mathrm{ALM}}(A_{1},A_{2})=A_{1}\#A_{2}\).

     
  2. (ii)
    Assume that the geometric mean of any \(n-1\)-tuple of operators is defined. Let
    $$G_{\mathrm{ALM}}\bigl((A_{j})_{j\neq i}\bigr)=G_{\mathrm{ALM}}(A_{1}, \ldots,A_{i-1},A_{i+1},\ldots,A_{n}), $$
     
and let the sequences \(\{A^{(r)}_{i}\}^{\infty}_{r=0}\) be \(A^{(0)}_{i}=A_{i}\) and \(A^{(r)}_{i} =G_{\mathrm{ALM}}((A^{(r-1)}_{j})_{j\neq i})\). If there exists \(\lim_{r\rightarrow\infty}A^{(r)}_{i}\), and it does not depend on i, then the geometric mean of n-matrices is defined as
$$\lim_{r\rightarrow\infty}A^{(r)}_{i}=G_{\mathrm{ALM}}(A_{1},A_{2}, \ldots,A_{n}). $$
In [20], Yamazaki pointed out that the definition of the geometric mean by Ando, Li and Mathias can be extended to Hilbert space operators. Lawson and Lim [12] established a definition of the weighted version of the Ando–Li–Mathias geometric mean for n positive operators, we call it Lawson–Lim geometric mean \(G[n,t](A_{1},A_{2},\ldots ,A_{n})\); see [12] for more details. In particular, \(G[n,\frac{1}{2}]\) for \(t=\frac{1}{2}\) is the Ando-Li-Mathias geometric mean. Similarly, the weighted arithmetic mean is defined as follows:
$$A[n,t](A_{1},A_{2},\ldots,A_{n})=t[n]_{1}A_{1}+t[n]_{2}A_{2}+ \cdots+t[n]_{n}A_{n}, $$
where \(t[n]_{i}\ge0\) for all \(i=1,2,\ldots,n\) with \(\sum_{i=1}^{n} t[n]_{i}=1\). Also, the weighted harmonic mean \(H[n,t](A_{1},A_{2},\ldots,A_{n})\) is defined as
$$H[n,t](A_{1},A_{2},\ldots,A_{n})= \bigl(t[n]_{1}A_{1}^{-1}+t[n]_{2}A_{2}^{-1}+ \cdots+t[n]_{n}A_{n}^{-1} \bigr)^{-1}. $$
Note that the coefficient \(\{t[n]_{i}\}\) depends on n and t only; see [6, 19] for more details.
Moreover, the weighted arithmetic–geometric-harmonic mean inequalities holds:
$$ H[n,t](A_{1},A_{2},\ldots,A_{n})\le G[n,t](A_{1},A_{2},\ldots,A_{n}) \le A[n,t](A_{1},A_{2},\ldots,A_{n}). $$
(1.1)
Since then, another approach to generalizing the geometric mean to n-variables, depending on Riemannian trace metric, was the Karcher mean, which was studied by many researchers; see [13, 14] and the references therein. Let \(\mathbb{A}=A_{1}, A_{2},\ldots,A_{n}\in\mathbb{P}^{n}\) and \(\omega =(w_{1},w_{2},\ldots, w_{n})\in\Delta_{n}\). By computing appropriate derivatives as in [3], the ω-weighted Karcher mean of \(\mathbb{A}\), denoted by \(G_{K}(\omega;\mathbb{A})\), coincides with the unique positive definite solution of the Karcher equation
$$ \sum_{i=1}^{n}w_{i} \log\bigl(X^{\frac{1}{2}}A_{i}^{-1}X^{-\frac{1}{2}}\bigr)=0. $$
(1.2)
In the case of two operators, \(A_{1}, A_{2}\in\mathbb{P}\), the Karcher mean coincides with the weighted geometric mean \(A_{1}\sharp_{t} A_{2} =A_{1}^{\frac{1}{2}}(A_{1}^{-\frac{1}{2}}A_{2}A_{1}^{-\frac{1}{2}})^{t} A_{1}^{\frac{1}{2}}\). From (1.2), the Karcher mean satisfies the self-duality \(G_{K}(\omega;\mathbb{A})=G_{K}(\omega;\mathbb{A}^{-1})^{-1}\), where \(\mathbb{A}^{-1}=(A^{-1}_{1},A^{-1}_{2},\ldots,A^{-1}_{n})\).

