
Hu et al. Journal of Inequalities and Applications  (2018) 2018:196 
https://doi.org/10.1186/s13660-018-1788-6

R E S E A R C H Open Access

Uniformly asymptotic normality of sample
quantiles estimator for linearly negative
quadrant dependent samples
Xueping Hu1,2 , Rong Jiang2,3, Keming Yu2* and Tong Zhang1

*Correspondence:
Keming.Yu@brunel.ac.uk
2Department of Mathematics,
Brunel University, Uxbridge, UK
Full list of author information is
available at the end of the article

Abstract
In the present article, by utilizing some inequalities for linearly negative quadrant
dependent random variables, we discuss the uniformly asymptotic normality of
sample quantiles for linearly negative quadrant dependent samples under mild
conditions. The rate of uniform asymptotic normality is presented and the rate of
convergence is near O(n–1/4 logn) when the third moment is finite, which extends
and improves the corresponding results of Yang et al. (J. Inequal. Appl. 2011:83, 2011)
and Liu et al. (J. Inequal. Appl. 2014:79, 2014) under negatively associated random
samples in some sense.
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1 Introduction
We first recall the definition of negative (NA, for short), negative quadrant dependent
(NQD, for short), and linearly negative quadrant dependent (LNQD, for short) sequences.

Definition 1.1 (Joag-Dev and Proschan [3]) Random variables {Xi}1≤i≤n are said to be NA
if, for every pair of disjoint subsets A, B ⊂ {1, 2, . . . , n},

Cov
(
f (Xi, i ∈ A), g(Xj, j ∈ B)

) ≤ 0,

where f and g are real coordinate-wise nondecreasing functions provided the covariance
exists. An infinite sequence of random variables {Xn}n≥1 is said to be NA if, for every n ≥ 2,
X1, X2, . . . , Xn are NA.

Definition 1.2 (Lehmann [4]) Two random variables X, Y are said to be NQD if, for any
x, y ∈R,

P(X < x, Y < y) ≤ P(X < x)P(Y < y).

A sequence {Xn}n≥1 of random variables is said to be pairwise negative quadrant depen-
dent (PNQD, for short) if every pair of random variables in the sequence is NQD.
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Definition 1.3 (Newman [5]) A sequence of random variables {Xi}1≤i≤n is said to be
LNQD if, for every pair disjoint subsets A, B ⊂ Z+ and positive l′js,

∑
i∈A liXi and

∑
j∈B ljXj

are NQD.

Remark 1.1 It easily follows that if {Xn}n≥1 is a sequence of LNQD random variables, then
{aXn + b}n≥1 is still a sequence of LNQD, where a and b are real numbers. Furthermore,
NA implies LNQD and PNQD from the above definitions, LNQD random variables are
PNQD random variables, but neither reverse is true.

The concept of LNQD sequence was introduced by Newman [5], and subsequently it
has been studied by many authors. For instance, Newman investigated the central limit
theorem for a strictly stationary LNQD process. Zhang [6] discussed the uniform rates of
convergence in the central limit theorem for a LNQD sequence. Wang et al. [7] established
the exponential inequalities and complete convergence for a LNQD sequence. Li et al. [8]
obtained some inequalities and gave some applications for a nonparametric regression
model.

Let {Xn}n≥1 be a sequence of random variables defined on (�,F, P) with a common
marginal distribution function F(x) = P(X1 ≤ x), where F is a right-continuous distribu-
tion function. For p ∈ (0, 1), let

ξp = inf
{

x : F(x) ≥ p
}

denote the pth quantile of F , and it is alternately denoted by F–1(p). F–1(u), 0 < u < 1, is
called the inverse function of F . An estimator of the population quantile F–1(p) is given
by the sample pth quantile

F–1
n (p) = inf

{
x : Fn(x) ≥ p

}
,

where Fn(x) = 1
n
∑n

i=1 I(Xi ≤ x), x ∈ R denotes the empirical distribution function based
on the sample X1, X2, . . . , Xn, n ≥ 1, I(A) denotes the indicator function of a set A and R is
the real line.

For a fixed p ∈ (0, 1), denote ξp = F–1(p), ξp,n = F–1
n (p) and �(u) represents the distribu-

tion function of N(0, 1). Liu et al. [2] presented the Berry–Esséen bound of the sample
quantiles for a NA sequence as follows.

