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Abstract
The main purpose of this paper is applying the analysis method, the properties of
Lucas polynomials and Gauss sums to study the estimation problems of some kind
hybrid character sums. In the end, we obtain several sharp upper bound estimates for
them. As some applications, we prove some new and interesting combinatorial
identities.
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1 Introduction
As usual, let q ≥ 3 be an integer, χ denotes any Dirichlet character mod q. The classical
Gauss sum τ (χ ) is defined by

τ (χ ) =
q∑

a=1

χ (a)e
(

a
q

)
,

where e(y) = e2π iy.
We know that this sum plays a very important role in analytic number theory; plenty

of number theory problems (such as Dirichlet L-functions and distribution of primes) are
closely related to it. Concerning the various elementary properties of τ (χ ), some authors
also studied it and obtained a series of interesting results, some conclusions can be found
in Refs. [1] and [2]. For example, if χ is a primitive character mod q, then, for any integer
n, one has |τ (χ )| = √q and the identity

q∑

a=1

χ (a)e
(

na
q

)
= χ (n)τ (χ ).

From the Euler formula we know that e(x) = cos(2πx) + i sin(2πx). So scholars will nat-
urally ask, for any positive integer n, whether there exists a similar estimate for

∣∣∣∣∣

q∑

a=1

χ (a) cosn
(

2πa
q

)∣∣∣∣∣ and

∣∣∣∣∣

q∑

a=1

χ (a) sinn
(

2πa
q

)∣∣∣∣∣. (1)
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The estimates or calculations for (1) are significant, because they are closely related to
the famous Gauss sums, so they have many interesting applications in analytic number
theory, especially various estimates for hybrid character sums and generalized Klooster-
man sums.

As far as we know, it seems that nobody has studied the estimate for (1), at least we
have not seen related papers before. In this paper, we shall use the analytic method, the
properties of Lucas polynomials and Gauss sums to do research on these problems, and
obtain some sharp upper bound estimates for them. Our main idea is to put the nth power
sinn(x) (or cosn(x)) into a combination of sin(kx) (or cos(kx)), where 1 ≤ k ≤ n. Then using
the estimate for classical Gauss sums we give some sharp upper bound estimates for (1).
As some applications of our main results, we also give some new and interesting combi-
natorial identities.

2 Main results and discussion
The main results in this paper are detailed in the following.

Theorem 1 If q is an integer with q > 2, then, for any positive integer n and primitive
character χ mod q, we have the estimate

(a)

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2n
(

2πa
q

)∣∣∣∣∣ ≤
(

1 –
(2n

n
)

4n

)√
q;

(b)

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2n–1
(

2πa
q

)∣∣∣∣∣ ≤ √
q,

where
(m

n
)

= m!
n!(m–n)! .

Theorem 2 If q is an integer with q > 2, then, for any positive integer n and primitive
character χ mod q, we have the estimate

(c)

∣∣∣∣∣

q–1∑

a=1

χ (a) sin2n
(

2πa
q

)∣∣∣∣∣ ≤
(

1 –
(2n

n
)

4n

)√
q;

(d)

∣∣∣∣∣

q–1∑

a=1

χ (a) sin2n–1
(

2πa
q

)∣∣∣∣∣ ≤ √
q.

From the method of proving Theorem 1 and the orthogonality of characters mod q we
can immediately deduce the following combinatorial identity.

Corollary If n is any positive integer, then we have the identity

(
4n
2n

)
+

(
2n
n

)2

= 2
n∑

k=0

(
2n
k

)2

.
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Notes Note that 2 cos2 x = cos(2x) + 1 and |τ (χ )| = √q; we have

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2
(

2πa
q

)∣∣∣∣∣ =
1
2

∣∣∣∣∣

q–1∑

a=1

χ (a) cos

(
4πa

q

)
+

q–1∑

a=1

χ (a)

∣∣∣∣∣

=
1
4

∣∣∣∣∣

q–1∑

a=1

χ (a)e
(

2a
q

)
+

q–1∑

a=1

χ (a)e
(

–2a
q

)∣∣∣∣∣

=
1
4
√

q
∣∣χ (2) + χ (–2)

∣∣

=

⎧
⎨

⎩

1
2 · √q, if χ (–1) = 1,

0, if χ (–1) = –1.

Therefore, if n = 1 and χ is an even primitive character mod q, then the equal sign in our
theorems holds. So the estimates in our Theorem 1 and Theorem 2 are the best.

3 Several simple lemmas
In order to prove our main results, we first introduce the Fibonacci polynomials and Lucas
polynomials as follows.

