# Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions

## Abstract

The authors obtain some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions and generalize some known inequalities.

## Introduction

It is well known from basic calculus that

$$\arcsin x= \int_{0}^{x} \frac{1}{(1-t^{2})^{1/2}}\,dt$$
(1.1)

for $$0\leq x\leq1$$ and

$$\frac{\pi}{2}=\arcsin1= \int_{0}^{1} \frac{1}{(1-t^{2})^{1/2}}\,dt.$$
(1.2)

For $$1< p<\infty$$ and $$0 \leq x \leq1$$, the arc sine may be generalized as

$$\arcsin_{p} x = \int_{0}^{x} {\frac{1}{(1-t^{p})^{1/p}}}\,dt$$
(1.3)

and

$$\frac{\pi_{p}}{2} = \arcsin_{p} 1= \int_{0}^{1} {\frac{1}{ (1-t^{p})^{1/p}}}\,dt.$$
(1.4)

The inverse of $$\arcsin_{p}$$ on $$[0,\frac{\pi_{p}}{2} ]$$ is called the generalized sine function, denoted by $$\sin_{p}$$, and may be extended to $$(-\infty, \infty)$$. In the same way, we can define the generalized cosine function, the generalized tangent function, and their inverses, and also the corresponding hyperbolic functions. For their definitions and formulas, one may see recent references .

In , some classical inequalities for generalized trigonometric and hyperbolic functions, such as Mitrinović–Adamović inequality, Huygens’ inequality, and Wilker’s inequality, were generalized. In , some new second Wilker type inequalities for generalized trigonometric and hyperbolic functions were established. In , some Turán type inequalities for generalized trigonometric and hyperbolic functions were presented. Very recently, a conjecture posed in  was verified in . For more about the Wilker type inequality and Huygens type inequalities, the reader may see .

In this paper, we establish some new Wilker and Cusa type inequalities for the generalized trigonometric and hyperbolic functions. Some known inequalities in  are the special cases of our results.

## Lemmas

### Lemma 2.1

([3, Lemma 2.7])

For $$p \in(1,\infty)$$, we have

$$\cos_{p}^{\alpha}x < \frac{\sin_{p} x}{x}< 1,\quad x\in \biggl(0,\frac{\pi _{p}}{2} \biggr)$$
(2.1)

and

$$\cosh_{p}^{\alpha}x< \frac{\sinh_{p} x}{x}< \cosh_{p}^{\beta}x,\quad x>0,$$
(2.2)

where the constants $$\alpha=\frac{1}{p+1}$$ and $$\beta=1$$ are the best possible.

### Lemma 2.2

([3, Theorem 3.5])

For $$p \in(1,2]$$, then

$$\biggl(\frac{x}{\sin_{p} x} \biggr)^{p} + \frac{x}{\tan_{p} x} > 2,\quad x\in \biggl(0,\frac{\pi_{p}}{2} \biggr).$$
(2.3)

### Lemma 2.3

()

Let $$a>0, b>0$$ and $$r\geq1$$, then

$$(a+b)^{r} \leq2^{r-1} \bigl(a^{r}+b^{r} \bigr).$$
(2.4)

### Lemma 2.4

()

Let $$a_{k}>0, k=1,2,\ldots,n$$, then

$$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\geq \sqrt[n]{(1+a_{1}) (1+a_{2})\cdots(1+a_{n})} -1\geq\sqrt[n]{a_{1} a_{2} \cdots a_{n}}.$$
(2.5)

### Lemma 2.5

([2, Theorem 3.4])

For $$p\in[2,\infty)$$ and $$x\in (0,\frac{\pi_{p}}{2} )$$, then

$$\frac{\sin_{p} x}{x}< \frac{x}{\sinh_{p} x}.$$
(2.6)

### Lemma 2.6

For $$p\in[2,\infty)$$ and $$x\in (0,\frac{\pi_{p}}{2} )$$, we have

$$\biggl(\frac{\sin_{p} x}{x} \biggr)^{p}< \frac{x}{\sinh_{p} x}.$$
(2.7)

