Skip to main content

Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions

Abstract

The authors obtain some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions and generalize some known inequalities.

Introduction

It is well known from basic calculus that

$$ \arcsin x= \int_{0}^{x} \frac{1}{(1-t^{2})^{1/2}}\,dt $$
(1.1)

for \(0\leq x\leq1\) and

$$ \frac{\pi}{2}=\arcsin1= \int_{0}^{1} \frac{1}{(1-t^{2})^{1/2}}\,dt. $$
(1.2)

For \(1< p<\infty\) and \(0 \leq x \leq1\), the arc sine may be generalized as

$$ \arcsin_{p} x = \int_{0}^{x} {\frac{1}{(1-t^{p})^{1/p}}}\,dt $$
(1.3)

and

$$ \frac{\pi_{p}}{2} = \arcsin_{p} 1= \int_{0}^{1} {\frac{1}{ (1-t^{p})^{1/p}}}\,dt. $$
(1.4)

The inverse of \(\arcsin_{p}\) on \([0,\frac{\pi_{p}}{2} ]\) is called the generalized sine function, denoted by \(\sin_{p}\), and may be extended to \((-\infty, \infty)\). In the same way, we can define the generalized cosine function, the generalized tangent function, and their inverses, and also the corresponding hyperbolic functions. For their definitions and formulas, one may see recent references [13].

In [2], some classical inequalities for generalized trigonometric and hyperbolic functions, such as Mitrinović–Adamović inequality, Huygens’ inequality, and Wilker’s inequality, were generalized. In [3], some new second Wilker type inequalities for generalized trigonometric and hyperbolic functions were established. In [4], some Turán type inequalities for generalized trigonometric and hyperbolic functions were presented. Very recently, a conjecture posed in [5] was verified in [1]. For more about the Wilker type inequality and Huygens type inequalities, the reader may see [613].

In this paper, we establish some new Wilker and Cusa type inequalities for the generalized trigonometric and hyperbolic functions. Some known inequalities in [3] are the special cases of our results.

Lemmas

Lemma 2.1

([3, Lemma 2.7])

For \(p \in(1,\infty)\), we have

$$ \cos_{p}^{\alpha}x < \frac{\sin_{p} x}{x}< 1,\quad x\in \biggl(0,\frac{\pi _{p}}{2} \biggr) $$
(2.1)

and

$$ \cosh_{p}^{\alpha}x< \frac{\sinh_{p} x}{x}< \cosh_{p}^{\beta}x,\quad x>0, $$
(2.2)

where the constants \(\alpha=\frac{1}{p+1}\) and \(\beta=1\) are the best possible.

Lemma 2.2

([3, Theorem 3.5])

For \(p \in(1,2]\), then

$$ \biggl(\frac{x}{\sin_{p} x} \biggr)^{p} + \frac{x}{\tan_{p} x} > 2,\quad x\in \biggl(0,\frac{\pi_{p}}{2} \biggr). $$
(2.3)

Lemma 2.3

([14])

Let \(a>0, b>0\) and \(r\geq1\), then

$$ (a+b)^{r} \leq2^{r-1} \bigl(a^{r}+b^{r} \bigr). $$
(2.4)

Lemma 2.4

([15])

Let \(a_{k}>0, k=1,2,\ldots,n\), then

$$ \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\geq \sqrt[n]{(1+a_{1}) (1+a_{2})\cdots(1+a_{n})} -1\geq\sqrt[n]{a_{1} a_{2} \cdots a_{n}}. $$
(2.5)

Lemma 2.5

([2, Theorem 3.4])

For \(p\in[2,\infty)\) and \(x\in (0,\frac{\pi_{p}}{2} )\), then

$$ \frac{\sin_{p} x}{x}< \frac{x}{\sinh_{p} x}. $$
(2.6)

Lemma 2.6

For \(p\in[2,\infty)\) and \(x\in (0,\frac{\pi_{p}}{2} )\), we have

$$ \biggl(\frac{\sin_{p} x}{x} \biggr)^{p}< \frac{x}{\sinh_{p} x}. $$
(2.7)