For integer n ≥ 0, the famous Fibonacci polynomials {Fn(x)} and Lucas polynomials
{Ln(x)} are defined by F0(x) = 0, F1(x) = 1, L0(x) = 2, L1(x) = x and Fn+2(x) = xFn+1(x)+Fn(x),
Ln+2(x) = xLn+1(x) + Ln(x) for all n ≥ 0. In fact the general terms of Fn(x) and Ln(x) are given
by

Fn(x) =
1√

x2 + 4

[(
x +

√
x2 + 4
2

)n

–
(

x –
√

x2 + 4
2

)n]

and

Ln(x) =
(

x +
√

x2 + 4
2

)n

+
(

x –
√

x2 + 4
2

)n

. (2)

It is easy to obtain the identities

Fn+1(x) =
[ n

2 ]∑

k=0

(
n – k

k

)
xn–2k and Ln(x) =

[ n
2 ]∑

k=0

n
n – k

(
n – k

k

)
xn–2k ,

where
(m

n
)

= m!
n!(m–n)! , and [x] denotes the greatest integer ≤ x.

Taking x = 1, then {Fn(x)} becomes the Fibonacci sequences {Fn}, and {Ln(x)} becomes
the Lucas sequences {Ln}. If we take x = 2, then Fn(2) = Pn, the nth Pell numbers, P0 = 0,
P1 = 1, and Pn+2 = 2Pn+1 + Pn for all n ≥ 0.

Since these sequences (or polynomials) occupy a more crucial position in the theory and
application of mathematics, many scholars have studied their various elementary proper-
ties and obtained a series of important results. See Refs. [3–10]. Here we give some new
properties of Lucas polynomials.

Lemma 1 If k is a non-negative integer, then we have the identities

L2k(2i sin θ ) = 2 · cos(2kθ ) and L2k(2i cos θ ) = (–1)k · 2 · cos(2kθ );
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L2k+1(2i sin θ ) = 2i · sin
(
(2k + 1)θ

)
,

and

L2k+1(2i cos θ ) = (–1)k · 2i · cos
(
(2k + 1)θ

)
,

where i is the imaginary unit. That is to say, i2 = –1.

Proof Taking x = 2i sin θ in (2), and note that x2 + 4 = 4 – 4 sin2 θ = 4 cos2 θ , from the Euler
formula we have

L2k(2i sin θ ) =
(

2i sin θ +
√

4 cos2 θ

2

)2k

+
(

2i sin θ –
√

4 cos2 θ

2

)2k

= (i sin θ + cos θ )2k + (i sin θ – cos θ )2k

= (cos θ + i sin θ )2k + (cos θ – i sin θ )2k

= cos(2kθ ) + i sin(2kθ ) + cos(2kθ ) – i sin(2kθ ) = 2 · cos(2kθ )

and

L2k(2i cos θ ) =
(

2i cos θ +
√

4 sin2 θ

2

)2k

+
(

2i cos θ –
√

4 sin2 θ

2

)2k

= (i cos θ + sin θ )2k + (i cos θ – sin θ )2k

= (–1)k(cos θ – i sin θ )2k + (–1)k(cos θ + i sin θ )2k

= (–1)k · 2 · cos(2kθ ).

This proves the first and second formulas of Lemma 1.
Similarly, we also have the identities

L2k+1(2i sin θ ) =
(

2i sin θ +
√

4 cos2 θ

2

)2k+1

+
(

2i sin θ –
√

4 cos2 θ

2

)2k+1

= (i sin θ + cos θ )2k+1 + (i sin θ – cos θ )2k+1

= (cos θ + i sin θ )2k+1 – (cos θ – i sin θ )2k+1

= cos
(
(2k + 1)θ

)
+ i sin

(
(2k + 1)θ

)
– cos

(
(2k + 1)θ

)
+ i sin

(
(2k + 1)θ

)

= 2i · sin
(
(2k + 1)θ

)

and

L2k+1(2i cos θ ) =
(

2i cos θ +
√

4 sin2 θ

2

)2k+1

+
(

2i cos θ –
√

4 sin2 θ

2

)2k+1

= (i cos θ + sin θ )2k+1 + (i cos θ – sin θ )2k+1

= i2k+1(cos θ – i sin θ )2k+1 + i2k+1(cos θ + i sin θ )2k+1

= (–1)k · 2i · cos
(
(2k + 1)θ

)
.

This completes the proof of Lemma 1. �
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Lemma 2 If n is any non-negative integer, then we have the identities

x2n =
(–1)n

2

(
2n
n

)
· L0(x) +

n∑

k=1

(–1)n–k
(

2n
n – k

)
· L2k(x)

and

x2n+1 =
n∑

k=0

(–1)n–k
(

2n + 1
n – k

)
· L2k+1(x).