### Proof

Using Lemma 2.5 and $$\frac{{\sin_{p} x}}{x} < 1$$, we have

$$\frac{x}{{\sinh_{p} x}} > \frac{{\sin_{p} x}}{x} > \biggl( { \frac{{\sin _{p} x}}{x}} \biggr)^{p}.$$
(2.8)

This implies inequality (2.7). □

### Lemma 2.7

([2, Corollary 3.10])

For $$p\in[2,\infty)$$ and $$x\in (0,\frac{\pi_{p}}{2} )$$, then

$$\biggl( \frac{x}{{\sinh_{p} x}} \biggr)^{p+1}< { \frac{{\sin_{p} x}}{x}}.$$
(2.9)

### Lemma 2.8

([2, Theorem 3.22])

For $$p\in(1,2]$$, the double inequality

$$\frac{\sin_{p} x}{x}< \frac{\cos_{p} x+p}{1+p}\le\frac{\cos_{p} x+2}{3}$$
(2.10)

holds for all $$x\in (0,\frac{\pi_{p}}{2} ]$$.

## Main results

### Theorem 3.1

For $$x\in (0,\frac{\pi_{p}}{2} )$$, $$p\in(1,\infty)$$, and $$\alpha-p\beta\leq0$$, $$\beta>0$$, we have

$$\biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p} x}{x} \biggr)^{\beta}> 2.$$
(3.1)

### Proof

From the arithmetic geometric means inequality and Lemma 2.1, it follows that

\begin{aligned} \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p} x}{x} \biggr)^{\beta}&\geq2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha}{2}} \biggl(\frac{\tan_{p} x}{x} \biggr)^{\frac{\beta}{2}} \\ & = 2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha+\beta}{2}} \biggl(\frac{1}{\cos_{p} x} \biggr)^{\frac{\beta}{2}} \\ & > 2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha+\beta}{2}} \biggl(\frac{\sin_{p} x}{x} \biggr)^{-\frac{(p+1)\beta}{2}} \\ &= 2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha-p\beta}{2}} \\ &\geq2. \end{aligned}

□

### Remark 3.1

If $$p=\alpha=2, \beta=1$$, inequality (3.1) turns into

$$\biggl(\frac{\sin x}{x} \biggr)^{2}+ \frac{\tan x}{x} > 2.$$
(3.2)

Inequality (3.2) is called the first Wilker inequality in .

### Remark 3.2

If $$\alpha=2p, \beta=p$$, and $$p\geq2$$, then $$\alpha-p\beta=2p-p^{2}\leq0$$. So, inequality (3.1) reduces to

$$\biggl(\frac{\sin_{p} x}{x} \biggr)^{2p}+ \biggl( \frac{\tan_{p} x}{x} \biggr)^{p} > 2.$$
(3.3)

### Theorem 3.2

For $$p\in(1,2], x\in (0,\frac{\pi_{p}}{2} )$$, and $$\alpha-p\beta\leq0, \beta\leq-1$$, we have

$$\biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p} x}{x} \biggr)^{\beta}>2.$$
(3.4)

### Proof

Using $$\frac{x}{\sin_{p} x}\geq1$$ and $$\alpha-p\beta\leq0$$, we have

\begin{aligned} \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p} x}{x} \biggr)^{\beta} &= \biggl(\frac{x}{\sin_{p} x} \biggr)^{-\alpha}+ \biggl(\frac{x}{\tan_{p} x} \biggr)^{-\beta} \\ &= \biggl(\frac{x}{\sin_{p} x} \biggr)^{-p\beta} \biggl(\frac{x}{\sin_{p} x} \biggr)^{p\beta-\alpha}+ \biggl(\frac{x}{\tan_{p} x} \biggr)^{-\beta} \\ &\geq \biggl[ \biggl(\frac{x}{\sin_{p} x} \biggr)^{p} \biggr]^{-\beta}+ \biggl(\frac{x}{\tan_{p} x} \biggr)^{-\beta}. \end{aligned}