Proof

Using Lemma 2.5 and \(\frac{{\sin_{p} x}}{x} < 1\), we have

$$ \frac{x}{{\sinh_{p} x}} > \frac{{\sin_{p} x}}{x} > \biggl( { \frac{{\sin _{p} x}}{x}} \biggr)^{p}. $$
(2.8)

This implies inequality (2.7). □

Lemma 2.7

([2, Corollary 3.10])

For \(p\in[2,\infty)\) and \(x\in (0,\frac{\pi_{p}}{2} )\), then

$$ \biggl( \frac{x}{{\sinh_{p} x}} \biggr)^{p+1}< { \frac{{\sin_{p} x}}{x}}. $$
(2.9)

Lemma 2.8

([2, Theorem 3.22])

For \(p\in(1,2]\), the double inequality

$$ \frac{\sin_{p} x}{x}< \frac{\cos_{p} x+p}{1+p}\le\frac{\cos_{p} x+2}{3} $$
(2.10)

holds for all \(x\in (0,\frac{\pi_{p}}{2} ]\).

Main results

Theorem 3.1

For \(x\in (0,\frac{\pi_{p}}{2} )\), \(p\in(1,\infty)\), and \(\alpha-p\beta\leq0\), \(\beta>0\), we have

$$ \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p} x}{x} \biggr)^{\beta}> 2. $$
(3.1)

Proof

From the arithmetic geometric means inequality and Lemma 2.1, it follows that

$$\begin{aligned} \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p} x}{x} \biggr)^{\beta}&\geq2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha}{2}} \biggl(\frac{\tan_{p} x}{x} \biggr)^{\frac{\beta}{2}} \\ & = 2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha+\beta}{2}} \biggl(\frac{1}{\cos_{p} x} \biggr)^{\frac{\beta}{2}} \\ & > 2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha+\beta}{2}} \biggl(\frac{\sin_{p} x}{x} \biggr)^{-\frac{(p+1)\beta}{2}} \\ &= 2 \biggl(\frac{\sin_{p} x}{x} \biggr)^{\frac{\alpha-p\beta}{2}} \\ &\geq2. \end{aligned}$$

 □

Remark 3.1

If \(p=\alpha=2, \beta=1\), inequality (3.1) turns into

$$ \biggl(\frac{\sin x}{x} \biggr)^{2}+ \frac{\tan x}{x} > 2. $$
(3.2)

Inequality (3.2) is called the first Wilker inequality in [16].

Remark 3.2

If \(\alpha=2p, \beta=p\), and \(p\geq2\), then \(\alpha-p\beta=2p-p^{2}\leq0\). So, inequality (3.1) reduces to

$$ \biggl(\frac{\sin_{p} x}{x} \biggr)^{2p}+ \biggl( \frac{\tan_{p} x}{x} \biggr)^{p} > 2. $$
(3.3)

Theorem 3.2

For \(p\in(1,2], x\in (0,\frac{\pi_{p}}{2} )\), and \(\alpha-p\beta\leq0, \beta\leq-1\), we have

$$ \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p} x}{x} \biggr)^{\beta}>2. $$
(3.4)

Proof

Using \(\frac{x}{\sin_{p} x}\geq1\) and \(\alpha-p\beta\leq0\), we have

$$\begin{aligned} \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p} x}{x} \biggr)^{\beta} &= \biggl(\frac{x}{\sin_{p} x} \biggr)^{-\alpha}+ \biggl(\frac{x}{\tan_{p} x} \biggr)^{-\beta} \\ &= \biggl(\frac{x}{\sin_{p} x} \biggr)^{-p\beta} \biggl(\frac{x}{\sin_{p} x} \biggr)^{p\beta-\alpha}+ \biggl(\frac{x}{\tan_{p} x} \biggr)^{-\beta} \\ &\geq \biggl[ \biggl(\frac{x}{\sin_{p} x} \biggr)^{p} \biggr]^{-\beta}+ \biggl(\frac{x}{\tan_{p} x} \biggr)^{-\beta}. \end{aligned}$$

Applying Lemmas 2.2 and 2.3, we obtain

$$\begin{aligned} \biggl(\frac{\sin_{p} x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p} x}{x} \biggr)^{\beta} \geq2^{1+\beta} \biggl[ \biggl(\frac{x}{\sin_{p} x} \biggr)^{p}+\frac {x}{\tan_{p} x} \biggr]^{-\beta} >2. \end{aligned}$$

This completes the proof. □

Using the same method as that in Theorem 3.1, we can easily obtain the following Theorem 3.3 by Lemma 2.1 and the arithmetic and geometric means inequality. We omit the proof for the sake of simplicity.

