Skip to main content

On a reverse Mulholland’s inequality in the whole plane

Abstract

By introducing multi-parameters, applying the weight coefficients and Hermite–Hadamard’s inequality, we give a reverse of the extended Mulholland inequality in the whole plane with the best possible constant factor. The equivalent forms and a few particular cases are also considered.

Introduction

Assuming that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(a_{n},b_{n}\geq0\), \(0<\sum_{n=1}^{\infty}a_{n}^{p}<\infty\), and \(0<\sum_{n=1}^{\infty }b_{n}^{q}<\infty\), we have the following Hardy–Hilbert inequality (cf. [1]):

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac{\pi}{\sin(\pi/p)} \Biggl( \sum_{n=1}^{\infty}a_{n}^{p} \Biggr) ^{1/p} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{1/q}, $$
(1)

where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible. We still have the following Mulholland inequality with the same best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\) (cf. Theorem 343 of [1], replacing \(\frac{a_{m}}{m}\), \(\frac{b_{n}}{n}\) by \(a_{m}\), \(b_{n}\)):

$$ \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln mn}< \frac{\pi }{\sin(\pi/p)} \Biggl( \sum_{n=2}^{\infty}\frac{a_{m}^{p}}{m^{1-p}} \Biggr) ^{1/p} \Biggl( \sum_{n=2}^{\infty} \frac{b_{n}^{q}}{n^{1-q}} \Biggr) ^{1/q}. $$
(2)

Inequalities (1)–(2) are important in the analysis and its applications (cf. [1, 2]).

In 2007, Yang [3] first gave a Hilbert-type integral inequality in the whole plane as follows:

$$\begin{aligned} & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\frac{f(x)g(y)}{(1+e^{x+y})^{\lambda}}\,dx\,dy \\ &\quad < B \biggl(\frac{\lambda}{2},\frac{\lambda}{2} \biggr) \biggl( \int_{-\infty}^{\infty }e^{-\lambda x}f^{2}(x)\,dx \int_{-\infty}^{\infty}e^{-\lambda y}f^{2}(y)\,dy \biggr)^{\frac{1}{2}}, \end{aligned}$$
(3)

where the constant factor \(B(\frac{\lambda}{2},\frac{\lambda}{2})\) (\(\lambda>0\)) is the best possible. Some new results on inequalities (1)–(3) were provided by [424]. In 2016, Yang and Chen [25] gave a more accurate extension of (1) in the whole plane as follows:

$$\begin{aligned} &\sum_{ \vert n \vert =1}^{\infty}\sum _{ \vert m \vert =1}^{\infty}\frac{a_{m}b_{n}}{ ( \vert m-\xi \vert + \vert n-\eta \vert ) ^{\lambda}} \\ &\quad < 2B ( \lambda _{1},\lambda_{2} ) \Biggl[ \sum _{ \vert m \vert =1}^{\infty} \vert m-\xi \vert ^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert =1}^{\infty} \vert n-\eta \vert ^{q(1-\lambda_{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(4)

where the constant factor \(2B ( \lambda_{1},\lambda_{2} ) \) (\(0<\lambda_{1},\lambda_{2}\leq1\), \(\lambda_{1}+\lambda_{2}=\lambda \), \(\xi , \eta\in{[} 0,\frac{1}{2}]\)) is the best possible. Another result was provided by Xin et al. [26].

In this paper, by introducing multi-parameters, applying the weight coefficients and Hermite–Hadamard’s inequality, we give a reverse of the extension of Mulholland’s inequality (2) in the whole plane with the best possible constant factor similar to the reverse of (4). The equivalent forms and a few particular cases are also considered.