Applying Lemmas 2.2 and 2.3, we obtain

\begin{aligned} \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p} x}{x} \biggr)^{\beta} \geq2^{1+\beta} \biggl[ \biggl(\frac{x}{\sin_{p} x} \biggr)^{p}+\frac {x}{\tan_{p} x} \biggr]^{-\beta} >2. \end{aligned}

This completes the proof. □

Using the same method as that in Theorem 3.1, we can easily obtain the following Theorem 3.3 by Lemma 2.1 and the arithmetic and geometric means inequality. We omit the proof for the sake of simplicity.

### Theorem 3.3

For $$p\in(1,\infty), x\in (0,\infty)$$, and $$\alpha-p\beta\leq0, \beta>0$$, then

$$\biggl(\frac{\sinh_{p} x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tanh_{p} x}{x} \biggr)^{\beta}>2.$$
(3.5)

### Remark 3.3

Taking $$\alpha=2, \beta=1$$ and $$p=2$$ in inequality (3.5), we have

$$\biggl(\frac{\sinh x}{x} \biggr)^{2}+ \frac{\tanh x}{x} > 2,$$
(3.6)

which is the (4) in Theorem 1 of . Inequality (3.6) is called the first hyperbolic Wilker inequality.

### Remark 3.4

Taking $$\alpha=2p, \beta=p$$, and $$p\in[2,\infty)$$, we have

$$\biggl(\frac{\sinh_{p} x}{x} \biggr)^{2p}+ \biggl( \frac{\tanh_{p} x}{x} \biggr)^{p} > 2.$$
(3.7)

### Theorem 3.4

For all $$x\in (0,\frac{\pi_{p}}{2} )$$ and $$\alpha-p\beta\leq0, \beta>0$$, we have

$$\biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl(\frac {\tan_{p}x}{x} \biggr)^{\beta}\biggr] >4$$
(3.8)

and

$$\biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}>2\sqrt{ \biggl[1+ \biggl( \frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]} -2>2.$$
(3.9)

### Proof

Setting $$n=2, a_{1}= (\frac{\sin_{p}x}{x} )^{\alpha}$$ and $$a_{2}= (\frac{\tan_{p}x}{x} )^{\beta}$$ in Lemma 2.4, we have

\begin{aligned} & \biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl(\frac {\tan_{p}x}{x} \biggr)^{\beta}\biggr] \\ &\quad \geq \biggl[ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\frac{\alpha}{2}} \biggl( \frac{\tan_{p}x}{x} \biggr)^{\frac{\beta}{2}}+1 \biggr]^{2} \\ &\quad > \biggl[ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\frac{\alpha-p\beta }{2}}+1 \biggr]^{2} \\ &\quad > 4. \end{aligned}

Then it follows from Lemma 2.1 that

$$\biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p}x}{x} \biggr)^{\beta}>2\sqrt{ \biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl(\frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]}-2>2.$$

□

### Remark 3.5

If $$n=3$$ and $$a_{1}=a_{2}= (\frac{\sin_{p}x}{x} )^{\alpha}, a_{3}= (\frac{\tan_{p}x}{x} )^{\beta}$$ in Lemma 2.4, it can be easily obtained that

$$\biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr]^{2} \biggl[1+ \biggl(\frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]>8$$
(3.10)

and

$$2 \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}>3 \sqrt{ \biggl[1+ \biggl( \frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr]^{2} \biggl[1+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]} -3>3,$$
(3.11)

by a similar method to that in Theorem 3.4 when changing the condition $$\alpha-p\beta\leq0$$ to $$2\alpha-p\beta\leq0$$.

