- Research
- Open Access
- Published:
Uniformly asymptotic normality of sample quantiles estimator for linearly negative quadrant dependent samples
Journal of Inequalities and Applications volume 2018, Article number: 196 (2018)
Abstract
In the present article, by utilizing some inequalities for linearly negative quadrant dependent random variables, we discuss the uniformly asymptotic normality of sample quantiles for linearly negative quadrant dependent samples under mild conditions. The rate of uniform asymptotic normality is presented and the rate of convergence is near \(O(n^{-1/4} \log n)\) when the third moment is finite, which extends and improves the corresponding results of Yang et al. (J. Inequal. Appl. 2011:83, 2011) and Liu et al. (J. Inequal. Appl. 2014:79, 2014) under negatively associated random samples in some sense.
1 Introduction
We first recall the definition of negative (NA, for short), negative quadrant dependent (NQD, for short), and linearly negative quadrant dependent (LNQD, for short) sequences.
Definition 1.1
(Joag-Dev and Proschan [3])
Random variables \(\{X_{i}\}_{1\leq i\leq n}\) are said to be NA if, for every pair of disjoint subsets \(A,B\subset \{1,2,\ldots,n\}\),
where f and g are real coordinate-wise nondecreasing functions provided the covariance exists. An infinite sequence of random variables \(\{X_{n}\}_{n\geq 1}\) is said to be NA if, for every \(n\geq 2\), \(X_{1},X_{2},\ldots, X_{n}\) are NA.
Definition 1.2
(Lehmann [4])
Two random variables X, Y are said to be NQD if, for any \(x,y\in \mathbb{R}\),
A sequence \(\{X_{n}\}_{n\geq 1}\) of random variables is said to be pairwise negative quadrant dependent (PNQD, for short) if every pair of random variables in the sequence is NQD.
Definition 1.3
(Newman [5])
A sequence of random variables \(\{X_{i}\}_{1\leq i\leq n}\) is said to be LNQD if, for every pair disjoint subsets \(A, B\subset Z^{+}\) and positive \(l_{j}'s\), \(\sum_{i\in A}l_{i}X_{i}\) and \(\sum_{j\in B}l_{j}X_{j}\) are NQD.
Remark 1.1
It easily follows that if \(\{X_{n}\}_{n\geq 1}\) is a sequence of LNQD random variables, then \(\{aX_{n}+b \}_{n\geq 1}\) is still a sequence of LNQD, where a and b are real numbers. Furthermore, NA implies LNQD and PNQD from the above definitions, LNQD random variables are PNQD random variables, but neither reverse is true.
The concept of LNQD sequence was introduced by Newman [5], and subsequently it has been studied by many authors. For instance, Newman investigated the central limit theorem for a strictly stationary LNQD process. Zhang [6] discussed the uniform rates of convergence in the central limit theorem for a LNQD sequence. Wang et al. [7] established the exponential inequalities and complete convergence for a LNQD sequence. Li et al. [8] obtained some inequalities and gave some applications for a nonparametric regression model.
Let \(\{X_{n}\}_{n\geq 1}\) be a sequence of random variables defined on \((\Omega,\mathfrak{F}, P)\) with a common marginal distribution function \(F(x)=P(X_{1}\leq x)\), where F is a right-continuous distribution function. For \(p\in (0,1)\), let
denote the pth quantile of F, and it is alternately denoted by \(F^{-1}(p)\). \(F^{-1}(u)\), \(0< u<1\), is called the inverse function of F. An estimator of the population quantile \(F^{-1}(p)\) is given by the sample pth quantile
where \(F_{n}(x)=\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\leq x)\), \(x\in \mathbb{R} \) denotes the empirical distribution function based on the sample \(X_{1},X_{2},\ldots,X_{n}\), \(n\geq 1\), \(I(A)\) denotes the indicator function of a set A and \(\mathbb{R} \) is the real line.