Theorem 3.3

For \(p\in(1,\infty), x\in (0,\infty)\), and \(\alpha-p\beta\leq0, \beta>0\), then

$$ \biggl(\frac{\sinh_{p} x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tanh_{p} x}{x} \biggr)^{\beta}>2. $$
(3.5)

Remark 3.3

Taking \(\alpha=2, \beta=1\) and \(p=2\) in inequality (3.5), we have

$$ \biggl(\frac{\sinh x}{x} \biggr)^{2}+ \frac{\tanh x}{x} > 2, $$
(3.6)

which is the (4) in Theorem 1 of [7]. Inequality (3.6) is called the first hyperbolic Wilker inequality.

Remark 3.4

Taking \(\alpha=2p, \beta=p\), and \(p\in[2,\infty)\), we have

$$ \biggl(\frac{\sinh_{p} x}{x} \biggr)^{2p}+ \biggl( \frac{\tanh_{p} x}{x} \biggr)^{p} > 2. $$
(3.7)

Theorem 3.4

For all \(x\in (0,\frac{\pi_{p}}{2} )\) and \(\alpha-p\beta\leq0, \beta>0\), we have

$$ \biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl(\frac {\tan_{p}x}{x} \biggr)^{\beta}\biggr] >4 $$
(3.8)

and

$$ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}>2\sqrt{ \biggl[1+ \biggl( \frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]} -2>2. $$
(3.9)

Proof

Setting \(n=2, a_{1}= (\frac{\sin_{p}x}{x} )^{\alpha}\) and \(a_{2}= (\frac{\tan_{p}x}{x} )^{\beta}\) in Lemma 2.4, we have

$$\begin{aligned} & \biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl(\frac {\tan_{p}x}{x} \biggr)^{\beta}\biggr] \\ &\quad \geq \biggl[ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\frac{\alpha}{2}} \biggl( \frac{\tan_{p}x}{x} \biggr)^{\frac{\beta}{2}}+1 \biggr]^{2} \\ &\quad > \biggl[ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\frac{\alpha-p\beta }{2}}+1 \biggr]^{2} \\ &\quad > 4. \end{aligned}$$

Then it follows from Lemma 2.1 that

$$ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}+ \biggl(\frac{\tan_{p}x}{x} \biggr)^{\beta}>2\sqrt{ \biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr] \biggl[1+ \biggl(\frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]}-2>2. $$

 □

Remark 3.5

If \(n=3\) and \(a_{1}=a_{2}= (\frac{\sin_{p}x}{x} )^{\alpha}, a_{3}= (\frac{\tan_{p}x}{x} )^{\beta}\) in Lemma 2.4, it can be easily obtained that

$$ \biggl[1+ \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr]^{2} \biggl[1+ \biggl(\frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]>8 $$
(3.10)

and

$$ 2 \biggl(\frac{\sin_{p}x}{x} \biggr)^{\alpha}+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}>3 \sqrt[3]{ \biggl[1+ \biggl( \frac{\sin_{p}x}{x} \biggr)^{\alpha}\biggr]^{2} \biggl[1+ \biggl( \frac{\tan_{p}x}{x} \biggr)^{\beta}\biggr]} -3>3, $$
(3.11)

by a similar method to that in Theorem 3.4 when changing the condition \(\alpha-p\beta\leq0\) to \(2\alpha-p\beta\leq0\).