Theorem A Let p ∈ (0, 1) and {Xn}n≥1 be a second-order stationary NA sequence with a
common marginal distribution function F and EXn = 0, n ≥ 1. Assume that in a neigh-
borhood of ξp, F possesses a positive continuous density f and a bounded second deriva-
tive F ′′. Let n0 be some positive integer. Suppose that there exists ε0 > 0 such that, for
x ∈ [ξp – ε0, ξp + ε0],

∣∣Cov
[
I(X1 ≤ x), I(Xj ≤ x)

]∣∣ ≤ Cj–5/2, j ≥ n0, (1.1)

and

Var
[
I(X1 ≤ ξp)

]
+ 2

∞∑

j=2

Cov
[
I(X1 ≤ ξp), I(Xj ≤ ξp)

]
:= σ 2(ξp) > 0. (1.2)
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Then

sup
–∞<x<∞

∣
∣∣
∣P

(
n1/2(ξp,n – ξp)
σ (ξp)/f (ξp)

≤ x
)

– �(x)
∣
∣∣
∣ = O

(
n–1/6 log n

)
, n → ∞. (1.3)

For the work on Berry–Esséen bounds of sample quantiles, one can refer to many liter-
ature works such as Petrov [9], Shiryaev [10]. The optimal rate is O(n–1/2) under the i.i.d.
random variables, for the case of martingales, the rate is O(n–1/4 log n) [see [11], Chap. 3].
Recently, Lahiri and Sun [12] obtained the Berry–Esséen bound of the sample quantiles for
an α-mixing sequence. Yang et al. [1, 13, 14] investigated the Berry–Esséen bound of the
sample quantiles for a NA random sequence and a φ-mixing sequence, respectively, the
convergence rate is O(n–1/6 log n log log n). Considering other papers about Berry–Esséen
bound, Cai and Roussas [15] studied the Berry–Esséen bound for the smooth estimator
of a function under association sample. Yang [16–18] investigated uniformly asymptotic
normality of the regression weighted estimator for NA, PA, and strong mixing samples,
respectively. Liang et al. [19] obtained the Berry–Esséen bound in kernel density estima-
tion for an α-mixing censored sample. Under associated samples, Li et al. [20] studied
the consistency and uniformly asymptotic normality of wavelet estimator in a regression
model.

However, there are very few literature works on uniformly asymptotic normality of sam-
ple quantiles for a LNQD sequence which is weaker than a NA sequence. By using some
inequalities for LNQD random variables, we investigate the uniformly asymptotic nor-
mality of the sample quantiles for a LNQD sequence under mild conditions and obtain
the rate of normal approximation, the rate of convergence is near O(n–1/4 log n) provided
the third moment is finite, which extends and improves the corresponding results of Liu
et al. [2] and Yang et al. [1] in some sense.

The structure of the rest is as follows. In Sect. 2, we give some basic assumptions and the
main results. In Sect. 3, proofs of the main results are provided. In the Appendix, some pre-
liminary lemmas are stated. Throughout the paper, C, C1, C2, . . . denote some positive con-
stants not depending on n, which may be different in various places. 	x
 denotes the largest
integer not exceeding x and second-order stationary means that (X1, X1+k) d= (Xi, Xi+k),
i ≥ 1, k ≥ 1.

2 Assumptions and main results
In order to formulate our main results, we now list some assumptions as follows.

Assumption (A1) (i) {Xn}n≥1 is a second-order stationary LNQD sequence with common
marginal distribution function F . For p ∈ (0, 1), F possesses a positive continuous density
f and a bounded second derivative F ′′ in a neighborhood of ξp.

(ii) {Xn}n≥1 is a stationary LNQD sequence with zero mean and finite second moment,
supj≥1 EX2

j < ∞.

Assumption (A2) There exists some β > 1 such that

u(bn) :=
∞∑

j=bn

∣
∣Cov(X1, Xj)

∣
∣ = O

(
b–β

n
)

(2.1)

for all 0 < bn → ∞, as n → ∞.
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Assumption (A3) There exist an integer n0 > 0 and some ε0 > 0 such that, for x ∈ [ξp –
ε0, ξp + ε0],

∣∣Cov
[
I(X1 ≤ x), I(Xj ≤ x)

]∣∣ ≤ Cj–β–1, j ≥ n0,β > 1. (2.2)

Assumption (A4)

lim inf
n→∞ n–1 Var

( n∑

i=1

Xi

)

