- Research
- Open Access
- Published:
One kind hybrid character sums and their upper bound estimates
Journal of Inequalities and Applications volume 2018, Article number: 160 (2018)
Abstract
The main purpose of this paper is applying the analysis method, the properties of Lucas polynomials and Gauss sums to study the estimation problems of some kind hybrid character sums. In the end, we obtain several sharp upper bound estimates for them. As some applications, we prove some new and interesting combinatorial identities.
1 Introduction
As usual, let \(q\geq3\) be an integer, χ denotes any Dirichlet character \(\bmod\, q\). The classical Gauss sum \(\tau(\chi)\) is defined by
where \(e(y)=e^{2\pi i y}\).
We know that this sum plays a very important role in analytic number theory; plenty of number theory problems (such as Dirichlet L-functions and distribution of primes) are closely related to it. Concerning the various elementary properties of \(\tau(\chi)\), some authors also studied it and obtained a series of interesting results, some conclusions can be found in Refs. [1] and [2]. For example, if χ is a primitive character \(\bmod\, q\), then, for any integer n, one has \(|\tau(\chi)|=\sqrt{q}\) and the identity
From the Euler formula we know that \(e(x)=\cos(2\pi x)+i\sin(2\pi x)\). So scholars will naturally ask, for any positive integer n, whether there exists a similar estimate for
The estimates or calculations for (1) are significant, because they are closely related to the famous Gauss sums, so they have many interesting applications in analytic number theory, especially various estimates for hybrid character sums and generalized Kloosterman sums.
As far as we know, it seems that nobody has studied the estimate for (1), at least we have not seen related papers before. In this paper, we shall use the analytic method, the properties of Lucas polynomials and Gauss sums to do research on these problems, and obtain some sharp upper bound estimates for them. Our main idea is to put the nth power \(\sin^{n} (x)\) (or \(\cos^{n}(x)\)) into a combination of \(\sin(kx)\) (or \(\cos (kx)\)), where \(1\leq k\leq n\). Then using the estimate for classical Gauss sums we give some sharp upper bound estimates for (1). As some applications of our main results, we also give some new and interesting combinatorial identities.
2 Main results and discussion
The main results in this paper are detailed in the following.
Theorem 1
If q is an integer with \(q> 2\), then, for any positive integer n and primitive character \(\chi\bmod\, q\), we have the estimate
where \(\binom{m}{n}=\frac{m!}{n!(m-n)!}\).
Theorem 2
If q is an integer with \(q> 2\), then, for any positive integer n and primitive character \(\chi\bmod\, q\), we have the estimate
From the method of proving Theorem 1 and the orthogonality of characters \(\bmod\, q\) we can immediately deduce the following combinatorial identity.
Corollary
If n is any positive integer, then we have the identity
Notes
Note that \(2\cos^{2} x= \cos(2x)+1\) and \(|\tau(\chi)|=\sqrt{q}\); we have
Therefore, if \(n=1\) and χ is an even primitive character \(\bmod\, q\), then the equal sign in our theorems holds. So the estimates in our Theorem 1 and Theorem 2 are the best.
3 Several simple lemmas
In order to prove our main results, we first introduce the Fibonacci polynomials and Lucas polynomials as follows.
For integer \(n\geq0\), the famous Fibonacci polynomials \(\{F_{n}(x)\}\) and Lucas polynomials \(\{L_{n}(x)\}\) are defined by \(F_{0}(x)=0\), \(F_{1}(x)=1\), \(L_{0}(x)=2\), \(L_{1}(x)=x\) and \(F_{n+2}(x)=xF_{n+1}(x)+F_{n}(x)\), \(L_{n+2}(x)=xL_{n+1}(x)+L_{n}(x)\) for all \(n\geq0\). In fact the general terms of \(F_{n}(x)\) and \(L_{n}(x)\) are given by
and
It is easy to obtain the identities
where \(\binom{m}{n}=\frac{m!}{n!(m-n)!}\), and \([x]\) denotes the greatest integer ≤x.
Taking \(x=1\), then \(\{F_{n}(x)\}\) becomes the Fibonacci sequences \(\{F_{n}\}\), and \(\{L_{n}(x)\}\) becomes the Lucas sequences \(\{L_{n}\}\). If we take \(x=2\), then \(F_{n}(2)=P_{n}\), the nth Pell numbers, \(P_{0}=0\), \(P_{1}=1\), and \(P_{n+2}=2P_{n+1}+P_{n}\) for all \(n\geq0\).
Since these sequences (or polynomials) occupy a more crucial position in the theory and application of mathematics, many scholars have studied their various elementary properties and obtained a series of important results. See Refs. [3–10]. Here we give some new properties of Lucas polynomials.
Lemma 1
If k is a non-negative integer, then we have the identities
and
where i is the imaginary unit. That is to say, \(i^{2}=-1\).