For a fixed \(p\in (0,1)\), denote \(\xi_{p}=F^{-1}(p)\), \(\xi_{p,n}=F_{n} ^{-1}(p)\) and \(\Phi (u)\) represents the distribution function of \(N(0,1)\). Liu et al. [2] presented the Berry–Esséen bound of the sample quantiles for a NA sequence as follows.
Theorem A
Let \(p\in (0,1)\) and \(\{X_{n}\}_{n\geq 1}\) be a second-order stationary NA sequence with a common marginal distribution function F and \(EX_{n}=0\), \(n\geq 1\). Assume that in a neighborhood of \(\xi_{p}\), F possesses a positive continuous density f and a bounded second derivative \(F''\). Let \(n_{0}\) be some positive integer. Suppose that there exists \(\varepsilon_{0}>0\) such that, for \(x\in [\xi_{p}-\varepsilon_{0}, \xi_{p}+\varepsilon_{0}]\),
and
Then
For the work on Berry–Esséen bounds of sample quantiles, one can refer to many literature works such as Petrov [9], Shiryaev [10]. The optimal rate is \(O(n^{-1/2})\) under the i.i.d. random variables, for the case of martingales, the rate is \(O(n^{-1/4}\log n)\) [see [11], Chap. 3]. Recently, Lahiri and Sun [12] obtained the Berry–Esséen bound of the sample quantiles for an α-mixing sequence. Yang et al. [1, 13, 14] investigated the Berry–Esséen bound of the sample quantiles for a NA random sequence and a ϕ-mixing sequence, respectively, the convergence rate is \(O(n^{-1/6}\log n\log \log n)\). Considering other papers about Berry–Esséen bound, Cai and Roussas [15] studied the Berry–Esséen bound for the smooth estimator of a function under association sample. Yang [16–18] investigated uniformly asymptotic normality of the regression weighted estimator for NA, PA, and strong mixing samples, respectively. Liang et al. [19] obtained the Berry–Esséen bound in kernel density estimation for an α-mixing censored sample. Under associated samples, Li et al. [20] studied the consistency and uniformly asymptotic normality of wavelet estimator in a regression model.
However, there are very few literature works on uniformly asymptotic normality of sample quantiles for a LNQD sequence which is weaker than a NA sequence. By using some inequalities for LNQD random variables, we investigate the uniformly asymptotic normality of the sample quantiles for a LNQD sequence under mild conditions and obtain the rate of normal approximation, the rate of convergence is near \(O(n^{-1/4}\log n)\) provided the third moment is finite, which extends and improves the corresponding results of Liu et al. [2] and Yang et al. [1] in some sense.
The structure of the rest is as follows. In Sect. 2, we give some basic assumptions and the main results. In Sect. 3, proofs of the main results are provided. In the Appendix, some preliminary lemmas are stated. Throughout the paper, \(C, C_{1}, C_{2}, \ldots \) denote some positive constants not depending on n, which may be different in various places. \(\lfloor x\rfloor \) denotes the largest integer not exceeding x and second-order stationary means that \((X_{1},X_{1+k}) \stackrel{d}{=}(X_{i},X_{i+k})\), \(i\geq 1\), \(k\geq 1\).
2 Assumptions and main results
In order to formulate our main results, we now list some assumptions as follows.
Assumption (A1)
(i) \(\{X_{n}\}_{n\geq 1}\) is a second-order stationary LNQD sequence with common marginal distribution function F. For \(p\in (0,1)\), F possesses a positive continuous density f and a bounded second derivative \(F''\) in a neighborhood of \(\xi_{p}\).
(ii) \(\{X_{n}\}_{n\geq 1}\) is a stationary LNQD sequence with zero mean and finite second moment, \(\sup_{j\geq 1}EX_{j}^{2}<\infty \).
Assumption (A2)
There exists some \(\beta >1\) such that
for all \(0< b_{n}\rightarrow \infty \), as \(n\rightarrow \infty \).