= σ 2
1 > 0. (2.3)

Assumption (A5) There exist positive integers p := pn and q := qn such that, for suffi-
ciently large n,

p + q ≤ n, pq ≤ n, qp–1 ≤ C < ∞, (2.4)

and let k := kn = 	n/(p + q)
, as n → ∞,

γ1n = qp–1 → 0, γ2n = pn–1 → 0, kp/n → 1. (2.5)

Assumption (A6) There exist an integer n0 > 0 and some ε0 > 0 such that, for x ∈ [ξp –
ε0, ξp + ε0],

∣∣Cov(X1, Xj)
∣∣ ≤ Cj–β–1, j ≥ n0,β > 1. (2.6)

Remark 2.1 Assumptions (A2) and (A5) are used commonly in the literature. For exam-
ple, Liu [2], Yang [1, 13, 14], Yang [16], Liang [19], and Li [20] used (A5), (A2) and (A4)
were used by Liu [2] and Yang [1, 13, 14], (A3) and (A6) were assumed in Liu [2]. Assump-
tion (A5) is easily satisfied, for example, choosing p = 	n2/3
, q = 	n1/3
, k = 	 n

p+q 
 = 	n1/3
.
It easily follows that pk/n → 1 implies qk/n → 0, as n → ∞.

Our main results are as follows.

Theorem 2.1 Suppose that Assumptions (A1)(ii), (A2), (A4), and (A5) are satisfied. If
|Xn| ≤ d < ∞ for n = 1, 2, . . . , then

sup
–∞<x<∞

∣
∣∣
∣P

( ∑n
i=1 Xi√

Var(
∑n

i=1 Xi)
≤ x

)
– �(x)

∣
∣∣
∣ ≤ C(an), (2.7)

where an = (γ 1/2
1n + γ 1/2

2n ) log n + γ
(r–2)/2
2n + n–1 + u1/3(q) → 0, as n → ∞, and r > 2.

Corollary 2.1 Suppose all the assumptions of Theorem 2.1 are fulfilled. If u(n) = O(n–3/2),
r = 3, then

sup
–∞<x<∞

∣
∣∣∣P

( ∑n
i=1 Xi√

Var(
∑n

i=1 Xi)
≤ x

)
– �(x)

∣
∣∣∣ = O

(
n–1/6 log n

)
.
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Remark 2.2 We obtain that the rate of normal approximation is O(n–1/6 log n) under a
LNQD sequence, which extends the result of Lemma 3.2 in Liu [2] and Lemma 2.1 in
Yang [1] in some sense.

Corollary 2.2 Suppose all the assumptions of Theorem 2.1 are satisfied. If u(n) =
O(n–3(1–δ)/2(2δ–1)), 1/2 < δ ≤ 2/3, r = 3, then

sup
–∞<x<∞

∣∣
∣∣P

( ∑n
i=1 Xi√

Var(
∑n

i=1 Xi)
≤ x

)
– �(x)

∣∣
∣∣ = O

(
n–(1–δ)/2 log n

)
.

Remark 2.3 The rate of convergence is near O(n–1/4 log n) as δ → 1/2 by Corollary 2.2.

Theorem 2.2 Let {Xn}n≥1 be a second-order stationary LNQD sequence with a common
marginal distribution function F and EXn = 0, |Xn| ≤ d < ∞, n ≥ 1. Assumptions (A5),
(A6) are satisfied and if

Var(X1) + 2
∞∑

j=2

Cov(X1, Xj) := σ 2
0 > 0,

then

sup
–∞<x<∞

∣∣
∣∣P

(∑n
i=1 Xi√
nσ0

≤ x
)

– �(x)
∣∣
∣∣ ≤ C(an), (2.8)

where an is the same as (2.7).

Similar to Corollary 2.2, for r = 3, it follows that the rate of convergence about (2.8) is
near O(n–1/4 log n) as δ → 1/2.

Theorem 2.3 Let Assumptions (A1)(i), (A3), (A5) and condition (1.2) be satisfied. If
supn≥1 E|Xn|r < ∞ for some r > 2, then

sup
–∞<x<∞

∣
∣∣
∣P

(
n1/2(ξp,n – ξp)
σ (ξp)/f (ξp)

≤ x
)

– �(x)
∣
∣∣
∣ ≤ C(an), (2.9)

where an is the same as (2.7).