### Theorem 3.5

For $$p\in[2,\infty), t>0$$, and $$x\in (0,\frac{\pi_{p}}{2} ]$$, then

$$\biggl( {\frac{x}{{\sin_{p} x}}} \biggr)^{pt} + \biggl( { \frac{x}{{\sinh _{p} x}}} \biggr)^{t} > 2.$$
(3.12)

### Proof

Applying the AGM inequality $$a+b\geq2\sqrt{ab}$$ and Lemma 2.6 for $$a = ( {\frac{x}{{\sin_{p} x}}} )^{pt}$$ and $$b = ( {\frac {x}{{\sinh_{p} x}}} )^{t}$$, we obtain

$$a + b \ge2\sqrt{ \biggl( {\frac{x}{{\sin_{p} x}}} \biggr)^{pt} \biggl( { \frac{x}{{\sinh_{p} x}}} \biggr)^{t} } > 2.$$

The proof is completed. □

### Theorem 3.6

For $$p\in[2,\infty), t>0$$ and $$x\in (0,\frac{\pi_{p}}{2} ]$$, then

$$(p+1) \biggl( {\frac{x}{{\sin_{p} x}}} \biggr)^{t} + \biggl( {\frac{x}{{\sinh _{p} x}}} \biggr)^{t} > p + 1.$$
(3.13)

### Proof

From the AGM inequality $$(n+1)a+b\geq(n+1)\sqrt[n+1]{a^{n}b}$$ and Lemma 2.6, for $$a = ( {\frac{x}{{\sin_{p} x}}} )^{t}$$ and $$b = ( {\frac {x}{{\sinh_{p} x}}} )^{t}$$, inequality (3.13) follows readily. □

Applying AGM inequality and Lemma 2.7, Theorems 3.7 and 3.8 can be easily obtained by the similar method as before.

### Theorem 3.7

For $$p\in[2,\infty), t>0$$, and $$x\in (0,\frac{\pi_{p}}{2} ]$$, then

$$\biggl( {\frac{\sinh_{p} x}{{x}}} \biggr)^{(p+1)t} + \biggl( { \frac{\sin _{p} x}{{x}}} \biggr)^{t} > 2.$$
(3.14)

### Theorem 3.8

For $$p\in[2,\infty), t>0$$, and $$x\in (0,\frac{\pi_{p}}{2} ]$$, then

$$(p+2) \biggl( {\frac{\sinh_{p} x}{{x}}} \biggr)^{t} + \biggl( {\frac{\sin_{p} x}{{x}}} \biggr)^{t} > p + 2.$$
(3.15)

Finally, we give a Cusa type inequality.

### Theorem 3.9

For $$p\in(1,2]$$ and $$x\in(0,\frac{\pi_{p}}{2}]$$, the function $$f(x) = \frac{{\ln {\frac{{\sin_{p} x}}{x}}}}{{\ln {\frac{{p + \cos_{p} x}}{p+1}} }}$$ is strictly increasing. Consequently, we have the following inequality:

$$\biggl( {\frac{{p + \cos_{p} x}}{p+1}} \biggr)^{\alpha}< \frac{{\sin_{p} x}}{x} < \biggl( {\frac{{p + \cos_{p} x}}{p+1}} \biggr)^{\beta}$$
(3.16)

with the best constants $$\alpha = \frac{{\ln {\frac{{2\sin_{p} \frac{{\pi_{p} }}{2}}}{{\pi_{p} }}} }}{{\ln{\frac{{p + \cos_{p} \frac{{\pi_{p} }}{2}}}{p+1}} }}$$ and $$\beta=1$$.

