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1 Introduction
Let B(H) be the C∗-algebra of all bounded linear operators on a complex separable Hilbert
space H. B(H)+ stands for the set of positive elements in B(H). A linear map �: B(H) →
B(H) is said to be positive (strictly positive) if �(A) ≥ 0 (�(A) > 0) whenever A ≥ 0 (A > 0).
A positive linear map is said to be normalized (unital) if �(I) = I . Note that a positive linear
map � is monotone in the sense that A ≤ B implies �(A) ≤ �(B). P stands for the convex
cone of positive invertible operators. �n denotes the simplex of positive probability vectors
in R

n convexly spanned by the unit coordinate vectors. ‖ · ‖ and |‖ · |‖ denote the operator
norm and the unitarily invariant norm, respectively.

Since the pioneering papers of Pusz and Woronowicz [18], Ando [1], and Kubo and
Ando [11], an extensive theory of two-variable geometric mean has sprung up for positive
operators: For two positive operators A and B, the operator geometric mean is defined by
A�B := A 1

2 (A– 1
2 BA– 1

2 ) 1
2 A 1

2 for A > 0. But the n-variable case for n > 2 was a long standing
problem and many authors studied the geometric mean of n-variable.

In 2004, Ando et al. [2] succeeded in the formulation of the geometric mean for n positive
definite matrices, and they showed that it satisfies ten important properties.

Definition 1.1 (Ando–Li–Mathias geometric mean [2]) Let Ai (i = 1, 2, . . . , n) be positive
definite matrices. Then the geometric mean GALM(A1, A2, . . . , An) is defined by induction
as follows:

(i) GALM(A1, A2) = A1#A2.
(ii) Assume that the geometric mean of any n – 1-tuple of operators is defined. Let

GALM
(
(Aj)j �=i

)
= GALM(A1, . . . , Ai–1, Ai+1, . . . , An),
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and let the sequences {A(r)
i }∞r=0 be A(0)

i = Ai and A(r)
i = GALM((A(r–1)

j )j �=i). If there exists
limr→∞ A(r)

i , and it does not depend on i, then the geometric mean of n-matrices is de-
fined as

lim
r→∞ A(r)

i = GALM(A1, A2, . . . , An).

In [20], Yamazaki pointed out that the definition of the geometric mean by Ando, Li and
Mathias can be extended to Hilbert space operators. Lawson and Lim [12] established a
definition of the weighted version of the Ando–Li–Mathias geometric mean for n positive
operators, we call it Lawson–Lim geometric mean G[n, t](A1, A2, . . . , An); see [12] for more
details. In particular, G[n, 1

2 ] for t = 1
2 is the Ando-Li-Mathias geometric mean. Similarly,

the weighted arithmetic mean is defined as follows:

A[n, t](A1, A2, . . . , An) = t[n]1A1 + t[n]2A2 + · · · + t[n]nAn,

where t[n]i ≥ 0 for all i = 1, 2, . . . , n with
∑n

i=1 t[n]i = 1. Also, the weighted harmonic mean
H[n, t](A1, A2, . . . , An) is defined as

H[n, t](A1, A2, . . . , An) =
(
t[n]1A–1

1 + t[n]2A–1
2 + · · · + t[n]nA–1

n
)–1.

Note that the coefficient {t[n]i} depends on n and t only; see [6, 19] for more details.
Moreover, the weighted arithmetic–geometric-harmonic mean inequalities holds:

H[n, t](A1, A2, . . . , An) ≤ G[n, t](A1, A2, . . . , An) ≤ A[n, t](A1, A2, . . . , An). (1.1)

Since then, another approach to generalizing the geometric mean to n-variables, depend-
ing on Riemannian trace metric, was the Karcher mean, which was studied by many
researchers; see [13, 14] and the references therein. Let A = A1, A2, . . . , An ∈ P

n and
ω = (w1, w2, . . . , wn) ∈ �n. By computing appropriate derivatives as in [3], the ω-weighted
Karcher mean of A, denoted by GK (ω;A), coincides with the unique positive definite so-
lution of the Karcher equation

n∑

i=1

wi log
(
X

1
2 A–1

i X– 1
2
)

= 0. (1.2)

In the case of two operators, A1, A2 ∈ P, the Karcher mean coincides with the weighted
geometric mean A1�tA2 = A

1
2
1 (A– 1

2
1 A2A– 1

2
1 )tA

1
2
1 . From (1.2), the Karcher mean satisfies the

self-duality GK (ω;A) = GK (ω;A–1)–1, where A
–1 = (A–1

1 , A–1
2 , . . . , A–1

n ).