Remark 2.4 If the third moment is finite, by taking β = 3/2, p = 	n2/3
, q = 	n1/3
, we obtain
that the rate of normal approximation is O(n–1/6 log n) under a LNQD sequence, which
extends the result of Theorem 2.1 in Liu [2] and Theorem 1.1 in Yang [1] in some sense.

Corollary 2.3 Suppose all the assumptions of Theorem 2.3 are satisfied. If u(n) =
O(n–3(1–δ)/2(2δ–1)), 1/2 < δ ≤ 2/3, r = 3, then

sup
–∞<x<∞

∣
∣∣
∣P

(
n1/2(ξp,n – ξp)
σ (ξp)/f (ξp)

≤ x
)

– �(x)
∣
∣∣
∣ = O

(
n–(1–δ)/2 log n

)
.

Remark 2.5 When the third moment is finite, the rate of convergence is near O(n–1/4 log n)
as δ → 1/2 by Corollary 2.3, when δ = 2/3, the rate of convergence is near O(n–1/6 log n).
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3 Proof of the main results

Proof of Theorem 2.1 We employ Bernstein’s big-block and small-block procedure and
partition the set {1, 2, . . . , n} into 2kn + 1 subsets with large block of size p = pn and small
block of size q = qn, and let k = kn := 	 n

pn+qn

. Define Zn,i = Xi/

√
Var(

∑n
i=1 Xi), then Sn may

be split as

Sn :=
∑n

i=1 Xi√
Var(

∑n
i=1 Xi)

=
n∑

i=1

Zn,i = Sn1 + Sn2 + Sn3,

where Sn1 =
∑k

j=1 ηj, Sn2 =
∑k

j=1 ξj, Sn3 = ζk , and ηj =
∑kj+p–1

i=kj
Zn,i, ξj =

∑lj+q–1
i=lj Zn,i, ζk =

∑n
i=k(p+q)+1 Zn,i, kj = (j – 1)(p + q) + 1, lj = (j – 1)(p + q) + p + 1, j = 1, 2, . . . , k.
By Lemma A.1 with a = ε1 + ε2, we have

sup
–∞<t<∞

∣∣P(Sn ≤ t) – �(t)
∣∣ = sup

–∞<t<∞

∣∣P(Sn1 + Sn2 + Sn3 ≤ t) – �(t)
∣∣

≤ sup
–∞<t<∞

∣
∣P(Sn1 ≤ t) – �(t)

∣
∣ +

a√
2π

+ P
(|Sn2| ≥ ε1

)
+ P

(|Sn3| ≥ ε2
)
. (3.1)

Firstly, we estimate E(Sn2)2 and E(Sn3)2. By the condition |Xi| ≤ d and Assumption (A4), it
is easy to find that |Zn,i| ≤ C1n–1/2, |ξj| ≤ C1qn–1/2, Eξ 2

j ≤ C2qn–1, j = 1, 2, . . . , n. Combining
the definition of LNQD with the definition of ξj, j = 1, 2, . . . , k, we can easily prove that
{ξi}1≤i≤k is LNQD. It follows from Lemma A.2 that

E(Sn2)2 = E

( k∑

j=1

lj+q–1∑

i=lj

Zn,i

)2

≤ C2kq/n = C2qp–1 = C2γ1n, (3.2)

E(Sn3)2 = E

( n∑

i=k(p+q)+1

Zn,i

)2

≤ C3
[
n – k(p + q)

]
/n ≤ C3(p + q)/n = C3γ2n. (3.3)

By (3.2), (3.3) and Lemma A.3, choosing ε1 = Mγ 1/2
1n (log n), ε2 = Mγ 1/2

2n (log n) and noting
that pq ≤ n, for large enough M, n, we have

P
(|Sn2| > ε1

) ≤ 2 exp

{
–

M2γ1n log2 n
2(2C2γ1n + C1Mq/

√
nγ 1/2

1n log n)

}

≤ 2 exp

{
–

M2 log2 n
2(2C2 + C1M log n)

}
≤ Cn–1, (3.4)

P
(|Sn3| > ε2

) ≤ 2 exp

{
–

M2γ2n log2 n
2(2C3γ2n + C1Mn–1/2γ 1/2

2n log n)

}

≤ 2 exp

{
–

M2 log2 n
2(2C3 + C1M)

}
≤ Cn–1. (3.5)
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Secondly, we estimate sup–∞<t<∞ |P(Sn1 ≤ t) – �(t)|. Define

s2
n :=

k∑

j=1

Var(ηj), �n :=
∑

1≤i<j≤k

Cov(ηi,ηj).

