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Abstract
In the paper, the authors establish some inequalities for generalized eigenvalues of
perturbation problems on Hermitian matrices and modify shortcomings of some
known inequalities for generalized eigenvalues in the related literature.
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1 Introduction
Let A, B ∈ C

n×n be Hermitian matrices with B being positive definite. We now consider
a perturbation problem for Ax = λBx. It is known that the n generalized eigenvalues of
the matrix pencil 〈A, B〉 are real numbers and that the generalized eigenvalues of 〈A, B〉
and the eigenvalues of AB–1 are the same. Without loss of generality, we can line up the
eigenvalues of a Hermitian matrix A as

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

and order the generalized eigenvalues of 〈A, B〉 by

λ1
(
AB–1) ≥ λ2

(
AB–1) ≥ · · · ≥ λn

(
AB–1).

For a standard Hermitian eigenvalue problem Ax = λx, Weyl’s theorem [2] is perhaps
the best-known perturbation result. We denote the spectral norm of a matrix by ‖ · ‖2

which is also called the largest singular value or the matrix 2-norm.
We now recall several known conclusions in the literature.

Theorem 1.1 ([2, Weyl’s theorem]) Let A, E ∈ C
n×n be Hermitian matrices, and let Ã =

A + E be a perturbation of A, then

max
1≤i≤n

∣
∣λi(A) – λi(Ã)

∣
∣ ≤ ‖E‖2.
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Theorem 1.2 ([3]) Let A, E ∈ C
n×n be Hermitian matrices, and let Ã = A + E be a pertur-

bation of A, then

∣∣λ(Ã) – λ(A)
∣∣ ≤ (‖A‖2 + ‖E‖2

)1–1/n‖E‖1/n
2 .

Theorem 1.3 ([1, 4]) Let A, B ∈C
n×n be Hermitian matrices, and let B be a positive definite

Hermitian matrix. Then the equalities

λi
(
AB–1) = max

S⊆C
n

dim S=i

min
0 	=x∈S

{
x∗Ax
x∗Bx

}
= min

T⊆C
n

dim T=n–i+1

max
0 	=x∈T

{
x∗Ax
x∗Bx

}

hold for 1 ≤ i ≤ n. In particular, if B = In, we have

λi(A) = max
S⊆C

n
dim S=i

min
0 	=x∈S

x∗Ax = min
T⊆Cn

dim T=n–i+1

max
0 	=x∈T

x∗Ax, 1 ≤ i ≤ n.

Theorem 1.4 ([5, p. 336]) Let A, B ∈ C
n×n be Hermitian matrices and i, j, k,�,� ∈ N with

j + k – 1 ≤ i ≤ � + � – n – 1. Then

λ�(A) + λ�(A) ≤ λi(A + B) ≤ λj(A) + λk(B).

In particular, we have

λi(A) + λn(B) ≤ λi(A + B) ≤ λi(A) + λ1(B).

Let A, E ∈C
n×n be Hermitian matrices, B be a positive definite Hermitian matrix,

B̃ = B + E, βn = min
1≤i≤n

λi(B), μ =
‖E‖2

βn
=

‖E‖2

λn(B)
.

Then μ is a sufficient condition for B̃ to be a Hermitian positive definite matrix.

Theorem 1.5 ([4]) Let A, B, H , E ∈ C
n×n be Hermitian matrices, B be a positive definite

Hermitian matrix, and B̃ = B + E. If μ = ‖E‖2
λn(B) < 1, then the double inequality

(1 – μ)λi
(
AB–1) + λn

(
HB–1) ≤ λi

(
(A + H )̃B–1) ≤ λi(AB–1) + λ1(HB–1)

1 – μ

is valid for all 1 ≤ i ≤ n.