2 Weighted arithmetic and geometric means due to Lawson and Lim
In 2006, Yamazaki [20] obtained a converse of the arithmetic–geometric mean inequality
of n-operators via Kantorovich constant. Soon after, Fujii el al. [6] also proved a stronger
reverse inequality of the weighted arithmetic and geometric means due to Lawson and
Lim of n-operators by the Kantorovich inequality.

In this section, we present the higher-power reverse inequalities of the weighted arith-
metic and geometric means due to Lawson and Lim of n-operators, and several comple-
ments of the weighted geometric mean for n-variables have been established.
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Lemma 2.1 ([4, 5]) Let A, B ≥ 0. Then the following inequality holds:

‖AB‖ ≤ 1
4
‖A + B‖2. (2.1)

Remark 2.1 Drury [5] recently established a remarkable improvement of (2.1) when A, B
are, moreover, compact. More precisely, if A, B ≥ 0 are compact, then there exists an isom-
etry U such that

U|AB|U∗ ≤ 1
4

(A + B)2. (2.2)

Lemma 2.2 ([3, p. 28]) Let A, B ≥ 0. Then, for 1 ≤ r < +∞,

∥
∥Ar + Br∥∥ ≤ ∥

∥(A + B)r∥∥. (2.3)

It is well known that ‖A‖ ≤ 1 is equivalent to A∗A ≤ I . This fact plays an important role
in the proofs of the theorems.

Theorem 2.1 For any positive integer n ≥ 2, let A1, A2, . . . , An be positive invertible op-
erators on a Hilbert space H such that m ≤ Ai ≤ M for i = 1, 2, . . . , n and some scalars
0 < m < M. Then, for p ≥ 2,

A[n, t](A1, . . . , An)p ≤ (m + M)2p

16mpMp G[n, t](A1, . . . , An)p. (2.4)

Proof Let a map � : B(H) ⊕ · · · ⊕B(H) �→ B(H) be defined by

�(A1 ⊕ · · · ⊕ An) = t[n]1A1 + · · · + t[n]nAn.

Then � is a positive linear map such that �(I) = I . The condition 0 < m ≤ Ai ≤ M for
i = 1, 2, . . . , n implies that

m ≤ �(A1 ⊕ · · · ⊕ An) ≤ M. (2.5)

By (2.3) in [16], we have

�(A1 ⊕ · · · ⊕ An) + Mm�
(
A–1

1 ⊕ · · · ⊕ A–1
n

) ≤ M + m.

Thus,

A[n, t](A1, . . . , An) + MmA[n, t]
(
A–1

1 , . . . , A–1
n

) ≤ m + M. (2.6)

On the other hand, by computing, we deduce

∥
∥M

p
2 m

p
2 A[n, t](A1, . . . , An)

p
2 G[n, t](A1, . . . , An)– p

2
∥
∥

≤ 1
4
∥∥A[n, t](A1, . . . , An)

p
2 + M

p
2 m

p
2 G[n, t](A1, . . . , An)– p

2
∥∥2 (

by (2.1)
)
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≤ 1
4
∥∥A[n, t](A1, . . . , An) + MmG[n, t](A1, . . . , An)–1∥∥p

(
by (2.3) and

p
2

≥ 1
)

=
1
4
∥∥A[n, t](A1, . . . , An) + MmG[n, t]

(
A–1

1 , . . . , A–1
n

)∥∥p

≤ 1
4
∥∥A[n, t](A1, . . . , An) + MmA[n, t]

(
A–1

1 , . . . , A–1
n

)∥∥p (
by (1.1)

)

≤ (M + m)p

4
(
by (2.6)

)
.

The equality above follows from the self-duality of the geometric mean (see [2, 6, 20]). �

Taking p = 2, (2.4) implies the following corollary.