Theorem 3.5

For \(p\in[2,\infty), t>0\), and \(x\in (0,\frac{\pi_{p}}{2} ]\), then

$$ \biggl( {\frac{x}{{\sin_{p} x}}} \biggr)^{pt} + \biggl( { \frac{x}{{\sinh _{p} x}}} \biggr)^{t} > 2. $$
(3.12)

Proof

Applying the AGM inequality \(a+b\geq2\sqrt{ab} \) and Lemma 2.6 for \(a = ( {\frac{x}{{\sin_{p} x}}} )^{pt}\) and \(b = ( {\frac {x}{{\sinh_{p} x}}} )^{t}\), we obtain

$$a + b \ge2\sqrt{ \biggl( {\frac{x}{{\sin_{p} x}}} \biggr)^{pt} \biggl( { \frac{x}{{\sinh_{p} x}}} \biggr)^{t} } > 2. $$

The proof is completed. □

Theorem 3.6

For \(p\in[2,\infty), t>0\) and \(x\in (0,\frac{\pi_{p}}{2} ]\), then

$$ (p+1) \biggl( {\frac{x}{{\sin_{p} x}}} \biggr)^{t} + \biggl( {\frac{x}{{\sinh _{p} x}}} \biggr)^{t} > p + 1. $$
(3.13)

Proof

From the AGM inequality \((n+1)a+b\geq(n+1)\sqrt[n+1]{a^{n}b} \) and Lemma 2.6, for \(a = ( {\frac{x}{{\sin_{p} x}}} )^{t}\) and \(b = ( {\frac {x}{{\sinh_{p} x}}} )^{t}\), inequality (3.13) follows readily. □

Applying AGM inequality and Lemma 2.7, Theorems 3.7 and 3.8 can be easily obtained by the similar method as before.

Theorem 3.7

For \(p\in[2,\infty), t>0\), and \(x\in (0,\frac{\pi_{p}}{2} ]\), then

$$ \biggl( {\frac{\sinh_{p} x}{{x}}} \biggr)^{(p+1)t} + \biggl( { \frac{\sin _{p} x}{{x}}} \biggr)^{t} > 2. $$
(3.14)

Theorem 3.8

For \(p\in[2,\infty), t>0\), and \(x\in (0,\frac{\pi_{p}}{2} ]\), then

$$ (p+2) \biggl( {\frac{\sinh_{p} x}{{x}}} \biggr)^{t} + \biggl( {\frac{\sin_{p} x}{{x}}} \biggr)^{t} > p + 2. $$
(3.15)

Finally, we give a Cusa type inequality.

Theorem 3.9

For \(p\in(1,2]\) and \(x\in(0,\frac{\pi_{p}}{2}]\), the function \(f(x) = \frac{{\ln {\frac{{\sin_{p} x}}{x}}}}{{\ln {\frac{{p + \cos_{p} x}}{p+1}} }} \) is strictly increasing. Consequently, we have the following inequality:

$$ \biggl( {\frac{{p + \cos_{p} x}}{p+1}} \biggr)^{\alpha}< \frac{{\sin_{p} x}}{x} < \biggl( {\frac{{p + \cos_{p} x}}{p+1}} \biggr)^{\beta}$$
(3.16)

with the best constants \(\alpha = \frac{{\ln {\frac{{2\sin_{p} \frac{{\pi_{p} }}{2}}}{{\pi_{p} }}} }}{{\ln{\frac{{p + \cos_{p} \frac{{\pi_{p} }}{2}}}{p+1}} }} \) and \(\beta=1\).

Proof

A simple computation yields

$$\begin{aligned} &f'(x)\ln^{2} {\frac{{p + \cos_{p} x}}{p+1}} \\ &\quad= \frac{{x\cos_{p} x - \sin_{p} x}}{{x\sin_{p} x}}\ln{\frac{{p + \cos_{p} x}}{p+1}} + \frac{{\cos_{p} x\tan_{p}^{p - 1} x}}{{p + \cos_{p} x}}\ln { \frac{{\sin_{p} x}}{x}} \\ &\quad> {\frac{{x\cos_{p} x - \sin_{p} x}}{{x\sin_{p} x}} + \frac{{\cos_{p} x\tan_{p}^{p - 1} x}}{{p + \cos_{p} x}}}\ln{\frac{{\sin_{p} x}}{x}} \\ &\quad= {\frac{{(x\cos_{p} x - \sin_{p} x)(p + \cos_{p} x) + x\sin_{p} x\cos_{p} x\tan_{p}^{p - 1} x}}{{x\sin_{p} x( p+ \cos_{p} x)}}} \ln{\frac{{\sin_{p} x}}{x}} \\ &\quad= \frac{{\ln {\frac{{\sin_{p} x}}{x}} }}{{x\sin_{p} x( p+ \cos_{p} x)}}g(x), \end{aligned}$$

where

$$g(x) = x\cos_{p}^{2} x\sec_{p}^{p} x + px\cos_{p} x - p\sin_{p} x - \sin_{p} x \cos_{p} x. $$