Proof From the definition of Ln(x) we know that L2k(x) is an even function. So we may
suppose that

x2n =
n∑

k=0

ak · L2k(x). (3)

Taking x = 2i cos θ in (3) and applying Lemma 1, we have

(–1)n4n cos2n θ =
n∑

k=0

ak · L2k(2i cos θ ) = 2
n∑

k=0

ak · (–1)k cos(2kθ ). (4)

Note that the identities

∫ π

0
2 cos(mθ ) cos(nθ ) dθ =

⎧
⎪⎪⎨

⎪⎪⎩

π , if m = n �= 0,

0, if m �= n,

2π , if m = n = 0,

(5)

and

∫ π

0
cos2n(θ ) cos(2kθ ) dθ = π · (2n)!

(2n – 2k)!!(2n + 2k)!!
=

π

4n ·
(

2n
n – k

)
,

from (4) we have

ak · (–1)kπ = (–1)n4n
∫ π

0
cos2n(θ ) cos(2kθ ) dθ = (–1)nπ ·

(
2n

n – k

)

or

a0 =
(–1)n

2
·
(

2n
n

)
and ak = (–1)n–k ·

(
2n

n – k

)
, 1 ≤ k ≤ n. (6)

Combining identities (3) and (6) we may immediately deduce the first formula of Lemma 2.
Similarly, since L2k+1(x) is an odd function, we can suppose that

x2n+1 =
n∑

k=0

bk · L2k+1(x). (7)
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Taking x = 2i cos θ in (7), then applying Lemma 1 we have

(–1)n4n cos2n+1 θ =
n∑

k=0

bk · (–1)k cos
(
(2k + 1)θ

)
. (8)

From (5) and (8) we may immediately deduce that

bk =
2(–1)n–k

π
· 4n ·

∫ π

0
cos2n+1(θ ) cos

(
(2k + 1)θ

)
dθ = (–1)n–k

(
2n + 1
n – k

)
. (9)

Now the second identity of Lemma 2 follows from (7) and (9). �

Lemma 3 If n is a positive integer, then we have the identity

n∑

k=1

(
2n

n – k

)
=

1
2

·
(

4n –
(

2n
n

))
and

n∑

k=0

(
2n + 1
n – k

)
= 4n.

Proof First applying the binomial theorem we have the identity

2n∑

k=0

(
2n

2n – k

)
=

2n∑

k=0

(
2n
k

)
= (1 + 1)2n = 4n. (10)

On the other hand, we also have

2n∑

k=0

(
2n
k

)
= (1 + 1)2n =

n∑

k=0

(
2n
k

)
+

2n∑

k=n+1

(
2n
k

)

=
n∑

k=0

(
2n
k

)
+

n∑

k=1

(
2n

n – k

)

= 2
n∑

k=1

(
2n

n – k

)
+

(
2n
n

)
. (11)

Combining (10) and (11) we can deduce

n∑

k=1

(
2n

n – k

)
=

1
2

·
(

4n –
(

2n
n

))
.

This proves the first formula of Lemma 3.
Similarly, we can deduce the second formula of Lemma 3. �

4 Proofs of the theorems
In this section, we complete the proofs of our main results. First we prove Theorem 1. Let
q ≥ 3 be an integer; χ is any even primitive character mod q. Then taking x = 2i cos( 2πa

q )
in the first formula of Lemma 2, multiplying both sides by χ (a) and summing over all
1 ≤ a ≤ q – 1, and noting that

q–1∑

a=1

χ (a) = 0 and
q–1∑

a=1

χ (a)e
(±2ka

q

)
= χ (±2k)τ (χ ),
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we have

(–1)n4n
q–1∑

a=1

χ (a) cos2n
(

2πa
q

)

= (–1)n
(

2n
n

) q–1∑

a=1

χ (a) + 2
n∑

k=1

(–1)n–k
(

2n
n – k

) q–1∑

a=1

(–1)kχ (a) cos

(
4kπa

q

)

= (–1)n
n∑

k=1

(
2n

n – k

) q–1∑

a=1

χ (a)
[

e
(

2ka
q

)
+ e

(
–2ka

q

)]

= (–1)nτ (χ )
n∑

k=1

(
2n

n – k

)(
χ (2k) + χ (–2k)

)

= 2(–1)nχ (2)τ (χ )
n∑

k=1

(
2n

n – k

)
χ (k). (12)

Note that |τ (χ )| = √q, from (12) and Lemma 3 we have the estimate

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2n
(

2πa
q

)∣∣∣∣∣ =
2√q
4n ·

∣∣∣∣∣

n∑

k=1

(
2n

n – k

)
χ (k)