Corollary 2.1 For any positive integer n ≥ 2, let A1, A2, . . . , An be positive invertible op-
erators on a Hilbert space H such that m ≤ Ai ≤ M for i = 1, 2, . . . , n and some scalars
0 < m < M. Then

A[n, t](A1, . . . , An)2 ≤ (m + M)4

16m2M2 G[n, t](A1, . . . , An)2. (2.7)

Note that if t = 1
2 , the inequality (2.7) reduces to Lin’s result (see [15, Theorem 3.2]). By

the Löewner–Heinz inequality, we can easily get Theorem 7 in [6] from (2.7).

Theorem 2.2 For any positive integer n ≥ 2, let A1, A2, . . . , An be positive invertible op-
erators on a Hilbert space H such that m ≤ Ai ≤ M for i = 1, 2, . . . , n and some scalars
0 < m < M. Then, for 1 < α ≤ 2 and p ≥ 2α,

A[n, t](A1, . . . , An)p ≤ (k α
2 (Mα + mα))

2p
α

16Mpmp G[n, t](A1, . . . , An)p, (2.8)

where k = (m+M)2

4mM .

Proof Let a map � : B(H)⊕· · ·⊕B(H) �→ B(H) be defined as in the proof of Theorem 2.1.
By (2.5) and the Löewner–Heinz inequality, we have

mα ≤ �α(A1 ⊕ · · · ⊕ An) ≤ Mα ,

that is,

mα ≤ A[n, t](A1, . . . , An)α ≤ Mα .

By (2.3) in [16], we have

A[n, t](A1, . . . , An)α + MαmαA[n, t](A1, . . . , An)–α ≤ mα + Mα . (2.9)

On the other hand, by (2.7),

k–αG[n, t](A1, . . . , An)–α ≤ A[n, t](A1, . . . , An)–α . (2.10)
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By computing, we deduce

∥
∥k– p

2 m
p
2 M

p
2 A[n, t](A1, . . . , An)

p
2 G[n, t](A1, . . . , An)– p

2
∥
∥

≤ 1
4
∥∥A[n, t](A1, . . . , An)

p
2 + k– p

2 m
p
2 M

p
2 G[n, t](A1, . . . , An)– p

2
∥∥2 (

by (2.1)
)

≤ 1
4
∥
∥(

A[n, t](A1, . . . , An)α + k–αmαMαG[n, t](A1, . . . , An)–α
) p

2α
∥
∥2

(
by (2.3) and

p
2

≥ 1
)

=
1
4
∥
∥A[n, t](A1, . . . , An)α + k–αmαMαG[n, t](A1, . . . , An)–α

∥
∥

p
α

≤ 1
4
∥
∥A[n, t](A1, . . . , An)α + mαMαA[n, t](A1, . . . , An)–α

∥
∥p (

by (2.10)
)

≤ (Mα + mα)p

4
(
by (2.9)

)
.

We obtain the desired result. �

Putting α = 2 in the inequality (2.8) implies the following.

Corollary 2.2 Under the same conditions as in Theorem 2.2, then, for p ≥ 4,

A[n, t](A1, . . . , An)p ≤ (k(M2 + m2))p

16Mpmp G[n, t](A1, . . . , An)p. (2.11)

Remark 2.2 When M
m ≤ 2 +

√
3, we have (m+M)2p

16mpMp ≥ (k(M2+m2))p

16Mpmp , it is easy to see that (2.11)
is sharper than (2.4) for p ≥ 4.

Next, we show the complements of the weighted geometric mean due to Lawson and
Lim by virtue of the following lemma (see Corollary 2.12 in [10]) and we will generalize
Lemma 2.8 and Lemma 2.9 in [19] in two following theorems.

Lemma 2.3 ([10]) For any integer n ≥ 2, let A1, A2, . . . , An be positive invertible operators
in P such that m ≤ Ai ≤ M for all i = 1, 2, . . . , n and some scalars 0 < m ≤ M. Then

A[n, t]
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)A[n, t](A1, . . . , An)p for all p ≥ 1, (2.12)

where K(m, M, p) = (p–1)p–1

pp
(Mp–mp)p

(M–m)(mMp–Mmp)p–1 is the generalized Kantorovich constant.

Proof By Corollary 2.6 in [17],

�
(
Ap) ≤ K(m, M, p)�(A)p for all p ≥ 1.