### Proof

A simple computation yields

\begin{aligned} &f'(x)\ln^{2} {\frac{{p + \cos_{p} x}}{p+1}} \\ &\quad= \frac{{x\cos_{p} x - \sin_{p} x}}{{x\sin_{p} x}}\ln{\frac{{p + \cos_{p} x}}{p+1}} + \frac{{\cos_{p} x\tan_{p}^{p - 1} x}}{{p + \cos_{p} x}}\ln { \frac{{\sin_{p} x}}{x}} \\ &\quad> {\frac{{x\cos_{p} x - \sin_{p} x}}{{x\sin_{p} x}} + \frac{{\cos_{p} x\tan_{p}^{p - 1} x}}{{p + \cos_{p} x}}}\ln{\frac{{\sin_{p} x}}{x}} \\ &\quad= {\frac{{(x\cos_{p} x - \sin_{p} x)(p + \cos_{p} x) + x\sin_{p} x\cos_{p} x\tan_{p}^{p - 1} x}}{{x\sin_{p} x( p+ \cos_{p} x)}}} \ln{\frac{{\sin_{p} x}}{x}} \\ &\quad= \frac{{\ln {\frac{{\sin_{p} x}}{x}} }}{{x\sin_{p} x( p+ \cos_{p} x)}}g(x), \end{aligned}

where

$$g(x) = x\cos_{p}^{2} x\sec_{p}^{p} x + px\cos_{p} x - p\sin_{p} x - \sin_{p} x \cos_{p} x.$$

Since

$$g'(x) = \cos_{p} x\tan_{p}^{p - 1} xh(x),$$

where

$$h(x) = 2\sin_{p} x - px - (2 - p)x\sec_{p}^{p - 1} x,$$

with

$$h'(x) = 2\cos_{p} x - p - (2 - p) \sec_{p}^{p - 1} x- (2 - p) (p - 1)x\sec _{p}^{p - 1} x\tan_{p}^{p - 1} x$$

and

\begin{aligned} h''(x) ={}& {-} 2\cos_{p} x\tan_{p}^{p - 1} x - 2(2 - p) (p - 1)\sec_{p}^{p - 1} x\tan_{p}^{p - 1} x \\ & {}- (2 - p) (p - 1)^{2} x\sec_{p}^{p - 1} x \tan_{p}^{p - 1} x \bigl(\tan_{p}^{p-1} x + \csc_{p} x\sec_{p}^{p - 1}x\bigr) < 0. \end{aligned}

Hence $$h'(x)$$ is decreasing on $$(0,\frac{\pi_{p}}{2})$$. It then follows that $$h'(x)< h'(0)=0$$, which also implies that $$h(x)< h(0)=0$$. Hence, $$g'(x)<0$$, which shows that the function $$g(x)$$ is also decreasing on $$(0,\frac{\pi_{p}}{2})$$. The inequality $$g(x)< g(0)=0$$ indicates that $$f'(x)>0$$. Hence, $$f(x)$$ is strictly increasing for $$x\in(0,\frac{\pi_{p}}{2})$$. As a result, we have $$f(0)< f(x)\leq f(\frac{\pi_{p}}{2})$$.

Using L’Hôspital’s rule, we obtain that

\begin{aligned} f\bigl(0^{+} \bigr)&= \mathop{\lim} _{x \to0^{+} } \frac{{\ln {\frac{{\sin_{p} x}}{x}} }}{{\ln {\frac{{p + \cos_{p} x}}{p+1}} }} \\ &= \mathop{\lim} _{x \to0^{+} } - \frac{{x\cos_{p} x - \sin_{p} x}}{{x\sin_{p} x}}\frac{{p + \cos_{p} x}}{{\cos_{p} x\tan_{p}^{p - 1} x}} \\ &= - (p+1)\mathop{\lim} _{x \to0^{+} } \frac{{x\cos_{p} x - \sin_{p} x}}{{x^{p + 1} }} \\ &=1 \end{aligned}

and

$$f \biggl(\frac{\pi_{p}}{2} \biggr)=\frac{{\ln {\frac{{2\sin_{p} \frac{{\pi_{p} }}{2}}}{{\pi_{p} }}}}}{{\ln{\frac{{p + \cos_{p} \frac{{\pi_{p} }}{2}}}{p+1}} }}.$$

The proof is completed. □

## A conjecture

### Conjecture 4.1

For all $$x\in(0,\frac{\pi_{p}}{2}]$$ and $$p\in(1,2]$$, is the function $$\frac{{\ln\frac{x}{{\sin_{p} x}}}}{{\ln\cosh_{p} x}}$$ strictly increasing?