Since

$$g'(x) = \cos_{p} x\tan_{p}^{p - 1} xh(x), $$

where

$$h(x) = 2\sin_{p} x - px - (2 - p)x\sec_{p}^{p - 1} x, $$

with

$$h'(x) = 2\cos_{p} x - p - (2 - p) \sec_{p}^{p - 1} x- (2 - p) (p - 1)x\sec _{p}^{p - 1} x\tan_{p}^{p - 1} x $$

and

$$\begin{aligned} h''(x) ={}& {-} 2\cos_{p} x\tan_{p}^{p - 1} x - 2(2 - p) (p - 1)\sec_{p}^{p - 1} x\tan_{p}^{p - 1} x \\ & {}- (2 - p) (p - 1)^{2} x\sec_{p}^{p - 1} x \tan_{p}^{p - 1} x \bigl(\tan_{p}^{p-1} x + \csc_{p} x\sec_{p}^{p - 1}x\bigr) < 0. \end{aligned}$$

Hence \(h'(x)\) is decreasing on \((0,\frac{\pi_{p}}{2})\). It then follows that \(h'(x)< h'(0)=0\), which also implies that \(h(x)< h(0)=0\). Hence, \(g'(x)<0\), which shows that the function \(g(x)\) is also decreasing on \((0,\frac{\pi_{p}}{2})\). The inequality \(g(x)< g(0)=0\) indicates that \(f'(x)>0\). Hence, \(f(x)\) is strictly increasing for \(x\in(0,\frac{\pi_{p}}{2})\). As a result, we have \(f(0)< f(x)\leq f(\frac{\pi_{p}}{2})\).

Using L’Hôspital’s rule, we obtain that

$$\begin{aligned} f\bigl(0^{+} \bigr)&= \mathop{\lim} _{x \to0^{+} } \frac{{\ln {\frac{{\sin_{p} x}}{x}} }}{{\ln {\frac{{p + \cos_{p} x}}{p+1}} }} \\ &= \mathop{\lim} _{x \to0^{+} } - \frac{{x\cos_{p} x - \sin_{p} x}}{{x\sin_{p} x}}\frac{{p + \cos_{p} x}}{{\cos_{p} x\tan_{p}^{p - 1} x}} \\ &= - (p+1)\mathop{\lim} _{x \to0^{+} } \frac{{x\cos_{p} x - \sin_{p} x}}{{x^{p + 1} }} \\ &=1 \end{aligned}$$

and

$$f \biggl(\frac{\pi_{p}}{2} \biggr)=\frac{{\ln {\frac{{2\sin_{p} \frac{{\pi_{p} }}{2}}}{{\pi_{p} }}}}}{{\ln{\frac{{p + \cos_{p} \frac{{\pi_{p} }}{2}}}{p+1}} }}. $$

The proof is completed. □

A conjecture

Conjecture 4.1

For all \(x\in(0,\frac{\pi_{p}}{2}]\) and \(p\in(1,2]\), is the function \(\frac{{\ln\frac{x}{{\sin_{p} x}}}}{{\ln\cosh_{p} x}} \) strictly increasing?

References

  1. Jiang, W.-D., Wang, M.-K., Chu, Y.-M., Jiang, Y.-P., Qi, F.: Convexity of the generalized sine function and the generalized hyperbolic sine function. J. Approx. Theory 174, 1–9 (2013). https://doi.org/10.1016/j.jat.2013.06.005

    MathSciNet  Article  MATH  Google Scholar 

  2. Klén, R., Vuorinen, M., Zhang, X.-H.: Inequalities for the generalized trigonometric and hyperbolic functions. J. Math. Anal. Appl. 409(5), 21–529 (2014). https://doi.org/10.1016/j.jmaa.2013.07.021