Let the map � : B(H) ⊕ · · · ⊕B(H) �→ B(H) be defined as � in the proof of Theorem 2.1.
Then, for p ≥ 1,

A[n, t]
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)A[n, t](A1, . . . , An)p. �
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Theorem 2.3 For any integer n ≥ 2, let A1, A2, . . . , An be positive invertible operators in P

such that m ≤ Ai ≤ M for all i = 1, 2, . . . , n and some scalars 0 < m ≤ M. Then

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)

(m + M)2p

4pmpMp G[n, t](A1, . . . , An)p for all 1 < p ≤ 2

and

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)

(m + M)2p

16mpMp G[n, t](A1, . . . , An)p for all p ≥ 2.

Proof By the arithmetic–geometric mean inequality and (2.12), it follows that

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ A[n, t]

(
Ap

1, . . . , Ap
n
)

≤ K(m, M, p)A[n, t](A1, . . . , An)p for p ≥ 1. (2.13)

For p ∈ (1, 2], it follows from (2.7) and the Löewner–Heinz inequality that

A[n, t](A1, . . . , An)p ≤
(

(m + M)2

4mM

)p

G[n, t](A1, . . . , An)p.

Combining the inequalities above, we have

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)

(m + M)2p

4pmpMp G[n, t](A1, . . . , An)p.

For p ∈ [2,∞), from (2.4) and (2.13), we obtain

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)

(m + M)2p

16mpMp G[n, t](A1, . . . , An)p. �

In the following remark, we present the case of p ≥ 1 for the Ando–Li–Mathias geomet-
ric mean.

Remark 2.3 Let t = 1
2 in Theorem 2.3. Then

GALM
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)

(m + M)2p

4pmpMp GALM(A1, . . . , An)p for all 1 < p ≤ 2

and

GALM
(
Ap

1, . . . , Ap
n
) ≤ K(m, M, p)

(m + M)2p

16mpMp GALM(A1, . . . , An)p for all p ≥ 2.

Theorem 2.4 For any integer n ≥ 2, let A1, A2, . . . , An be positive invertible operators in P

such that m ≤ Ai ≤ M for all i = 1, 2, . . . , n and some scalars 0 < m ≤ M. Then

G[n, t]
(
Ap

1, . . . , Ap
n
) 1

p ≤ K
(

mq, Mq,
p
q

) 1
p
(

(mq + Mq)2

4mqMq

) 1
q

G[n, t]
(
Aq

1, . . . , Aq
n
) 1

q
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for all 1 < p
q ≤ 2 and p ≥ 1, and

G[n, t]
(
Ap

1, . . . , Ap
n
) 1

p ≤ 4– 2
p K

(
mq, Mq,

p
q

) 1
p
(

(mq + Mq)2

mqMq

) 1
q

G[n, t]
(
Aq

1, . . . , Aq
n
) 1

q

for all p
q ≥ 2 and p ≥ 1.

Proof For each 0 < q ≤ p, it follows from the arithmetic–geometric mean inequality (1.1)
and (2.12) that

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ A[n, t]

(
Ap

1, . . . , Ap
n
)

= A[n, t]
((

Aq
1
) p

q , . . . ,
(
Aq

n
) p

q
)

≤ K
(

mq, Mq,
p
q

)
A[n, t]

(
Aq

1, . . . , Aq
n
) p

q . (2.14)

On the other hand, for 1 < p
q ≤ 2, from (2.7) and mq ≤ Aq

i ≤ Mq, it follows that

A[n, t]
(
Aq

1, . . . , Aq
n
) p

q ≤
(

(mq + Mq)2

4mqMq

) p
q

G[n, t]
(
Aq

1, . . . , Aq
n
) p

q .

Combining the two inequalities above, we obtain

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ K

(
mq, Mq,

p
q

)(
(mq + Mq)2

4mqMq

) p
q

G[n, t]
(
Aq

1, . . . , Aq
n
) p

q .

By the Löewner–Heinz inequality and p ≥ 1, it follows that

G[n, t]
(
Ap

1, . . . , Ap
n
) 1

p ≤ K
(

mq, Mq,
p
q

) 1
p
(

(mq + Mq)2

4mqMq

) 1
q

G[n, t]
(
Aq

1, . . . , Aq
n
) 1

q .

Similarly, for all p
q ≥ 2, from (2.4) we have

A[n, t]
(
Aq

1, . . . , Aq
n
) p

q ≤ 4–2
(

(mq + Mq)2

mqMq

) p
q

G[n, t]
(
Aq

1, . . . , Aq
n
) p

q .