Some lemmas

In the following, we agree that \(0< p<1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\lambda_{1},\lambda_{2}>0\), \(\lambda_{1}+\lambda_{2}=\lambda\leq 1\), \(\alpha,\beta\in{[} \arccos\frac{1}{3},\frac{\pi}{2}]\), \(\xi ,\eta \in{[} 0,\frac{1}{2}]\), and

$$ H_{\gamma}(\lambda_{1}):=\frac{2\pi\csc^{2}\gamma}{\lambda\sin (\frac{\pi\lambda_{1}}{\lambda})}\quad (\gamma= \alpha,\beta). $$
(5)

Remark 1

In view of the conditions that \(\alpha,\beta\in{[} \arccos\frac{1}{3},\frac{\pi}{2}]\), \(\xi,\eta\in{[} 0,\frac{1}{2}]\), it follows that \((\frac{3}{2}\pm\eta)(1\mp\cos\beta)\geq1\) and \((\frac{3}{2}\pm\xi)(1\mp\cos\alpha)\geq1\).

We set the following functions:

$$ A_{\alpha}(\xi,x)= \vert x-\xi \vert +(x-\xi)\cos\alpha, $$

\(B_{\beta}(\eta,y)= \vert y-\eta \vert +(y-\eta)\cos\beta\), and

$$ H(x,y):=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,x)+\ln^{\lambda }B_{\beta }(\eta,y)}\quad \biggl( \vert x \vert , \vert y \vert > \frac{3}{2} \biggr). $$
(6)

Definition 1

Define two weight coefficients as follows:

$$\begin{aligned} &\omega(\lambda_{2},m):=\sum_{ \vert n \vert =2}^{\infty} \frac{H(m,n)}{B_{\beta}(\eta,n)}\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi ,m)}{\ln^{1-\lambda_{2}}B_{\beta}(\eta,n)}, \quad \vert m \vert \in \mathbf{N} \backslash \{1\}, \end{aligned}$$
(7)
$$\begin{aligned} &\varpi(\lambda_{1},n):=\sum_{ \vert m \vert =2}^{\infty} \frac{H(m,n)}{A_{\alpha}(\xi,m)}\frac{\ln^{\lambda_{2}}B_{\beta}(\eta ,n)}{\ln^{1-\lambda_{1}}A_{\alpha}(\xi,m)}, \quad \vert n \vert \in \mathbf{N} \backslash \{1\}, \end{aligned}$$
(8)

where \(\sum_{ \vert j \vert =2}^{\infty}\cdots =\sum_{j=-2}^{-\infty}\cdots+\sum_{j=2}^{\infty}\cdots\) (\(j=m,n\)).

Lemma 1

(cf. [26])

Suppose that \(g(t)\) (>0) is strictly decreasing in \((1,\infty)\), satisfying \(\int_{1}^{\infty}g(t)\,dt\in \mathbf{R}_{+}\). We have

$$ \int_{2}^{\infty}g(t)\,dt< \sum _{n=2}^{\infty}g(n)< \int_{1}^{\infty}g(t)\,dt. $$
(9)

If \((-1)^{i}g(t)>0\) (\(i=0,1,2\); \(t\in(\frac{3}{2},\infty)\)), \(\int_{\frac {3}{2}}^{\infty}g(t)\,dt\in\mathbf{R}_{+}\), then we have the following Hermite–Hadamard inequality (cf. [27]):

$$ \sum_{n=2}^{\infty}g(n)< \int_{\frac{3}{2}}^{\infty}g(t)\,dt. $$
(10)

Lemma 2

For \(0<\lambda\leq1\), \(0<\lambda_{2}<1\), the following inequalities are valid:

$$ H_{\beta}(\lambda_{1}) \bigl(1-\theta(\lambda _{2},m) \bigr)< \omega(\lambda_{2},m)< H_{\beta}( \lambda_{1}),\quad \vert m \vert \in\mathbf{N}\backslash \{1\}, $$
(11)

where

$$\begin{aligned} \theta(\lambda_{2},m) :=&\frac{\lambda}{\pi}\sin \biggl( \frac{\pi\lambda_{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha }(\xi,m)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}}A_{\alpha}(\xi,m)} \biggr) \in(0,1). \end{aligned}$$
(12)