Clearly s2
n = E(Sn1)2 – 2�n, and since ES2

n = 1, by (3.2) and (3.3) we get that

∣
∣E(Sn1)2 – 1

∣
∣ =

∣
∣E(Sn2 + Sn3)2 – 2E

[
Sn(Sn2 + Sn3)

]∣∣ ≤ C
(
γ 1/2

1n + γ 1/2
2n

)
. (3.6)

On the other hand, by Assumptions (A1)(ii), (A4), and (A5),

�n =
∑

1≤i<j≤k

ki+p–1∑

s=ki

kj+p–1∑

t=kj

Cov(Zn,s, Zn,t)

≤ Cn–1
k–1∑

i=1

ki+p–1∑

s=ki

∞∑

j=q

∣
∣Cov(X1, Xj)

∣
∣

≤ C
[
kpu(q)

]
/n ≤ Cu(q). (3.7)

From (3.6) and (3.7), it follows that

∣
∣s2

n – 1
∣
∣ ≤ C

[
γ 1/2

1n + γ 1/2
2n + u(q)

]
. (3.8)

We assume that η′
j are the independent random variables and η′

j have the same distribution
as ηj, j = 1, 2, . . . , k. Let Hn :=

∑k
j=1 η′

j . It is easily seen that

sup
–∞<t<∞

∣
∣P(Sn1 ≤ t) – �(t)

∣
∣

≤ sup
–∞<t<∞

∣∣P(Sn1 ≤ t) – P(Hn ≤ t)
∣∣

+ sup
–∞<t<∞

∣
∣P(Hn ≤ t) – �(t/sn)

∣
∣ + sup

–∞<t<∞

∣
∣�(t/sn) – �(t)

∣
∣

:= D1 + D2 + D3.

Let φ(t) and ϕ(t) be the characteristic functions of Sn1 and Hn, respectively. Thus, applying
the Esséen inequality(see [9],Theorem 5.3), for any T > 0,

D1 ≤
∫ T

–T

∣∣∣
∣
φ(t) – ϕ(t)

t

∣∣∣
∣dt

+ T sup
–∞<t<∞

∫

|u|≤C/T

∣∣P(Hn ≤ u + t) – P(Hn ≤ t)
∣∣du

:= D1n + D2n.
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By Assumption (A1)(ii) and Lemma A.4, we have that

∣
∣φ(t) – ϕ(t)

∣
∣ =

∣∣
∣∣
∣
E exp

(

it
k∑

j=1

ηj

)

–
k∏

j=1

E exp (itηj)

∣∣
∣∣
∣

≤ 4t2
∑

1≤i<j≤k

ki+p–1∑

s=ki

kj+p–1∑

t=kj

∣
∣Cov(Zn,s, Zn,t)

∣
∣

≤ 4Ct2kpn–1
∞∑

j=q

∣
∣Cov(X1, Xj)

∣
∣ ≤ Ct2u(q).

Therefore

D1n =
∫ T

–T

∣∣
∣∣
φ(t) – ϕ(t)

t

∣∣
∣∣dt ≤ Cu(q)T2. (3.9)

It follows from the Berry–Esséen inequality [[9], Theorem 5.7] and Lemma A.2, for r > 2,

sup
–∞<t<∞

∣
∣P(Hn/sn ≤ t) – �(t)

∣
∣ ≤ C

sr
n

k∑

j=1

E
∣
∣η′

j
∣
∣r =

C
sr

n

k∑

j=1

E|ηj|r

≤ Ck[(p/n)]r/2

sr
n

≤ C
γ

(r–2)/2
2n

sr
n

. (3.10)

Notice that sn → 1, as n → ∞ by (3.8). From (3.10), we get that

sup
–∞<t<∞

∣∣P(Hn/sn ≤ t) – �(t)
∣∣ ≤ Cγ

(r–2)/2
2n , (3.11)

which implies that

sup
–∞<t<∞

∣∣P(Hn ≤ t + u) – P(Hn ≤ t)
∣∣

≤ sup
–∞<t<∞

∣
∣∣
∣P

(
Hn

sn
≤ t + u

sn

)
– �

(
t + u

sn

)∣
∣∣
∣

+ sup
–∞<t<∞

∣∣∣
∣P

(
Hn

sn
≤ t

sn

)
– �

(
t
sn

)∣∣∣
∣ + sup

–∞<t<∞

∣∣∣
∣�

(
t + u

sn

)
– �

(
t
sn

)∣∣∣
∣

≤ 2 sup
–∞<t<∞

∣∣
∣∣P

(
Hn

sn
≤ t

)
– �(t)