2 Weighted arithmetic and geometric means due to Lawson and Lim

In 2006, Yamazaki [20] obtained a converse of the arithmetic–geometric mean inequality of n-operators via Kantorovich constant. Soon after, Fujii el al. [6] also proved a stronger reverse inequality of the weighted arithmetic and geometric means due to Lawson and Lim of n-operators by the Kantorovich inequality.

In this section, we present the higher-power reverse inequalities of the weighted arithmetic and geometric means due to Lawson and Lim of n-operators, and several complements of the weighted geometric mean for n-variables have been established.

Lemma 2.1

([4, 5])

Let \(A, B\ge0\). Then the following inequality holds:
$$ \Vert AB \Vert \le\frac{1}{4} \Vert A+B \Vert ^{2}. $$
(2.1)

Remark 2.1

Drury [5] recently established a remarkable improvement of (2.1) when \(A, B\) are, moreover, compact. More precisely, if \(A, B\geq0\) are compact, then there exists an isometry U such that
$$ U \vert AB \vert U^{*}\le\frac{1}{4}(A+B)^{2}. $$
(2.2)

Lemma 2.2

([3, p. 28])

Let \(A, B\ge0\). Then, for \(1\le r<+\infty\),
$$ \bigl\Vert A^{r}+B^{r} \bigr\Vert \le \bigl\Vert (A+B)^{r} \bigr\Vert . $$
(2.3)

It is well known that \(\|A\|\le1\) is equivalent to \(A^{*}A\le I\). This fact plays an important role in the proofs of the theorems.

Theorem 2.1

For any positive integer \(n\ge2\), let \(A_{1}, A_{2}, \ldots, A_{n}\) be positive invertible operators on a Hilbert space \(\mathcal{H}\) such that \(m\le A_{i}\le M\) for \(i=1,2,\ldots,n\) and some scalars \(0< m< M\). Then, for \(p\ge2\),
$$ A[n,t](A_{1},\ldots, A_{n})^{p}\le \frac{(m+M)^{2p}}{16m^{p}M^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}. $$
(2.4)

Proof

Let a map \(\Psi: \mathcal{B}(\mathcal{H})\oplus\cdots\oplus\mathcal {B}(\mathcal{H}) \mapsto\mathcal{B}(\mathcal{H})\) be defined by
$$\Psi( A_{1}\oplus\cdots\oplus A_{n} )= t[n]_{1}A_{1}+ \cdots+t[n]_{n}A_{n}. $$
Then Ψ is a positive linear map such that \(\Psi(I)=I\). The condition \(0< m\le A_{i}\le M\) for \(i=1,2,\ldots,n\) implies that
$$ m\le\Psi( A_{1}\oplus\cdots\oplus A_{n} ) \le M. $$
(2.5)
By (2.3) in [16], we have
$$\Psi( A_{1}\oplus\cdots\oplus A_{n} )+ Mm\Psi\bigl( A_{1}^{-1}\oplus\cdots\oplus A_{n}^{-1} \bigr) \le M+m. $$
Thus,
$$ A[n,t](A_{1},\ldots, A_{n})+Mm A[n,t] \bigl(A_{1}^{-1},\ldots, A_{n}^{-1}\bigr) \le m+M. $$
(2.6)
On the other hand, by computing, we deduce
$$\begin{aligned} &\bigl\Vert M^{\frac{p}{2}}m^{\frac{p}{2}}A[n,t](A_{1}, \ldots, A_{n})^{\frac{p}{2}}G[n,t](A_{1},\ldots, A_{n})^{-\frac{p}{2}} \bigr\Vert \\ &\quad\le\frac{1}{4} \bigl\Vert A[n,t](A_{1},\ldots, A_{n})^{\frac{p}{2}}+M^{\frac{p}{2}}m^{\frac{p}{2}}G[n,t](A_{1},\ldots, A_{n})^{-\frac{p}{2}} \bigr\Vert ^{2} \quad\bigl(\text{by } (2.1)\bigr) \\ &\quad\le\frac{1}{4} \bigl\Vert A[n,t](A_{1},\ldots, A_{n})+MmG[n,t](A_{1},\ldots, A_{n})^{-1} \bigr\Vert ^{p} \\ &\qquad \biggl(\text{by } (2.3) \text{ and } \frac{p}{2}\ge1\biggr) \\ &\quad= \frac{1}{4} \bigl\Vert A[n,t](A_{1},\ldots, A_{n})+MmG[n,t]\bigl(A_{1}^{-1},\ldots, A_{n}^{-1}\bigr) \bigr\Vert ^{p} \\ &\quad\le\frac{1}{4} \bigl\Vert A[n,t](A_{1},\ldots, A_{n})+MmA[n,t]\bigl(A_{1}^{-1},\ldots, A_{n}^{-1}\bigr) \bigr\Vert ^{p} \quad\bigl(\text{by } (1.1)\bigr) \\ &\quad\le\frac{(M+m)^{p}}{4}\quad \bigl(\text{by } (2.6)\bigr). \end{aligned}$$
The equality above follows from the self-duality of the geometric mean (see [2, 6, 20]). □