Proof

For \(\vert m \vert \in\mathbf{N}\backslash\{ 1\}\), we set the following functions:

$$\begin{aligned} &H^{(1)}(m,y) :=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln ^{\lambda }[(y-\eta)(\cos\beta-1)]},\quad y< -\frac{3}{2}, \\ &H^{(2)}(m,y) :=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln ^{\lambda }[(y-\eta)(\cos\beta+1)]},\quad y>\frac{3}{2}, \end{aligned}$$

wherefrom

$$ H^{(1)}(m,-y)=\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln ^{\lambda }[(y+\eta)(1-\cos\beta)]},\quad y>\frac{3}{2}. $$

We find

$$\begin{aligned} \omega(\lambda_{2},m) =&\sum_{n=-2}^{-\infty} \frac{H^{(1)}(m,n)\ln ^{\lambda_{1}}A_{\alpha}(\xi,m)}{(n-\eta)(\cos\beta-1)\ln ^{1-\lambda _{2}} [ (n-\eta)(\cos\beta-1) ] } \\ &{}+\sum_{n=2}^{\infty}\frac{H^{(2)}(m,n)\ln^{\lambda_{1}}A_{\alpha }(\xi ,m)}{(n-\eta)(1+\cos\beta)\ln^{1-\lambda_{2}} [ (n-\eta)(1+\cos \beta) ] } \\ =&\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1-\cos\beta}\sum_{n=2}^{\infty} \frac{H^{(1)}(m,-n)}{(n+\eta)\ln^{1-\lambda _{2}}[(n+\eta)(1-\cos\beta)]} \\ &{}+\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1+\cos\beta}\sum_{n=2}^{\infty} \frac{H^{(2)}(m,n)}{(n-\eta)\ln^{1-\lambda _{2}}[(n-\eta)(1+\cos\beta)]}. \end{aligned}$$
(13)

In virtue of \(0<\lambda\leq1\), \(0<\lambda_{2}<1\), we find that for \(y>\frac{3}{2}\),

$$\begin{aligned} &\frac{d}{dy}\frac{H^{(i)}(m,(-1)^{i}y)}{(y-(-1)^{i}\eta)\ln ^{1-\lambda _{2}}[(y-(-1)^{i}\eta)(1+(-1)^{i}\cos\beta)]} < 0, \\ &\frac{d^{2}}{dy^{2}}\frac{H^{(i)}(m,(-1)^{i}y)}{(y-(-1)^{i}\eta)\ln ^{1-\lambda_{2}}[(y-(-1)^{i}\eta)(1+(-1)^{i}\cos\beta)]} >0\quad (i=1.2), \end{aligned}$$

it follows that \(\frac{H^{(i)}(m,(-1)^{i}y)}{(y-(-1)^{i}\eta)\ln ^{1-\lambda_{2}}[(y-(-1)^{i}\eta)(1+(-1)^{i}\cos\beta)]}\) (\(i=1.2\)) are strictly decreasing and strictly convex in \((\frac{3}{2},\infty)\). By (10) and (13) we find

$$\begin{aligned} \omega(\lambda_{2},m) < &\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi ,m)}{1-\cos\beta} \int_{3/2}^{\infty}\frac{H^{(1)}(m,-y)\,dy}{(y+\eta)\ln ^{1-\lambda_{2}}[(y+\eta)(1-\cos\beta)]} \\ &{}+\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1+\cos\beta}\int_{3/2}^{\infty}\frac{H^{(2)}(m,y)\,dy}{(y-\eta)\ln^{1-\lambda _{2}}[(y-\eta)(1+\cos\beta)]}. \end{aligned}$$

Setting \(u=\frac{\ln[(y+\eta)(1-\cos\beta)]}{\ln A_{\alpha}(\xi ,m)}\) (\(u=\frac{\ln[(y-\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)}\)) in the above first (second) integral, in view of Remark 1, by simplifications, we obtain

$$\begin{aligned} \omega(\lambda_{2},m) < & \biggl( \frac{1}{1-\cos\beta}+ \frac{1}{1+\cos \beta} \biggr) \int_{0}^{\infty}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&\frac{2\csc^{2}\beta}{\lambda} \int_{0}^{\infty}\frac{v^{(\lambda _{2}/\lambda)-1}\,dv}{1+v}= \frac{2\pi\csc^{2}\beta}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})}=H_{\beta}(\lambda_{1}). \end{aligned}$$