∣∣
∣∣ + sup

–∞<t<∞

∣∣
∣∣�

(
t + u

sn

)
– �

(
t
sn

)∣∣
∣∣

≤ C
(

γ
(r–2)/2
2n +

∣∣
∣∣

u
sn

∣∣
∣∣

)
. (3.12)

By (3.12), we obtain

D2n = T sup
–∞<t<∞

∫

|u|≤C/T

∣∣P(Hn ≤ t + u) – P(Hn ≤ t)
∣∣du ≤ C

(
γ

(r–2)/2
2n + 1/T

)
. (3.13)

Combining (3.9) with (3.13) and choosing T = u–1/3(q), we can easily see that

D1 ≤ C
(
u1/3(q)

)
+ γ

(r–2)/2
2n ), (3.14)
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and by (3.11),

D2 = sup
–∞<t<∞

∣
∣∣∣P

(
Hn

sn
≤ t

sn

)
– �

(
t
sn

)∣
∣∣∣ ≤ Cγ

(r–2)/2
2n . (3.15)

On the other hand, from (3.8) and Lemma 5.2 in [9], it follows that

D3 ≤ (2πe)–1/2(sn – 1)I(sn ≥ 1) + (2πe)–1/2(s–1
n – 1

)
I(0 < sn < 1)

≤ C
∣∣s2

n – 1
∣∣ ≤ C

[
γ 1/2

1n + γ 1/2
2n + u(q)

]
. (3.16)

Consequently, combining (3.14), (3.15) with (3.16), we can get

sup
–∞<t<∞

∣∣P(Sn1 ≤ t) – �(t)
∣∣ ≤ C

[
γ 1/2

1n + γ 1/2
2n + γ

(r–2)/2
2n + u1/3(q)

]
. (3.17)

Finally, by (3.1), (3.4), (3.5), and (3.17), (2.7) is verified. �

Proof of Corollary 2.1 We obtain it by choosing p = 	n2/3
, q = 	n1/3
 in Theorem 2.1. �

Proof of Corollary 2.2 We obtain it by choosing p = 	nδ
, q = 	n2δ–1
 in Theorem 2.1. �

Proof of Theorem 2.2 Define σ 2
n := Var(

∑n
i=1 Xi) and γ (k) = Cov(Xi, Xi+k) for i = 1, 2, . . . ,

according to (2.6), for some β > 1, it is checked that

∞∑

j=bn

∣∣Cov(X1, Xj+1)
∣∣ ≤ C

∞∑

j=bn

j–β–1 = O
(
b–β

n
)
, (3.18)

therefore Assumption (A2) holds true. For the second-order stationary process {Xn}n≥1

with a common marginal distribution function, by (2.6), it follows that

∣
∣σ 2

n – nσ 2
0
∣
∣ =

∣
∣∣
∣∣
nγ (0) + 2n

n–1∑

j=1

(
1 –

j
n

)
γ (j) – nγ (0) – 2n

∞∑

j=1

γ (j)

∣
∣∣
∣∣

=

∣
∣∣
∣∣
2n

n–1∑

j=1

j
n

γ (j) + 2n
∞∑

j=n

γ (j)

∣
∣∣
∣∣
≤ 2

∞∑

j=1

jγ (j) + 2
∞∑

j=n

jγ (j)

≤ 4
∞∑

j=1

j
∣∣γ (j)

∣∣ ≤ 4C
∞∑

j=1

j–β = O(1). (3.19)

On the other hand,

sup
–∞<t<∞

∣
∣∣
∣P

(∑n
i=1 Xi√
nσ0

≤ t
)

– �(t)
∣
∣∣
∣

≤ sup
–∞<t<∞

∣∣
∣∣P

(∑n
i=1 Xi

σn
≤

√
nσ0

σn
t
)

– �

(√
nσ0

σn
t
)∣∣

∣∣

+ sup
–∞<t<∞

∣∣
∣∣�

(√
nσ0

σn
t
)