Taking \(p=2\), (2.4) implies the following corollary.

Corollary 2.1

For any positive integer \(n\ge2\), let \(A_{1}, A_{2}, \ldots, A_{n}\) be positive invertible operators on a Hilbert space \(\mathcal{H}\) such that \(m\le A_{i}\le M\) for \(i=1,2,\ldots,n\) and some scalars \(0< m< M\). Then
$$ A[n,t](A_{1},\ldots, A_{n})^{2}\le \frac{(m+M)^{4}}{16m^{2}M^{2}}G[n,t](A_{1},\ldots, A_{n})^{2}. $$
(2.7)

Note that if \(t=\frac{1}{2}\), the inequality (2.7) reduces to Lin’s result (see [15, Theorem 3.2]). By the Löewner–Heinz inequality, we can easily get Theorem 7 in [6] from (2.7).

Theorem 2.2

For any positive integer \(n\ge2\), let \(A_{1}, A_{2}, \ldots, A_{n}\) be positive invertible operators on a Hilbert space \(\mathcal{H}\) such that \(m\le A_{i}\le M\) for \(i=1,2,\ldots,n\) and some scalars \(0< m< M\). Then, for \(1<\alpha\le2\) and \(p\ge2\alpha\),
$$ A[n,t](A_{1},\ldots, A_{n})^{p}\le \frac{(k^{\frac{\alpha}{2}}(M^{\alpha}+m^{\alpha}))^{\frac{2p}{\alpha }}}{16M^{p}m^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}, $$
(2.8)
where \(k=\frac{(m+M)^{2}}{4mM}\).