Proof
Taking \(x=2i\sin\theta\) in (2), and note that \(x^{2}+4=4-4\sin^{2} \theta=4\cos^{2}\theta\), from the Euler formula we have
and
This proves the first and second formulas of Lemma 1.
Similarly, we also have the identities
and
This completes the proof of Lemma 1. □
Lemma 2
If n is any non-negative integer, then we have the identities
and
Proof
From the definition of \(L_{n}(x)\) we know that \(L_{2k}(x)\) is an even function. So we may suppose that
Taking \(x=2i\cos\theta\) in (3) and applying Lemma 1, we have
Note that the identities
and
from (4) we have
or
Combining identities (3) and (6) we may immediately deduce the first formula of Lemma 2.
Similarly, since \(L_{2k+1}(x)\) is an odd function, we can suppose that
Taking \(x=2i\cos\theta\) in (7), then applying Lemma 1 we have
From (5) and (8) we may immediately deduce that
Now the second identity of Lemma 2 follows from (7) and (9). □
Lemma 3
If n is a positive integer, then we have the identity
Proof
First applying the binomial theorem we have the identity
On the other hand, we also have
Combining (10) and (11) we can deduce
This proves the first formula of Lemma 3.
Similarly, we can deduce the second formula of Lemma 3. □
4 Proofs of the theorems
In this section, we complete the proofs of our main results. First we prove Theorem 1. Let \(q\geq3\) be an integer; χ is any even primitive character \(\bmod\, q\). Then taking \(x=2i \cos (\frac{2 \pi a}{q} )\) in the first formula of Lemma 2, multiplying both sides by \(\chi(a)\) and summing over all \(1\leq a\leq q-1\), and noting that
we have
Note that \(|\tau(\chi)|=\sqrt{q}\), from (12) and Lemma 3 we have the estimate
Similarly, taking \(x=2i \cos (\frac{2\pi a}{q} )\) in the second formula of Lemma 2, then applying Lemma 1 we also have
From (14) and Lemma 3 we may immediately deduce the estimate
If χ is an odd primitive character \(\bmod\, q\), then it is very easy to prove that
Combining (13), (15), and (16) we may immediately deduce Theorem 1.
Using a very similar method to proving Theorem 1 we can also deduce the estimates in Theorem 2. So it is not repeated here.
Now we prove our corollary. If p is a prime large enough, then, for any fixed integer \(n\geq1\), from [11] we have the identity
From the orthogonality of characters \(\bmod\, p\) and (17) we have
On the other hand, from (13), (17), and Lemma 3 we also have
Combining (18) and (19) we have the identity
From (20) we may immediately deduce
This completes the proofs of our all results.
References
Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)
Pan, C.D., Pan, C.B.: Goldbach Conjecture. Science Press, Beijing (2011)
Clemente, C.: Identities and generating functions on Chebyshev polynomials. Georgian Math. J. 19, 427–440 (2012)
Lee, C.L., Wong, K.B.: On Chebyshev’s polynomials and certain combinatorial identities. Bull. Malays. Math. Sci. Soc. 34, 279–286 (2011)
Doha, E., Bhrawy, A., Ezz-Eldien, S.: Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method. Cent. Eur. J. Phys. 11, 1494–1503 (2013)
Ma, R., Zhang, W.P.: Several identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 45, 164–170 (2007)
Ma, Y.K., Lv, X.X.: Several identities involving the reciprocal sums of Chebyshev polynomials. Math. Probl. Eng. 2017, Article ID 4194579 (2017)
Wang, T.T., Zhang, H.: Some identities involving the derivative of the first kind Chebyshev polynomials. Math. Probl. Eng. 2015, Article ID 146313 (2015)
Yi, Y., Zhang, W.P.: Some identities involving the Fibonacci polynomials. Fibonacci Q. 40, 314–318 (2002)
Zhang, W.P., Wang, T.T.: Two identities involving the integral of the first kind Chebyshev polynomials. Bull. Math. Soc. Sci. Math. Roum. 108, 91–98 (2017)
Fonseca, M.C., Glasser, M.L., Kowalenko, V.: Basic trigonometric power sums with applications. Ramanujan J. 42, 401–428 (2017)
Acknowledgements
The authors would like to thank the referees for very helpful and detailed comments, which have significantly improved the presentation of this paper.
Funding
This work is supported by the N.S.F. China (Grant No. 11771351).
Author information
Authors and Affiliations
Contributions
All authors have equally contributed to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zhao, J., Wang, X. One kind hybrid character sums and their upper bound estimates. J Inequal Appl 2018, 160 (2018). https://doi.org/10.1186/s13660-018-1753-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1753-4
MSC
- 11T24
Keywords
- The hybrid character sums
- Lucas polynomials
- Upper bound estimate
- Gauss sums
- Combinatorial identity