Theorem 1.6 ([4]) Let A, B, H , E ∈ C
n×n be Hermitian matrices, B be a positive definite

Hermitian matrix, and B̃ = B + E. If ε � max1≤i≤n |λi(EB–1)| < 1, then the double inequality

(1 – ε)λi
(
AB–1) + λn

(
HB–1) ≤ λi

(
(A + H )̃B–1) ≤ λi(AB–1) + λ1(HB–1)

1 – ε

is valid for all 1 ≤ i ≤ n.
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Remark 1.1 Let

A = diag(–3, –2), B = diag(3, 4), H = I2, E = diag(2, 1).

Then

λ2
(
HB–1) + (1 – μ)λ2

(
AB–1) =

1
3

> 0 = λ2
(
(A + H )̃B–1).

Let

A = diag(–3, –2), B = diag(3, 4), H = –2In, E = diag(2, 1).

Then

λ1
(
(A + H )̃B–1) = –

4
5

> –3 =
λ1(AB–1) + λ1(HB–1)

1 – ε
.

These two examples demonstrate that Theorems 1.5 and 1.6 are not necessarily true.

In this paper, we will establish some inequalities of perturbation problems for general-
ized eigenvalues.

2 Main results
We are now in a position to state and prove our main results in this paper.

Theorem 2.1 Let A, B, H , E ∈C
n×n be Hermitian matrices, B be a positive definite Hermi-

tian matrix, and B̃ = B + E. If μ = ‖E‖2
λn(B) < 1 and i, j, k,�,� ∈N with j + k – 1 ≤ i ≤ �+�– n – 1,

then
1. when λi(A + H) ≥ 0, we have

λ�(AB–1) + λ�(HB–1)
1 + μ

≤ λi
(
(A + H )̃B–1) ≤ λj(AB–1) + λk(HB–1)

1 – μ
;

2. when λi(A + H) ≤ 0, we have

λj(AB–1) + λk(HB–1)
1 – μ

≤ λi
(
(A + H )̃B–1) ≤ λ�(AB–1) + λ�(HB–1)

1 + μ
.

Proof Since B–1/2(A + H)B–1/2 is a Hermitian matrix, then there exists an orthogonal ma-
trix U = (u1, u2, . . . , un) ∈C

n×n such that

B–1/2(A + H)B–1/2 = U∗ diag
(
λ1

(
(A + H)B–1), . . . ,λn

(
(A + H)B–1))U .

Let

Ti = Span(ui, ui+1, . . . , un), 1 ≤ i ≤ n.
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By virtue of Theorems 1.3 and 1.4, if j + k – 1 ≤ i ≤ � + � – n – 1, we have

λi
(
(A + H )̃B–1) ≤ max

0 	=x∈T

{
x∗B–1/2(A + H)B–1/2x
x∗(In + B–1/2EB–1/2)x

}

≤
⎧
⎨

⎩

1
1–μ

max0 	=x∈T { x∗B–1/2(A+H)B–1/2x
x∗x }, λi(A + H) ≥ 0;

1
1+μ

max0 	=x∈T { x∗B–1/2(A+H)B–1/2x
x∗x }, λi(A + H) < 0

=

⎧
⎨

⎩

1
1–μ

λi((A + H)B–1), λi(A + H) ≥ 0;
1

1+μ
λi((A + H)B–1), λi(A + H) < 0

≤
⎧
⎨

⎩

λj(AB–1)+λk (HB–1)
1–μ

, λi(A + H) ≥ 0;
λ�(AB–1)+λ�(HB–1)

1+μ
, λi(A + H) < 0.

(2.1)

Similarly, we have

λi
(
(A + H )̃B–1) ≥

⎧
⎨

⎩

λ�(AB–1)+λ�(HB–1)
1+μ

, λi(A + H) ≥ 0;
λj(AB–1)+λk (HB–1)

1–μ
, λi(A + H) < 0.