Proof

Let a map \(\Psi: \mathcal{B}(\mathcal{H})\oplus\cdots\oplus\mathcal {B}(\mathcal{H}) \mapsto\mathcal{B}(\mathcal{H})\) be defined as in the proof of Theorem 2.1. By (2.5) and the Löewner–Heinz inequality, we have
$$m^{\alpha}\le\Psi^{\alpha}( A_{1}\oplus\cdots\oplus A_{n} ) \le M^{\alpha}, $$
that is,
$$m^{\alpha}\le A[n,t](A_{1},\ldots, A_{n})^{\alpha}\le M^{\alpha}. $$
By (2.3) in [16], we have
$$ A[n,t](A_{1},\ldots, A_{n})^{\alpha}+M^{\alpha}m^{\alpha}A[n,t](A_{1},\ldots, A_{n})^{-\alpha} \le m^{\alpha}+M^{\alpha}. $$
(2.9)
On the other hand, by (2.7),
$$ k^{-\alpha}G[n,t](A_{1},\ldots, A_{n})^{-\alpha}\le A[n,t](A_{1},\ldots, A_{n})^{-\alpha}. $$
(2.10)
By computing, we deduce
$$\begin{aligned} & \bigl\Vert k^{-\frac{p}{2}}m^{\frac{p}{2}}M^{\frac{p}{2}}A[n,t](A_{1}, \ldots, A_{n})^{\frac{p}{2}}G[n,t](A_{1},\ldots, A_{n})^{-\frac{p}{2}} \bigr\Vert \\ &\quad\le\frac{1}{4} \bigl\Vert A[n,t](A_{1},\ldots, A_{n})^{\frac{p}{2}}+k^{-\frac{p}{2}}m^{\frac{p}{2}}M^{\frac{p}{2}}G[n,t](A_{1}, \ldots, A_{n})^{-\frac{p}{2}} \bigr\Vert ^{2} \quad\bigl(\text{by } (2.1)\bigr) \\ &\quad\le\frac{1}{4} \bigl\Vert \bigl(A[n,t](A_{1},\ldots, A_{n})^{\alpha}+k^{-\alpha}m^{\alpha}M^{\alpha}G[n,t](A_{1}, \ldots, A_{n})^{-\alpha}\bigr)^{\frac{p}{2\alpha}} \bigr\Vert ^{2} \\ &\qquad \biggl(\text{by } (2.3) \text{ and } \frac{p}{2}\ge1\biggr) \\ &\quad= \frac{1}{4} \bigl\Vert A[n,t](A_{1},\ldots, A_{n})^{\alpha}+k^{-\alpha}m^{\alpha}M^{\alpha}G[n,t](A_{1}, \ldots, A_{n})^{-\alpha} \bigr\Vert ^{\frac{p}{\alpha}} \\ &\quad\le\frac{1}{4} \bigl\Vert A[n,t](A_{1},\ldots, A_{n})^{\alpha}+m^{\alpha}M^{\alpha}A[n,t](A_{1}, \ldots, A_{n})^{-\alpha} \bigr\Vert ^{p} \quad\bigl(\text{by } (2.10)\bigr) \\ &\quad\le\frac{(M^{\alpha}+m^{\alpha})^{p}}{4} \quad\bigl(\text{by } (2.9)\bigr). \end{aligned}$$
We obtain the desired result. □

Putting \(\alpha=2\) in the inequality (2.8) implies the following.

Corollary 2.2

Under the same conditions as in Theorem 2.2, then, for \(p\ge4\),
$$ A[n,t](A_{1},\ldots, A_{n})^{p}\le \frac{(k(M^{2}+m^{2}))^{p}}{16M^{p}m^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}. $$
(2.11)

Remark 2.2

When \(\frac{M}{m}\le2+\sqrt{3}\), we have \(\frac {(m+M)^{2p}}{16m^{p}M^{p}}\ge\frac{(k(M^{2}+m^{2}))^{p}}{16M^{p}m^{p}}\), it is easy to see that (2.11) is sharper than (2.4) for \(p\ge4\).

Next, we show the complements of the weighted geometric mean due to Lawson and Lim by virtue of the following lemma (see Corollary 2.12 in [10]) and we will generalize Lemma 2.8 and Lemma 2.9 in [19] in two following theorems.

Lemma 2.3

([10])

For any integer \(n\ge2\), let \(A_{1},A_{2},\ldots,A_{n}\) be positive invertible operators in \(\mathbb{P}\) such that \(m\le A_{i}\le M\) for all \(i=1,2,\ldots,n\) and some scalars \(0< m\le M\). Then
$$ A[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)A[n,t](A_{1},\ldots, A_{n})^{p}\quad \textit{for all }p\ge1, $$
(2.12)
where \(K(m,M,p)=\frac{(p-1)^{p-1}}{p^{p}}\frac {(M^{p}-m^{p})^{p}}{(M-m)(mM^{p}-Mm^{p})^{p-1}}\) is the generalized Kantorovich constant.