Assumption (A3)
There exist an integer \(n_{0}>0\) and some \(\varepsilon_{0}>0\) such that, for \(x\in [\xi_{p}-\varepsilon_{0},\xi _{p}+\varepsilon_{0}]\),
Assumption (A4)
Assumption (A5)
There exist positive integers \(p:=p_{n}\) and \(q:=q_{n}\) such that, for sufficiently large n,
and let \(k:=k_{n}=\lfloor n/(p+q)\rfloor \), as \(n\rightarrow \infty \),
Assumption (A6)
There exist an integer \(n_{0}>0\) and some \(\varepsilon_{0}>0\) such that, for \(x\in [\xi_{p}-\varepsilon_{0},\xi _{p}+\varepsilon_{0}]\),
Remark 2.1
Assumptions (A2) and (A5) are used commonly in the literature. For example, Liu [2], Yang [1, 13, 14], Yang [16], Liang [19], and Li [20] used (A5), (A2) and (A4) were used by Liu [2] and Yang [1, 13, 14], (A3) and (A6) were assumed in Liu [2]. Assumption (A5) is easily satisfied, for example, choosing \(p=\lfloor n^{2/3}\rfloor \), \(q= \lfloor n^{1/3}\rfloor \), \(k=\lfloor \frac{n}{p+q}\rfloor =\lfloor n ^{1/3}\rfloor \). It easily follows that \(pk/n\rightarrow 1\) implies \(qk/n\rightarrow 0\), as \(n\rightarrow \infty \).
Our main results are as follows.
Theorem 2.1
Suppose that Assumptions (A1)(ii), (A2), (A4), and (A5) are satisfied. If \(|X_{n}|\leq d<\infty \) for \(n=1,2,\ldots \) , then
where \(a_{n}=(\gamma_{1n}^{1/2}+\gamma_{2n}^{1/2})\log n+\gamma_{2n} ^{(r-2)/2}+n^{-1}+u^{1/3}(q)\rightarrow 0\), as \(n\rightarrow \infty \), and \(r>2\).
Corollary 2.1
Suppose all the assumptions of Theorem 2.1 are fulfilled. If \(u(n)=O(n^{-3/2})\), \(r=3\), then
Remark 2.2
We obtain that the rate of normal approximation is \(O(n^{-1/6}\log n)\) under a LNQD sequence, which extends the result of Lemma 3.2 in Liu [2] and Lemma 2.1 in Yang [1] in some sense.
Corollary 2.2
Suppose all the assumptions of Theorem 2.1 are satisfied. If \(u(n)= [4]O(n^{-3(1-\delta )/2(2\delta -1)})\), \(1/2<\delta \leq 2/3\), \(r=3 \), then
Remark 2.3
The rate of convergence is near \(O(n^{-1/4}\log n)\) as \(\delta \rightarrow 1/2\) by Corollary 2.2.
Theorem 2.2
Let \(\{X_{n}\}_{n\geq 1}\) be a second-order stationary LNQD sequence with a common marginal distribution function F and \(EX_{n}=0\), \(|X_{n}|\leq d<\infty \), \(n\geq 1\). Assumptions (A5), (A6) are satisfied and if
then
where \(a_{n}\) is the same as (2.7).
Similar to Corollary 2.2, for \(r=3\), it follows that the rate of convergence about (2.8) is near \(O(n^{-1/4}\log n)\) as \(\delta \rightarrow 1/2\).
Theorem 2.3
Let Assumptions (A1)(i), (A3), (A5) and condition (1.2) be satisfied. If \(\sup_{n\geq 1}E|X_{n}|^{r}<\infty \) for some \(r>2\), then
where \(a_{n}\) is the same as (2.7).
Remark 2.4
If the third moment is finite, by taking \(\beta =3/2\), \(p=\lfloor n^{{2}/{3}}\rfloor \), \(q=\lfloor n^{1/3}\rfloor \), we obtain that the rate of normal approximation is \(O(n^{-1/6}\log n)\) under a LNQD sequence, which extends the result of Theorem 2.1 in Liu [2] and Theorem 1.1 in Yang [1] in some sense.