∣∣∣∣∣

≤ 2√q
4n ·

n∑

k=1

(
2n

n – k

)

=
2√q
4n · 4n –

(2n
n
)

2

=
(

1 –
(2n

n
)

4n

)
· √q. (13)

Similarly, taking x = 2i cos( 2πa
q ) in the second formula of Lemma 2, then applying

Lemma 1 we also have

(–1)n4n
q–1∑

a=1

χ (a) cos2n+1
(

2πa
q

)

=
n∑

k=0

(–1)n–k
(

2n + 1
n – k

) q–1∑

a=1

(–1)kχ (a) cos

(
2(2k + 1)πa

q

)

=
(–1)n

2
·

n∑

k=0

(
2n + 1
n – k

) q–1∑

a=1

χ (a)
[

e
(

(2k + 1)a
q

)
+ e

(
–(2k + 1)a

q

)]

=
(–1)nτ (χ )

2
·

n∑

k=0

(
2n + 1
n – k

)(
χ (2k + 1) + χ (–2k – 1)

)

= (–1)nτ (χ )
n∑

k=0

(
2n + 1
n – k

)
χ (2k + 1). (14)
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From (14) and Lemma 3 we may immediately deduce the estimate

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2n+1
(

2πa
q

)∣∣∣∣∣ =
√q
4n ·

∣∣∣∣∣

n∑

k=0

(
2n + 1
n – k

)
χ (2k + 1)

∣∣∣∣∣

≤
√q
4n ·

n∑

k=0

(
2n + 1
n – k

)
=

√
q. (15)

If χ is an odd primitive character mod q, then it is very easy to prove that

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2n+1
(

2πa
q

)∣∣∣∣∣ =

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2n
(

2πa
q

)∣∣∣∣∣ = 0. (16)

Combining (13), (15), and (16) we may immediately deduce Theorem 1.
Using a very similar method to proving Theorem 1 we can also deduce the estimates in

Theorem 2. So it is not repeated here.
Now we prove our corollary. If p is a prime large enough, then, for any fixed integer

n ≥ 1, from [11] we have the identity

p–1∑

a=0

cos2n
(

2πa
p

)
=

p
4n ·

(
2n
n

)
. (17)

From the orthogonality of characters mod p and (17) we have

∑

χ mod p

∣∣∣∣∣

q–1∑

a=1

χ (a) cos2n
(

2πa
q

)∣∣∣∣∣

2

= (p – 1)
p–1∑

a=1

cos4n
(

2πa
p

)

=
p(p – 1)

42n ·
(

4n
2n

)
– (p – 1). (18)

On the other hand, from (13), (17), and Lemma 3 we also have

∑

χ mod p

∣∣∣∣∣

p–1∑

a=1

χ (a) cos2n
(

2πa
p

)∣∣∣∣∣

2

=

∣∣∣∣∣

p–1∑

a=1

cos2n
(

2πa
p

)∣∣∣∣∣

2

+
∑

χ mod p
χ (–1)=1,χ �=χ0

∣∣∣∣∣

p–1∑

a=1

χ (a) cos2n
(

2πa
p

)∣∣∣∣∣

2

=
(

p
4n ·

(
2n
n

)
– 1

)2

+
4p
42n

∑

χ mod p
χ (–1)=1,χ �=χ0

∣∣∣∣∣

n∑

k=1

(
2n

n – k

)
χ (k)

∣∣∣∣∣

2

=
(

p
4n ·

(
2n
n

)
– 1

)2

+
4p
42n · p – 1

2

n∑

k=1

(
2n

n – k

)2

–
4p
42n ·

( n∑

k=1

(
2n

n – k

))2

=
(

p
4n ·

(
2n
n

)
– 1

)2

+
4p
42n · p – 1

2

n∑

k=1

(
2n

n – k

)2

–
p

42n

(
4n –

(
2n
n

))2

. (19)
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Combining (18) and (19) we have the identity

p(p – 1)
42n ·

(
4n
2n

)
– (p – 1) =

(
p
4n ·

(
2n
n

)
– 1

)2

+
4p
42n · p – 1

2

n∑

k=1

(
2n

n – k

)2

–
p

42n

(
4n –

(
2n
n

))2

. (20)

From (20) we may immediately deduce

(
4n
2n

)
=

(
2n
n

)2

+ 2
n∑

k=1

(
2n

n – k

)2

= 2
n∑

k=0

(
2n
k

)2

–
(

2n
n

)2

.

This completes the proofs of our all results.
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