Proof

By Corollary 2.6 in [17],
$$\Phi\bigl(A^{p}\bigr)\le K(m,M,p)\Phi(A)^{p} \quad\text{for all } p\ge1. $$
Let the map \(\Phi: \mathcal{B}(\mathcal{H})\oplus\cdots\oplus\mathcal {B}(\mathcal{H}) \mapsto\mathcal{B}(\mathcal{H})\) be defined as Ψ in the proof of Theorem 2.1. Then, for \(p\ge1\),
$$A[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)A[n,t](A_{1},\ldots, A_{n})^{p}. $$
 □

Theorem 2.3

For any integer \(n\ge2\), let \(A_{1},A_{2},\ldots,A_{n}\) be positive invertible operators in \(\mathbb{P}\) such that \(m\le A_{i}\le M \) for all \(i=1,2,\ldots,n\) and some scalars \(0< m\le M\). Then
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)\frac{(m+M)^{2p}}{4^{p}m^{p}M^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}\quad \textit{for all }1< p\le2 $$
and
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)\frac{(m+M)^{2p}}{16m^{p}M^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}\quad \textit{for all }p\ge2. $$

Proof

By the arithmetic–geometric mean inequality and (2.12), it follows that
$$\begin{aligned} G[n,t]\bigl(A^{p}_{1}, \ldots,A^{p}_{n}\bigr)&\le A[n,t]\bigl(A^{p}_{1}, \ldots,A^{p}_{n}\bigr) \\ &\le K(m,M,p)A[n,t](A_{1},\ldots, A_{n})^{p} \quad\text{for } p\ge1. \end{aligned}$$
(2.13)
For \(p\in(1,2]\), it follows from (2.7) and the Löewner–Heinz inequality that
$$A[n,t](A_{1},\ldots, A_{n})^{p}\le\biggl( \frac{(m+M)^{2}}{4mM} \biggr)^{p}G[n,t](A_{1},\ldots, A_{n})^{p}. $$
Combining the inequalities above, we have
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)\frac{(m+M)^{2p}}{4^{p}m^{p}M^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}. $$
For \(p\in[2,\infty)\), from (2.4) and (2.13), we obtain
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)\frac{(m+M)^{2p}}{16m^{p}M^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}. $$
 □

In the following remark, we present the case of \(p\ge1\) for the Ando–Li–Mathias geometric mean.

Remark 2.3

Let \(t=\frac{1}{2}\) in Theorem 2.3. Then
$$G_{\mathrm{ALM}}\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)\frac{(m+M)^{2p}}{4^{p}m^{p}M^{p}}G_{\mathrm {ALM}}(A_{1},\ldots, A_{n})^{p} \quad\text{for all }1< p\le2 $$
and
$$G_{\mathrm{ALM}}\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K(m,M,p)\frac{(m+M)^{2p}}{16m^{p}M^{p}}G_{\mathrm{ALM}}(A_{1},\ldots, A_{n})^{p} \quad\text{for all }p\ge2. $$

Theorem 2.4

For any integer \(n\ge2\), let \(A_{1},A_{2},\ldots,A_{n}\) be positive invertible operators in \(\mathbb{P}\) such that \(m\le A_{i}\le M \) for all \(i=1,2,\ldots,n\) and some scalars \(0< m\le M\). Then
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)^{\frac{1}{p}}\le K \biggl(m^{q},M^{q}, \frac{p}{q} \biggr)^{\frac{1}{p}} \biggl(\frac{(m^{q}+M^{q})^{2}}{4m^{q}M^{q}} \biggr)^{\frac{1}{q}}G[n,t]\bigl(A^{q}_{1}, \ldots,A^{q}_{n}\bigr)^{\frac{1}{q}} $$
for all \(1<\frac{p}{q}\le2\) and \(p\ge1\), and
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)^{\frac{1}{p}}\le4^{-\frac{2}{p}} K \biggl(m^{q},M^{q}, \frac{p}{q} \biggr)^{\frac{1}{p}} \biggl(\frac{(m^{q}+M^{q})^{2}}{m^{q}M^{q}} \biggr)^{\frac{1}{q}}G[n,t]\bigl(A^{q}_{1}, \ldots,A^{q}_{n}\bigr)^{\frac{1}{q}} $$
for all \(\frac{p}{q}\ge2\) and \(p\ge1\).