Corollary 2.3
Suppose all the assumptions of Theorem 2.3 are satisfied. If \(u(n)= [4]O(n^{-3(1-\delta )/2(2\delta -1)})\), \(1/2<\delta \leq 2/3\), \(r=3\), then
Remark 2.5
When the third moment is finite, the rate of convergence is near \(O(n^{-1/4}\log n)\) as \(\delta \rightarrow 1/2\) by Corollary 2.3, when \(\delta =2/3\), the rate of convergence is near \(O(n^{-1/6}\log n)\).
3 Proof of the main results
Proof of Theorem 2.1
We employ Bernstein’s big-block and small-block procedure and partition the set \(\{1,2,\ldots, n\}\) into \(2k_{n}+1\) subsets with large block of size \(p=p_{n}\) and small block of size \(q=q_{n}\), and let \(k=k_{n}:=\lfloor \frac{n}{p_{n}+q_{n}} \rfloor \). Define \(Z_{n,i}=X_{i}/\sqrt{ \operatorname{Var}(\sum_{i=1}^{n} X_{i})}\), then \(S_{n}\) may be split as
where \(S_{n1}=\sum_{j=1}^{k} \eta_{j}\), \(S_{n2}=\sum_{j=1}^{k} \xi_{j}\), \(S _{n3}= \zeta_{k}\), and \(\eta_{j}=\sum_{i=k_{j}}^{k_{j}+p-1} Z_{n,i}\), \(\xi_{j}=\sum_{i=l_{j}}^{l_{j}+q-1} Z_{n,i}\), \(\zeta_{k}=\sum_{i=k(p+q)+1} ^{n} Z_{n,i}\), \(k_{j}=(j-1)(p+q)+1\), \(l_{j}=(j-1)(p+q)+p+1\), \(j=1,2,\ldots,k\).
By Lemma A.1 with \(a=\varepsilon_{1}+\varepsilon_{2}\), we have
Firstly, we estimate \(E(S_{n2})^{2}\) and \(E(S_{n3})^{2}\). By the condition \(|X_{i}|\leq d\) and Assumption (A4), it is easy to find that \(|Z_{n,i}|\leq C_{1}n^{-1/2}\), \(|\xi _{j}|\leq C_{1}qn^{-1/2}\), \(E\xi _{j}^{2}\leq C_{2}qn^{-1}\), \(j=1,2,\ldots,n\). Combining the definition of LNQD with the definition of \(\xi_{j}\), \(j=1,2,\ldots,k\), we can easily prove that \(\{\xi_{i}\} _{1\leq i\leq k}\) is LNQD. It follows from Lemma A.2 that
By (3.2), (3.3) and Lemma A.3, choosing \(\varepsilon_{1}=M\gamma_{1n} ^{1/2}(\log n)\), \(\varepsilon_{2}= M\gamma_{2n}^{1/2}(\log n)\) and noting that \(pq\leq n\), for large enough M, n, we have
Secondly, we estimate \(\sup_{-\infty < t<\infty }|P(S_{n1} \leq t)-\Phi (t)|\). Define
Clearly \(s_{n}^{2}=E(S_{n1})^{2}-2\Gamma_{n}\), and since \(ES_{n}^{2}=1\), by (3.2) and (3.3) we get that
On the other hand, by Assumptions (A1)(ii), (A4), and (A5),
From (3.6) and (3.7), it follows that
We assume that \(\eta '_{j}\) are the independent random variables and \(\eta '_{j}\) have the same distribution as \(\eta_{j}\), \(j=1,2,\ldots,k\). Let \(H_{n}:=\sum_{j=1}^{k}\eta '_{j}\). It is easily seen that
Let \(\phi (t)\) and \(\varphi (t)\) be the characteristic functions of \(S_{n1}\) and \(H_{n}\), respectively. Thus, applying the Esséen inequality(see [9],Theorem 5.3), for any \(T>0\),
By Assumption (A1)(ii) and Lemma A.4, we have that
Therefore
It follows from the Berry–Esséen inequality [[9], Theorem 5.7] and Lemma A.2, for \(r>2\),
Notice that \(s_{n}\rightarrow 1\), as \(n\rightarrow \infty \) by (3.8). From (3.10), we get that
which implies that
By (3.12), we obtain
Combining (3.9) with (3.13) and choosing \(T=u^{-1/3}(q)\), we can easily see that
and by (3.11),
On the other hand, from (3.8) and Lemma 5.2 in [9], it follows that
Consequently, combining (3.14), (3.15) with (3.16), we can get
Finally, by (3.1), (3.4), (3.5), and (3.17), (2.7) is verified. □
Proof of Corollary 2.1
