- Research
- Open Access
- Published:
Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices
Journal of Inequalities and Applications volume 2018, Article number: 155 (2018)
Abstract
In the paper, the authors establish some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices and modify shortcomings of some known inequalities for generalized eigenvalues in the related literature.
1 Introduction
Let \(A,B \in\mathbb{C}^{n\times n}\) be Hermitian matrices with B being positive definite. We now consider a perturbation problem for \(A\boldsymbol{x}= \lambda B\boldsymbol{x}\). It is known that the n generalized eigenvalues of the matrix pencil \(\langle A,B\rangle\) are real numbers and that the generalized eigenvalues of \(\langle A,B\rangle\) and the eigenvalues of \(AB^{-1}\) are the same. Without loss of generality, we can line up the eigenvalues of a Hermitian matrix A as
and order the generalized eigenvalues of \(\langle A,B\rangle\) by
For a standard Hermitian eigenvalue problem \(A\boldsymbol{x}= \lambda \boldsymbol{x}\), Weyl’s theorem [2] is perhaps the best-known perturbation result. We denote the spectral norm of a matrix by \(\|\cdot\|_{2}\) which is also called the largest singular value or the matrix 2-norm.
We now recall several known conclusions in the literature.
Theorem 1.1
([2, Weyl’s theorem])
Let \(A,E\in\mathbb{C}^{n\times n}\) be Hermitian matrices, and let \(\widetilde{A}=A+E\) be a perturbation of A, then
Theorem 1.2
([3])
Let \(A,E\in\mathbb{C}^{n\times n}\) be Hermitian matrices, and let \(\widetilde{A}=A+E\) be a perturbation of A, then
Theorem 1.3
Let \(A,B \in\mathbb{C}^{n\times n}\) be Hermitian matrices, and let B be a positive definite Hermitian matrix. Then the equalities
hold for \(1\le i\le n\). In particular, if \(B=I_{n}\), we have
Theorem 1.4
([5, p. 336])
Let \(A,B \in\mathbb{C}^{n\times n}\) be Hermitian matrices and \(i,j,k,\ell,\hbar\in\mathbb{N}\) with \(j+k-1\le i\le\ell+\hbar -n-1\). Then
In particular, we have
Let \(A,E\in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix,
Then μ is a sufficient condition for B̃ to be a Hermitian positive definite matrix.
Theorem 1.5
([4])
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then the double inequality
is valid for all \(1\le i\le n\).
Theorem 1.6
([4])
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\varepsilon\triangleq\max_{1\le i\le n} |\lambda_{i} (EB^{-1} ) |<1\), then the double inequality
is valid for all \(1\le i\le n\).
Remark 1.1
Let
Then
Let
Then
These two examples demonstrate that Theorems 1.5 and 1.6 are not necessarily true.
In this paper, we will establish some inequalities of perturbation problems for generalized eigenvalues.
2 Main results
We are now in a position to state and prove our main results in this paper.
Theorem 2.1
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\) and \(i,j,k,\ell,\hbar\in\mathbb {N}\) with \(j+k-1\le i\le\ell+\hbar-n-1\), then
-
1.
when \(\lambda_{i}(A+H)\ge0\), we have
$$ \frac{\lambda_{\ell}(AB^{-1} )+\lambda_{\hbar} (HB^{-1} )}{1+\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{j} (AB^{-1} )+\lambda_{k} (HB^{-1} )}{1-\mu}; $$ -
2.
when \(\lambda_{i}(A+H)\le0\), we have
$$ \frac{\lambda_{j} (AB^{-1} )+\lambda_{k} (HB^{-1} )}{1-\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{\ell}(AB^{-1} )+\lambda_{\hbar} (HB^{-1} )}{1+\mu}. $$
Proof
Since \(B^{-1/2}(A+H)B^{-1/2}\) is a Hermitian matrix, then there exists an orthogonal matrix \(U=(\boldsymbol{u}_{1},\boldsymbol{u}_{2},\dotsc,\boldsymbol{u}_{n})\in \mathbb{C}^{n\times n}\) such that
Let
By virtue of Theorems 1.3 and 1.4, if \(j+k-1\le i\le\ell+\hbar-n-1\), we have
Similarly, we have
The proof of Theorem 2.1 is complete. □
Corollary 2.1
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then
-
1.
when \(\lambda_{i}(A+H)\ge0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\mu}; $$ -
2.
when \(\lambda_{i}(A+H)\le0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\mu}. $$
Corollary 2.2
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then
-
1.
when \(\lambda_{i}(A+H)\ge0\) for \(1\le i\le n\), then
$$ \frac{1}{1+\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)-\frac{\|H\| }{\lambda_{n}(B)} \biggr] \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{1}{1-\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)+\frac{\| H\|}{\lambda_{n}(B)} \biggr]; $$ -
2.
when \(\lambda_{i}(A+H)\le0\) for \(1\le i\le n\), then
$$ \frac{1}{1-\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)-\frac{\|H\| }{\lambda_{n}(B)} \biggr] \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{1}{1+\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)+\frac{\| H\|}{\lambda_{n}(B)} \biggr]. $$
Theorem 2.2
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\varepsilon=\max_{1\le i\le n} |\lambda_{i} (EB^{-1} ) |<1\), then
-
1.
when \(\lambda_{i}(A+H)\ge0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\varepsilon} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\varepsilon}; $$ -
2.
when \(\lambda_{i}(A+H)\le0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\varepsilon} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\varepsilon}. $$
Proof
Using inequalities (2.1) and (2.2), we obtain the required results. The proof of Theorem 2.2 is thus complete. □
Theorem 2.3
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then
for \(1\le i\le n\), where
Proof
Since
for \(1\le i\le n\). From inequalities in (2.1) and (2.2), it follows that
for \(1\le i\le n\). The proof of Theorem 2.3 is complete. □
References
Amir-Moéz, A.R.: Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations. Duke Math. J. 23, 463–476 (1956). https://doi.org/10.1215/S0012-7094-56-02343-2
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Software, Environments and Tools, vol. 11. Society for Industrial and Applied Mathematics, Philadelphia (2000). https://doi.org/10.1137/1.9780898719581
Elsner, L.: An optimal bound for the spectral variation of two matrices. Linear Algebra Appl. 71, 77–80 (1985). https://doi.org/10.1016/0024-3795(85)90236-8
Huang, L.: Some perturbation problems for the generalized eigenvalues. Acta Sci. Nat. Univ. Pekin. 1978 22–27 (1978)
Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011). https://doi.org/10.1007/978-0-387-68276-1
Acknowledgements
The authors appreciate the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.
Funding
The first and third authors were partially supported by the National Natural Science Foundation of China under Grant No. 11361038, by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No. NJZZ18154, and by the Science Research Fund of Inner Mongolia University for Nationalities under Grant No. NMDYB15019, China. The second author was partially supported by the National Research Foundation of Korea (NRF) under Grant Nos. NRF-2016R1A5A1008055 and NRF-2018R1D1A1B07041846, South Korea.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Hong, Y., Lim, D. & Qi, F. Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices. J Inequal Appl 2018, 155 (2018). https://doi.org/10.1186/s13660-018-1749-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1749-0
MSC
- 15B33
- 11R52, 15A42, 15A48, 16H05, 20G20
Keywords
- Generalized eigenvalue
- Hermitian matrix
- Inequality
- Perturbation problem