Proof

For each \(0< q\le p\), it follows from the arithmetic–geometric mean inequality (1.1) and (2.12) that
$$\begin{aligned} G[n,t]\bigl(A^{p}_{1}, \ldots,A^{p}_{n}\bigr)&\le A[n,t]\bigl(A^{p}_{1}, \ldots,A^{p}_{n}\bigr) \\ &= A[n,t]\bigl(\bigl(A^{q}_{1}\bigr)^{\frac{p}{q}}, \ldots,\bigl(A^{q}_{n}\bigr)^{\frac{p}{q}}\bigr) \\ &\le K \biggl(m^{q},M^{q},\frac{p}{q} \biggr)A[n,t] \bigl(A^{q}_{1},\ldots, A^{q}_{n} \bigr)^{\frac{p}{q}}. \end{aligned}$$
(2.14)
On the other hand, for \(1<\frac{p}{q}\le2\), from (2.7) and \(m^{q}\le A_{i}^{q}\le M^{q}\), it follows that
$$A[n,t]\bigl(A^{q}_{1},\ldots, A^{q}_{n} \bigr)^{\frac{p}{q}}\le\biggl(\frac{(m^{q}+M^{q})^{2}}{4m^{q}M^{q}} \biggr)^{\frac{p}{q}}G[n,t]\bigl(A^{q}_{1},\ldots,A^{q}_{n} \bigr)^{\frac{p}{q}}. $$
Combining the two inequalities above, we obtain
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le K \biggl(m^{q},M^{q},\frac{p}{q} \biggr) \biggl(\frac{(m^{q}+M^{q})^{2}}{4m^{q}M^{q}} \biggr)^{\frac{p}{q}}G[n,t]\bigl(A^{q}_{1}, \ldots,A^{q}_{n}\bigr)^{\frac{p}{q}}. $$
By the Löewner–Heinz inequality and \(p\ge1\), it follows that
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)^{\frac{1}{p}}\le K \biggl(m^{q},M^{q}, \frac{p}{q} \biggr)^{\frac{1}{p}} \biggl(\frac{(m^{q}+M^{q})^{2}}{4m^{q}M^{q}} \biggr)^{\frac{1}{q}}G[n,t]\bigl(A^{q}_{1}, \ldots,A^{q}_{n}\bigr)^{\frac{1}{q}}. $$
Similarly, for all \(\frac{p}{q}\ge2\), from (2.4) we have
$$A[n,t]\bigl(A^{q}_{1},\ldots, A^{q}_{n} \bigr)^{\frac{p}{q}}\le4^{-2} \biggl(\frac{(m^{q}+M^{q})^{2}}{m^{q}M^{q}} \biggr)^{\frac{p}{q}}G[n,t]\bigl(A^{q}_{1}, \ldots,A^{q}_{n}\bigr)^{\frac{p}{q}}. $$
Combining with (2.14), we obtain
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)\le4^{-2}K \biggl(m^{q},M^{q}, \frac{p}{q} \biggr) \biggl(\frac{(m^{q}+M^{q})^{2}}{m^{q}M^{q}} \biggr)^{\frac{p}{q}}G[n,t]\bigl(A^{q}_{1},\ldots,A^{q}_{n} \bigr)^{\frac{p}{q}}. $$
It follows from \(p\ge1\) that
$$G[n,t]\bigl(A^{p}_{1},\ldots,A^{p}_{n} \bigr)^{\frac{1}{p}}\le4^{-\frac{2}{p}}K \biggl(m^{q},M^{q}, \frac{p}{q} \biggr)^{\frac{1}{p}} \biggl(\frac{(m^{q}+M^{q})^{2}}{m^{q}M^{q}} \biggr)^{\frac{1}{q}}G[n,t]\bigl(A^{q}_{1}, \ldots,A^{q}_{n}\bigr)^{\frac{1}{q}}. $$
This completes the proof. □

3 Comparisons between the weighted Karcher mean and the Lawson–Lim geometric mean

In the final section, we make comparisons between the weighted Karcher mean and the Lawson–Lim geometric mean for higher powers. This is a fascinating work because the order relation can be preserved between higher-power operators by the Kantorovich constant.