We obtain it by choosing \(p=\lfloor n ^{{2}/{3}}\rfloor\), \(q=\lfloor n^{1/3}\rfloor \) in Theorem 2.1. □
Proof of Corollary 2.2
We obtain it by choosing \(p=\lfloor n ^{\delta }\rfloor\), \(q=\lfloor n^{2\delta -1}\rfloor \) in Theorem 2.1. □
Proof of Theorem 2.2
Define \(\sigma_{n}^{2}:= \operatorname{Var}(\sum_{i=1}^{n} X_{i})\) and \(\gamma (k)= \operatorname{Cov}(X_{i},X_{i+k})\) for \(i=1,2,\ldots \) , according to (2.6), for some \(\beta >1\), it is checked that
therefore Assumption (A2) holds true. For the second-order stationary process \(\{X_{n}\}_{n\geq 1}\) with a common marginal distribution function, by (2.6), it follows that
On the other hand,
By (3.19), it is easy to see that \(\lim_{n\rightarrow \infty }\frac{ \sigma_{n}^{2}}{n\sigma^{2}_{0}}=1\). Thus, applying Theorem 2.1, one has
and according to (3.19) again, similar to the proof of (3.16), we obtain that
Combining (3.20), (3.21) with (3.22), (2.8) holds true. □
Proof of Theorem 2.3
By taking the same notation as that in the proof of Theorem 1.1 in Yang et al. [1], denote \(A=\sigma (\xi_{p})/f( \xi_{p})\) and
Similar to the proof of (3.7) in Yang et al. [1], for \(\beta >1\), we obtain that
On the other hand, seeing the proof of (3.9) in Yang et al. [1], by Theorem 2.2, it follows that
Therefore, (2.9) follows the same steps as those in the proof of Theorem 1.1 of Yang et al. [1]. □
Proof of Corollary 2.3
We obtain it by choosing \(p=\lfloor n ^{\delta }\rfloor\), \(q=\lfloor n^{2\delta -1}\rfloor \) in Theorem 2.3. □
References
Yang, W.Z., Hu, S.H., Wang, X.J., Zhang, Q.C.: Berry–Esséen bound of sample quantiles for negatively associated sequence. J. Inequal. Appl. 2011, 83 (2011)
Liu, T.T., Zhang, Z.M., Hu, S.H., Yang, W.Z.: The Berry–Esséen bound of sample quantiles for NA sequence. J. Inequal. Appl. 2014, Article ID 79 (2014)
Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11(1), 286–295 (1983)
Lehmann, E.L.: Some concepts of dependence. Ann. Math. Stat. 37, 1137–1153 (1996)
Newman, C.M.: Asymptotic independent and limit theorems for positively and negatively dependent random variables. In: Tong, Y.L. (ed.) Stat. Probab., vol. 5, pp. 127–140. Inst. Math. Statist., Hayward (1984)
Zhang, L.X.: A function central limit theorem for asymptotically negatively dependent random fields. Acta Math. Hung. 86, 237–259 (2000)
Wang, X.J., Hu, S.H., Yang, W.Z., Li, X.Q.: Exponential inequalities and complete convergence for a LNQD sequence. J. Korean Stat. Soc. 39, 555–564 (2010)
Li, Y.M., Guo, J.H., Li, N.Y.: Some inequalities for a LNQD sequence with applications. J. Inequal. Appl. 2011, Article ID 216 (2011)
Petrov, V.V.: Limit Theorem of Probability Theory: Sequences of Independent Random Variables. Oxford University Press, New York (1995)
Shiryaev, A.N.: Probability, 2nd edn. Springer, New York (1989)
Hall, P.: Martingale Limit Theory and Its Application. Academic Press, New York (1980)
Lahiri, S.N., Sun, S.: A Berry–Esséen theorem for samples quantiles under weak dependence. Ann. Appl. Probab. 19(1), 108–126 (2009)
Yang, W.Z., Hu, S.H., Wang, X.J., Ling, N.X.: The Berry–Esséen type bound of sample quantiles for strong mixing sequence. J. Stat. Plan. Inference 142(3), 660–672 (2012)