Combining with (2.14), we obtain

G[n, t]
(
Ap

1, . . . , Ap
n
) ≤ 4–2K

(
mq, Mq,

p
q

)(
(mq + Mq)2

mqMq

) p
q

G[n, t]
(
Aq

1, . . . , Aq
n
) p

q .

It follows from p ≥ 1 that

G[n, t]
(
Ap

1, . . . , Ap
n
) 1

p ≤ 4– 2
p K

(
mq, Mq,

p
q

) 1
p
(

(mq + Mq)2

mqMq

) 1
q

G[n, t]
(
Aq

1, . . . , Aq
n
) 1

q .

This completes the proof. �
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3 Comparisons between the weighted Karcher mean and the Lawson–Lim
geometric mean

In the final section, we make comparisons between the weighted Karcher mean and the
Lawson–Lim geometric mean for higher powers. This is a fascinating work because the
order relation can be preserved between higher-power operators by the Kantorovich con-
stant.

Lemma 3.1 ([8]) Let 0 < m ≤ A ≤ M and A ≤ B. Then

A2 ≤ (M + m)2

4Mm
B2.

Lemma 3.2 ([9]) Let A and B be positive invertible operators on a Hilbert space H satis-
fying B ≥ A > 0 and 0 < m ≤ A ≤ M. Then

K(m, M, p)Bp ≥ Ap

holds for any p ≥ 1, where K(m, M, p) is the generalized Kantorovich constant or the Ky
Fan–Furuta constant.

Theorem 3.1 For any positive integer n ≥ 2, let A1, A2, . . . , An be positive invertible op-
erators on a Hilbert space H such that m ≤ Ai ≤ M for i = 1, 2, . . . , n and some scalars
0 < m < M. Then

GK (ω, A1, . . . , An)p

≤ K(m, M, p)
(M + m)2p

4pMpmp G[n, t](A1, . . . , An)p for all 1 ≤ p ≤ 2 (3.1)

and

GK (ω, A1, . . . , An)p ≤ K(m, M, p)
(M + m)2p

16Mpmp G[n, t](A1, . . . , An)p for all p ≥ 2. (3.2)

Proof By the Löewner–Heinz inequality and (2.7), we have

A[n, t](A1, . . . , An)p ≤ (M + m)2p

4pMpmp G[n, t](A1, . . . , An)p for all 1 ≤ p ≤ 2. (3.3)

It follows from Lemma 3.2 and (3.3) that

GK (ω, A1, . . . , An)p ≤ K(m, M, p)A[n, t](A1, . . . , An)p

≤ K(m, M, p)
(M + m)2p

4pMpmp G[n, t](A1, . . . , An)p.

The inequality (3.2) follows from Lemma 3.2 and (2.4) that

GK (ω, A1, . . . , An)p ≤ K(m, M, p)A[n, t](A1, . . . , An)p

≤ K(m, M, p)
(M + m)2p

16Mpmp G[n, t](A1, . . . , An)p. �



Liao et al. Journal of Inequalities and Applications  (2018) 2018:229 Page 9 of 9

Remark 3.1 When p = 1, t = 1
2 , the inequality (3.1) reduces to the first inequality of Theo-

rem 5.1 in [7].
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6. Fujii, J.I., Fujii, M., Nakamura, M., Pečarić, J., Seo, Y.: A reverse inequality for the weighted geometric mean due to

Lawson–Lim. Linear Algebra Appl. 427, 272–284 (2007)
7. Fujii, J.I., Seo, Y.: On the Ando–Li–Mathias mean and the Karcher mean of positive definite matrices. Linear Multilinear

Algebra 63, 636–649 (2015)
8. Fujii, M., Izumino, S., Nakamoto, R., Seo, Y.: Operator inequalities related to Cauchy–Schwarz and Hölder–McCarthy

inequalities. Nihonkai Math. J. 8, 117–122 (1997)
9. Furuta, T.: Operator inequalities associated with Hölder–McCarthy and Kantorovich inequalities. J. Inequal. Appl. 2,

137–148 (1998)
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17. Mićić, J., Pečarić, J., Seo, Y.: Complementary inequalities to inequalities of Jensen and Ando based on the
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