Lemma 3.1

([8])

Let \(0< m\le A\le M\) and \(A\le B\). Then
$$A^{2}\le\frac{(M+m)^{2}}{4Mm}B^{2}. $$

Lemma 3.2

([9])

Let A and B be positive invertible operators on a Hilbert space \(\mathcal{H}\) satisfying \(B\ge A>0\) and \(0< m\le A\le M\). Then
$$\mathrm{K}(m,M,p)B^{p}\ge A^{p} $$
holds for any \(p\ge1\), where \(\mathrm{K}(m,M,p)\) is the generalized Kantorovich constant or the Ky Fan–Furuta constant.

Theorem 3.1

For any positive integer \(n\ge2\), let \(A_{1}, A_{2}, \ldots, A_{n}\) be positive invertible operators on a Hilbert space \(\mathcal{H}\) such that \(m\le A_{i}\le M\) for \(i=1,2,\ldots,n\) and some scalars \(0< m< M\). Then
$$\begin{aligned} & G_{K}(\omega,A_{1},\ldots, A_{n})^{p} \\ &\quad\le\mathrm{K}(m,M,p)\frac{(M+m)^{2p}}{4^{p}M^{p}m^{p}}G[n,t](A_{1}, \ldots, A_{n})^{p} \quad\textit{for all } 1\le p\le2 \end{aligned}$$
(3.1)
and
$$ G_{K}(\omega,A_{1},\ldots, A_{n})^{p}\le\mathrm{K}(m,M,p)\frac{(M+m)^{2p}}{16M^{p}m^{p}}G[n,t](A_{1}, \ldots, A_{n})^{p} \quad\textit{for all }p\ge2. $$
(3.2)

Proof

By the Löewner–Heinz inequality and (2.7), we have
$$ A[n,t](A_{1},\ldots, A_{n})^{p}\le \frac{(M+m)^{2p}}{4^{p}M^{p}m^{p}}G[n,t](A_{1},\ldots, A_{n})^{p} \quad\text{for all } 1\le p\le2. $$
(3.3)
It follows from Lemma 3.2 and (3.3) that
$$\begin{aligned} G_{K}(\omega,A_{1},\ldots, A_{n})^{p}& \le\mathrm{K}(m,M,p)A[n,t](A_{1},\ldots, A_{n})^{p} \\ &\le\mathrm{K}(m,M,p)\frac{(M+m)^{2p}}{4^{p}M^{p}m^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}. \end{aligned}$$
The inequality (3.2) follows from Lemma 3.2 and (2.4) that
$$\begin{aligned} G_{K}(\omega,A_{1},\ldots, A_{n})^{p}& \le\mathrm{K}(m,M,p)A[n,t](A_{1},\ldots, A_{n})^{p} \\ &\le\mathrm{K}(m,M,p)\frac{(M+m)^{2p}}{16M^{p}m^{p}}G[n,t](A_{1},\ldots, A_{n})^{p}. \end{aligned}$$
 □

Remark 3.1

When \(p=1, t=\frac{1}{2}\), the inequality (3.1) reduces to the first inequality of Theorem 5.1 in [7].

Declarations

Acknowledgements

The authors wish to thank the editor and anonymous referees for the careful reading of the manuscript and useful comments.

Funding

This research is supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJ1713330), Research Foundation of Chongqing University of Science and Technology (Grant No. ck2017zkyb025) and the National Natural Science Foundation of China (Grant No. 61601068).