Yang, W.Z., Wang, X.J., Li, X.Q., Hu, S.H.: Berry–Esséen bound of sample quantiles for φ-mixing random variables. J. Math. Anal. 388(1), 451–462 (2012)
Cai, Z.W., Roussas, G.G.: Berry–Esséen bounds for smooth estimator of a function under association. J. Nonparametr. Stat. 10, 79–106 (1999)
Yang, S.C.: Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples. Stat. Probab. Lett. 62(2), 101–110 (2003)
Yang, S.C.: Uniform asymptotic normality of the regression weighted estimator for positively associated samples. Chinese J. Appl. Probab. Statist. 21(2), 150–160 (2003)
Yang, S.C.: Uniform asymptotic normality of the regression weighted estimator for strong mixing samples. Acta Math. Sin. 49A(5), 1163–1170 (2006)
Liang, H.Y., De Uña-Álvarez, J.: A Berry–Esséen type bound in kernel density estimation for strong mixing censored samples. J. Multivar. Anal. 100, 1219–1231 (2009)
Li, Y.M., Yang, S.C., Zhou, Y.: Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples. Stat. Probab. Lett. 78, 2947–2956 (2008)
Acknowledgements
The authors are most grateful to the editor and an anonymous referee for the careful reading of the manuscript and valuable suggestions which helped in significantly improving an earlier version of this paper.
Funding
This research was supported in part by the NNSF of China (No.11626031) and the Natural Science Foundation of Anhui Province Ministry of Education (KJ2016A428) and the Fundamental Research Funds for the Central Universities (No. 2232016D3-17).
Author information
Authors and Affiliations
Contributions
The four authors contributed to this work. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Lemma A.1
(cf. Yang [16])
Let X and Y be random variables, then for any \(a>0\),
Lemma A.2
(cf. Li [8])
Let \(\{X_{j}\}_{j\geq 1}\) be a LNQD random variable sequence with zero mean and finite second moment, \(\sup_{j \geq 1}EX^{2}_{j}<\infty \). Assume that \(\{a_{j}\}_{j\geq 1}\) is a real constant sequence, \(a:=\sup_{j}|a_{j}|<\infty \). Then, for any \(r>1\), there is a constant C not depending on n such that
Lemma A.3
(cf. Wang [7])
Let \(\{X_{n}\}_{n\geq 1}\) be a sequence of LNQD random variables with \(EX_{n}=0\), \(|X_{n}|\leq d\), a.s. for \(n=1,2,\ldots \) . Denote \(\vartriangle_{n}=\sum_{i=1}^{n}EX_{i} ^{2}\). Then, for \(\varepsilon >0\) and \(n\geq 1\),
Lemma A.4
(cf. Li [8])
If \(X_{1},\ldots, X_{m}\) are LNQD random variables with finite second moments, let \(\varphi_{j}(t_{j})\) and \(\varphi (t_{1},\ldots, t_{m})\) be c.f.’s of \(X_{j}\) and \((X_{1}, \ldots, X_{m})\), respectively, then for all nonnegative(or non positive) real numbers \(t_{1},\ldots, t_{m}\),
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Hu, X., Jiang, R., Yu, K. et al. Uniformly asymptotic normality of sample quantiles estimator for linearly negative quadrant dependent samples. J Inequal Appl 2018, 196 (2018). https://doi.org/10.1186/s13660-018-1788-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1788-6
MSC
- 62F12
- 62E20
- 60F05
Keywords
- Sample quantile
- Asymptotic normality
- Linearly negative quadrant dependent sequence