– �(t)
∣∣
∣∣

:= I1 + I2. (3.20)
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By (3.19), it is easy to see that limn→∞
σ 2

n
nσ 2

0
= 1. Thus, applying Theorem 2.1, one has

I1 ≤ C
{(

γ 1/2
1n + γ 1/2

2n
)

log n + γ
(r–2)/2
2n + u1/3(q)

}
, (3.21)

and according to (3.19) again, similar to the proof of (3.16), we obtain that

I2 ≤ C
∣∣
∣∣

σ 2
n

nσ 2
0

– 1
∣∣
∣∣ =

C
nσ 2

0

∣
∣σ 2

n – nσ 2
0
∣
∣ = O

(
n–1). (3.22)

Combining (3.20), (3.21) with (3.22), (2.8) holds true. �

Proof of Theorem 2.3 By taking the same notation as that in the proof of Theorem 1.1 in
Yang et al. [1], denote A = σ (ξp)/f (ξp) and

Gn(t) = P
(
n1/2(ξp,n – ξp)/A ≤ t

)
.

Similar to the proof of (3.7) in Yang et al. [1], for β > 1, we obtain that

∣∣σ 2(n, t) – σ 2(ξp)
∣∣ = O

(
n–3/10(log n log log n)1/2) + o

(
n–1/5).

On the other hand, seeing the proof of (3.9) in Yang et al. [1], by Theorem 2.2, it follows
that

sup
|t|≤Ln

∣
∣Gn(t) – �(t)

∣
∣

≤ sup
|t|≤Ln

∣
∣∣∣P

[ ∑n
i=1 Zi√

nσ (n, t)
< –cnt

]
– �(–cnt)

∣
∣∣∣ + sup

|t|≤Ln

∣∣�(t) – �(cnt)
∣∣

≤ C
{(

γ 1/2
1n + γ 1/2

2n
)

log n + γ
(r–2)/2
2n + u1/3(q)

}
+ sup

|t|≤Ln

∣
∣�(t) – �(cnt)

∣
∣

≤ C
{(

γ 1/2
1n + γ 1/2

2n
)

log n + γ
(r–2)/2
2n + n–1 + u1/3(q)

}
.

Therefore, (2.9) follows the same steps as those in the proof of Theorem 1.1 of Yang et
al. [1]. �

Proof of Corollary 2.3 We obtain it by choosing p = 	nδ
, q = 	n2δ–1
 in Theorem 2.3. �

Appendix
Lemma A.1 (cf. Yang [16]) Let X and Y be random variables, then for any a > 0,

sup
t

∣
∣P(X + Y ≤ t) – �(t)

∣
∣ ≤ sup

t

∣
∣P(X ≤ t) – �(t)

∣
∣ +

a√
2π

+ P
(|Y | > a

)
.

Lemma A.2 (cf. Li [8]) Let {Xj}j≥1 be a LNQD random variable sequence with zero mean
and finite second moment, supj≥1 EX2

j < ∞. Assume that {aj}j≥1 is a real constant sequence,
a := supj |aj| < ∞. Then, for any r > 1, there is a constant C not depending on n such that

E

∣∣∣
∣∣

n∑

j=1

ajXj

∣∣∣
∣∣

r

≤ Carnr/2.
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Lemma A.3 (cf. Wang [7]) Let {Xn}n≥1 be a sequence of LNQD random variables with
EXn = 0, |Xn| ≤ d, a.s. for n = 1, 2, . . . . Denote �n=

∑n
i=1 EX2

i . Then, for ε > 0 and n ≥ 1,

P

(∣∣
∣∣
∣

n∑

i=1

Xi

∣∣
∣∣
∣

> ε

)

≤ 2 exp

{
–

ε2

2(2 �n +dε)

}
.

Lemma A.4 (cf. Li [8]) If X1, . . . , Xm are LNQD random variables with finite second mo-
ments, let ϕj(tj) and ϕ(t1, . . . , tm) be c.f.’s of Xj and (X1, . . . , Xm), respectively, then for all
nonnegative(or non positive) real numbers t1, . . . , tm,

∣
∣∣
∣∣
ϕ(t1, . . . , tm) –

m∏

j=1

ϕj(tj)

∣
∣∣
∣∣
≤ 4

∑

1≤l<k≤m

|tltk|
∣
∣Cov(Xl, Xk)

∣
∣.
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