(2.2)

The proof of Theorem 2.1 is complete. �

Corollary 2.1 Let A, B, H , E ∈ C
n×n be Hermitian matrices, B be a positive definite Her-

mitian matrix, and B̃ = B + E. If μ = ‖E‖2
λn(B) < 1, then

1. when λi(A + H) ≥ 0 for 1 ≤ i ≤ n,

λi(AB–1) + λn(HB–1)
1 + μ

≤ λi
(
(A + H )̃B–1) ≤ λi(AB–1) + λ1(HB–1)

1 – μ
;

2. when λi(A + H) ≤ 0 for 1 ≤ i ≤ n,

λi(AB–1) + λ1(HB–1)
1 – μ

≤ λi
(
(A + H )̃B–1) ≤ λi(AB–1) + λn(HB–1)

1 + μ
.

Corollary 2.2 Let A, B, H , E ∈ C
n×n be Hermitian matrices, B be a positive definite Her-

mitian matrix, and B̃ = B + E. If μ = ‖E‖2
λn(B) < 1, then

1. when λi(A + H) ≥ 0 for 1 ≤ i ≤ n, then

1
1 + μ

[
λi

(
AB–1) –

‖H‖
λn(B)

]
≤ λi

(
(A + H )̃B–1) ≤ 1

1 – μ

[
λi

(
AB–1) +

‖H‖
λn(B)

]
;

2. when λi(A + H) ≤ 0 for 1 ≤ i ≤ n, then

1
1 – μ

[
λi

(
AB–1) –

‖H‖
λn(B)

]
≤ λi

(
(A + H )̃B–1) ≤ 1

1 + μ

[
λi

(
AB–1) +

‖H‖
λn(B)

]
.

Theorem 2.2 Let A, B, H , E ∈C
n×n be Hermitian matrices, B be a positive definite Hermi-

tian matrix, and B̃ = B + E. If ε = max1≤i≤n |λi(EB–1)| < 1, then
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1. when λi(A + H) ≥ 0 for 1 ≤ i ≤ n,

λi(AB–1) + λn(HB–1)
1 + ε

≤ λi
(
(A + H )̃B–1) ≤ λi(AB–1) + λ1(HB–1)

1 – ε
;

2. when λi(A + H) ≤ 0 for 1 ≤ i ≤ n,

λi(AB–1) + λ1(HB–1)
1 – ε

≤ λi
(
(A + H )̃B–1) ≤ λi(AB–1) + λn(HB–1)

1 + ε
.

Proof Using inequalities (2.1) and (2.2), we obtain the required results. The proof of The-
orem 2.2 is thus complete. �

Theorem 2.3 Let A, B, H , E ∈Cn×n be Hermitian matrices, B be a positive definite Hermi-
tian matrix, and B̃ = B + E. If μ = ‖E‖2

λn(B) < 1, then

βi(A)λi
(
AB–1) + βn(H)λn

(
HB–1) ≤ λi

(
(A + H )̃B–1)

≤ αi(A)λi
(
AB–1) + α1(H)λ1

(
HB–1)

for 1 ≤ i ≤ n, where

αi(A) =

⎧
⎨

⎩

1
1–μ

, λi(A) ≥ 0;
1

1+μ
, λi(A) < 0

and βi(A) =

⎧
⎨

⎩

1
1–μ

, λi(A) < 0;
1

1+μ
, λi(A) ≥ 0.

Proof Since

λi
(
B̃–1/2AB̃–1/2) + λn

(
B̃–1/2HB̃–1/2) ≤ λi

(
(A + H )̃B–1)

≤ λi
(
B̃–1/2AB̃–1/2) + λ1

(
B̃–1/2HB̃–1/2)

for 1 ≤ i ≤ n. From inequalities in (2.1) and (2.2), it follows that

βi(A)λi
(
AB–1) ≤ λi

(
B̃–1/2AB̃–1/2) = λi

(
AB̃–1) ≤ αi(A)λi

(
AB–1),

βn(H)λn
(
HB–1) ≤ λn

(
HB̃–1), λ1

(
HB̃–1) ≤ α1(H)λ1

(
AB–1)

for 1 ≤ i ≤ n. The proof of Theorem 2.3 is complete. �
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