## References

1. Jiang, W.-D., Wang, M.-K., Chu, Y.-M., Jiang, Y.-P., Qi, F.: Convexity of the generalized sine function and the generalized hyperbolic sine function. J. Approx. Theory 174, 1–9 (2013). https://doi.org/10.1016/j.jat.2013.06.005

2. Klén, R., Vuorinen, M., Zhang, X.-H.: Inequalities for the generalized trigonometric and hyperbolic functions. J. Math. Anal. Appl. 409(5), 21–529 (2014). https://doi.org/10.1016/j.jmaa.2013.07.021

3. Yin, L., Huang, L.-G., Qi, F.: Some inequalities for the generalized trigonometric and hyperbolic functions. Turk. J. Anal. Number Theory 2(3), 96–101 (2014). https://doi.org/10.12691/tjant-2-3-8

4. Baricz, Á., Bhayo, B.A., Vuorinen, M.: Turán type inequalities for generalized inverse trigonometric functions. Filomat 29(2), 303–313 (2015). https://doi.org/10.2298/FIL1502303B

5. Bhayo, B.A., Vuorinen, M.: Inequalities for eigenfunctions of the p-Laplacian. Probl. Anal. Issues Anal. 2(20), 13–35 (2013). https://doi.org/10.15393/j3.art.2013.2322

6. Jiang, W.-D., Luo, Q.-M., Qi, F.: Refinements and sharpening of some Huygens and Wilker type inequalities. Turk. J. Anal. Number Theory 2(4), 134–139 (2014). https://doi.org/10.12691/tjant-2-4-6

7. Zhu, L.: On Wilker-type inequalities. Math. Inequal. Appl. 10(4), 727–731 (2007). https://doi.org/10.5402/2011/681702

8. Zhu, L.: Some new Wilker type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, 485842 (2009). https://doi.org/10.1155/2009/485842

9. Wu, S.-H., Srivastava, H.M.: A further refinement of Wilker’s inequality. Integral Transforms Spec. Funct. 19(10), 757–765 (2008). https://doi.org/10.1080/10652460802340931

10. Wu, S.-H., Debnath, L.: Wilker-type inequalities for hyperbolic functions. Appl. Math. Lett. 25(5), 837–842 (2012). https://doi.org/10.1016/j.aml.2011.10.028

11. Wu, S.-H.: On extension and refinement of Wilker inequality. Rocky Mt. J. Math. 39(2), 683–687 (2009). https://doi.org/10.1216/RMJ-2009-39-2-683

12. Neuman, E.: Wilker and Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions. Appl. Math. Comput. 230, 211–217 (2014). https://doi.org/10.1016/j.amc.2013.12.136

13. Neuman, E.: On Wilker and Huygens type inequalities. Math. Inequal. Appl. 15(2), 271–279 (2012). https://doi.org/10.7153/mia-15-22

14. Mitrinovic, D.S.: Analytic Inequalities. Springer, New York (1970)

15. Neumann, E., Sándor, J.: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13(4), 715–723 (2010). https://doi.org/10.7153/mia-13-50

16. Qi, F., Niu, D.-W., Guo, B.-N.: Refinements, generalizations, and applications of Jordan’s inequality and related problems. J. Inequal. Appl. 2009, 271923 (2009). https://doi.org/10.1155/2009/271923

## Acknowledgements

The work was supported by NSFC11401041, 51674038, NSF of Shandong Province under grant numbers ZR2017MA019, Science and Technology Project of Shandong Province under grant J16li52, and by the Science Foundation of Binzhou University under grant BZXYL1704. Also the authors would like to thank the editor and the anonymous referees for their valuable suggestions and comments which helped us to improve this paper greatly.

## Author information

Authors

### Contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

### Corresponding author

Correspondence to Li-Guo Huang.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests. 