    MathSciNet  MATH  Google Scholar 

  3. Yin, L., Huang, L.-G., Qi, F.: Some inequalities for the generalized trigonometric and hyperbolic functions. Turk. J. Anal. Number Theory 2(3), 96–101 (2014). https://doi.org/10.12691/tjant-2-3-8

    Article  Google Scholar 

  4. Baricz, Á., Bhayo, B.A., Vuorinen, M.: Turán type inequalities for generalized inverse trigonometric functions. Filomat 29(2), 303–313 (2015). https://doi.org/10.2298/FIL1502303B

    MathSciNet  Article  MATH  Google Scholar 

  5. Bhayo, B.A., Vuorinen, M.: Inequalities for eigenfunctions of the p-Laplacian. Probl. Anal. Issues Anal. 2(20), 13–35 (2013). https://doi.org/10.15393/j3.art.2013.2322

    MathSciNet  Article  MATH  Google Scholar 

  6. Jiang, W.-D., Luo, Q.-M., Qi, F.: Refinements and sharpening of some Huygens and Wilker type inequalities. Turk. J. Anal. Number Theory 2(4), 134–139 (2014). https://doi.org/10.12691/tjant-2-4-6

    Article  Google Scholar 

  7. Zhu, L.: On Wilker-type inequalities. Math. Inequal. Appl. 10(4), 727–731 (2007). https://doi.org/10.5402/2011/681702

    MathSciNet  MATH  Google Scholar 

  8. Zhu, L.: Some new Wilker type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, 485842 (2009). https://doi.org/10.1155/2009/485842

    MathSciNet  MATH  Google Scholar 

  9. Wu, S.-H., Srivastava, H.M.: A further refinement of Wilker’s inequality. Integral Transforms Spec. Funct. 19(10), 757–765 (2008). https://doi.org/10.1080/10652460802340931

    MathSciNet  Article  MATH  Google Scholar 

  10. Wu, S.-H., Debnath, L.: Wilker-type inequalities for hyperbolic functions. Appl. Math. Lett. 25(5), 837–842 (2012). https://doi.org/10.1016/j.aml.2011.10.028

    MathSciNet  Article  MATH  Google Scholar 

  11. Wu, S.-H.: On extension and refinement of Wilker inequality. Rocky Mt. J. Math. 39(2), 683–687 (2009). https://doi.org/10.1216/RMJ-2009-39-2-683

    MathSciNet  Article  MATH  Google Scholar 

  12. Neuman, E.: Wilker and Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions. Appl. Math. Comput. 230, 211–217 (2014). https://doi.org/10.1016/j.amc.2013.12.136

    MathSciNet  Google Scholar 

  13. Neuman, E.: On Wilker and Huygens type inequalities. Math. Inequal. Appl. 15(2), 271–279 (2012). https://doi.org/10.7153/mia-15-22

    MathSciNet  MATH  Google Scholar 

  14. Mitrinovic, D.S.: Analytic Inequalities. Springer, New York (1970)

    Book  MATH  Google Scholar 

  15. Neumann, E., Sándor, J.: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13(4), 715–723 (2010). https://doi.org/10.7153/mia-13-50

    MathSciNet  MATH  Google Scholar 

  16. Qi, F., Niu, D.-W., Guo, B.-N.: Refinements, generalizations, and applications of Jordan’s inequality and related problems. J. Inequal. Appl. 2009, 271923 (2009). https://doi.org/10.1155/2009/271923

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by NSFC11401041, 51674038, NSF of Shandong Province under grant numbers ZR2017MA019, Science and Technology Project of Shandong Province under grant J16li52, and by the Science Foundation of Binzhou University under grant BZXYL1704. Also the authors would like to thank the editor and the anonymous referees for their valuable suggestions and comments which helped us to improve this paper greatly.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Li-Guo Huang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, LG., Yin, L., Wang, YL. et al. Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions. J Inequal Appl 2018, 52 (2018). https://doi.org/10.1186/s13660-018-1644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-018-1644-8

MSC

  • 33B10

Keywords

  • Wilker type inequality
  • Cusa type inequality
  • Arithmetic–geometric means inequality
  • Power means inequality
  • Generalized trigonometric function
  • Generalized hyperbolic function