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
College of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing, China
(2)
College of Mathematics and Statistics, Chongqing University, Chongqing, China

References

  1. Ando, T.: Topics on operator inequalities. Hokkaido Univ. Lecture Note, 1978 Google Scholar
  2. Ando, T., Li, C.K., Mathias, R.: Geometric means. Linear Algebra Appl. 385, 305–334 (2004) MathSciNetView ArticleMATHGoogle Scholar
  3. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007) MATHGoogle Scholar
  4. Bhatia, R., Kittaneh, F.: Notes on matrix arithmetic–geometric mean inequalities. Linear Algebra Appl. 308, 203–211 (2000) MathSciNetView ArticleMATHGoogle Scholar
  5. Drury, S.W.: On a question of Bhatia and Kittaneh. Linear Algebra Appl. 437, 1955–1960 (2012) MathSciNetView ArticleMATHGoogle Scholar
  6. Fujii, J.I., Fujii, M., Nakamura, M., Pečarić, J., Seo, Y.: A reverse inequality for the weighted geometric mean due to Lawson–Lim. Linear Algebra Appl. 427, 272–284 (2007) MathSciNetView ArticleMATHGoogle Scholar
  7. Fujii, J.I., Seo, Y.: On the Ando–Li–Mathias mean and the Karcher mean of positive definite matrices. Linear Multilinear Algebra 63, 636–649 (2015) MathSciNetView ArticleMATHGoogle Scholar
  8. Fujii, M., Izumino, S., Nakamoto, R., Seo, Y.: Operator inequalities related to Cauchy–Schwarz and Hölder–McCarthy inequalities. Nihonkai Math. J. 8, 117–122 (1997) MathSciNetMATHGoogle Scholar
  9. Furuta, T.: Operator inequalities associated with Hölder–McCarthy and Kantorovich inequalities. J. Inequal. Appl. 2, 137–148 (1998) MathSciNetMATHGoogle Scholar
  10. Furuta, T., Mićić, J., Pečarić, J., et al.: Mond–Pečarić Method in Operator Inequalities [M]. Element (2005) Google Scholar
  11. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980) MathSciNetView ArticleMATHGoogle Scholar
  12. Lawson, J., Lim, Y.: A general framework for extending means to higher orders. Colloq. Math. 113, 191–221 (2008) MathSciNetView ArticleMATHGoogle Scholar
  13. Lawson, J., Lim, Y.: Karcher means and Karcher equations of positive definite operators. Trans. Am. Math. Soc. 1, 1–22 (2014) MathSciNetView ArticleMATHGoogle Scholar
  14. Lim, Y., Pálfia, M.: Matrix power means and the Karcher mean. J. Funct. Anal. 262, 1498–1514 (2012) MathSciNetView ArticleMATHGoogle Scholar
  15. Lin, M.: Squaring a reverse AM-GM inequality. Stud. Math. 215, 187–194 (2013) MathSciNetView ArticleMATHGoogle Scholar
  16. Lin, M.: On an operator Kantorovich inequality for positive linear maps. J. Math. Anal. Appl. 402, 127–132 (2013) MathSciNetView ArticleMATHGoogle Scholar
  17. Mićić, J., Pečarić, J., Seo, Y.: Complementary inequalities to inequalities of Jensen and Ando based on the Mond–Pečarić method. Linear Algebra Appl. 318, 87–107 (2000) MathSciNetView ArticleMATHGoogle Scholar
  18. Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975) MathSciNetView ArticleMATHGoogle Scholar
  19. Seo, Y.: Generalized Pólya–Szegö type inequalities for some non-commutative geometric means. Linear Algebra Appl. 438, 1711–1726 (2013) MathSciNetView ArticleMATHGoogle Scholar
  20. Yamazaki, T.: An extension of Kantorovich inequality to n-operators via the geometric mean by Ando–Li–Mathias. Linear Algebra Appl. 416, 688–695 (2006) MathSciNetView ArticleMATHGoogle Scholar

Copyright

© The Author(s) 2018

Advertisement