By (9) and (13), in the same way, we still have

$$\begin{aligned} \omega(\lambda_{2},m) >&\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi ,m)}{1-\cos\beta} \int_{2}^{\infty}\frac{H^{(1)}(m,-y)\,dy}{(y+\eta)\ln ^{1-\lambda_{2}}[(y+\eta)(1-\cos\beta)]} \\ &{}+\frac{\ln^{\lambda_{1}}A_{\alpha}(\xi,m)}{1+\cos\beta}\int_{2}^{\infty}\frac{H^{(2)}(m,y)\,dy}{(y-\eta)\ln^{1-\lambda _{2}}[(y-\eta)(1+\cos\beta)]} \\ \geq& \biggl( \frac{1}{1-\cos\beta}+\frac{1}{1+\cos\beta} \biggr) \int_{\frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi ,m)}}^{\infty}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&H_{\beta}(\lambda_{1})-2\csc^{2}\beta \int_{0}^{\frac{\ln[(2+\eta )(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&H_{\beta}(\lambda_{1}) \bigl(1-\theta(\lambda _{2},m) \bigr)>0, \end{aligned}$$

where \(\theta(\lambda_{2},m)\) is indicated by (12). It follows that \(\theta(\lambda_{2},m)<1\) and

$$\begin{aligned} 0 < &\theta(\lambda_{2},m) \\ < &\frac{\lambda}{\pi}\sin \biggl( \frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)}}u^{\lambda_{2}-1}\,du \\ =&\frac{\lambda}{\pi\lambda_{2}}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \biggl( \frac{\ln[(2+\eta)(1+\cos\beta)]}{\ln A_{\alpha}(\xi,m)} \biggr) ^{\lambda_{2}}. \end{aligned}$$

Hence, (11) and (12) are valid. □

In the same way, for \(0<\lambda\leq1\), \(0<\lambda_{1}<1\), we still have the following.

Lemma 3

The following inequalities are valid:

$$ H_{\alpha}(\lambda_{1}) \bigl(1-\widetilde{\theta}(\lambda _{1},n) \bigr)< \varpi(\lambda_{1},n)< H_{\alpha}( \lambda_{1}), \quad \vert n \vert \in\mathbf{N}\backslash\{1\}, $$
(14)

where

$$\begin{aligned} \widetilde{\theta}(\lambda_{1},n) :=&\frac{\lambda}{\pi}\sin \biggl( \frac{\pi \lambda_{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln[(2+\xi)(1+\cos\alpha)]}{\ln B_{\beta}(\eta,n)}}\frac{u^{\lambda_{1}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{1}}B_{\beta}(\eta,n)} \biggr) \in(0,1). \end{aligned}$$
(15)

Lemma 4

If \((\zeta,\gamma)=(\xi,\alpha)\) (or \((\eta ,\beta)\)), \(\rho>0\), then we have

$$\begin{aligned} h_{\rho}(\zeta,\gamma) :=&\sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{-1-\rho} [ \vert n-\zeta \vert +(n-\zeta)\cos\gamma ] }{ [ \vert n-\zeta \vert +(n-\zeta)\cos\gamma ] } \\ =&\frac{1}{\rho} \bigl(2\csc^{2}\gamma+o(1) \bigr)\quad \bigl( \rho\rightarrow0^{+} \bigr) . \end{aligned}$$
(16)

Proof

Still by (10) we find

$$\begin{aligned} h_{\rho}(\zeta,\gamma) =&\sum_{n=-2}^{-\infty} \frac{\ln^{-1-\rho }[(n-\zeta)(\cos\gamma-1)]}{(n-\zeta)(\cos\gamma-1)} \\ &{}+\sum_{n=2}^{\infty}\frac{\ln^{-1-\rho}[(n-\zeta)(\cos\gamma +1)]}{(n-\zeta)(\cos\gamma+1)} \\ =&\sum_{n=2}^{\infty} \biggl\{ \frac{\ln^{-1-\rho}[(n+\zeta)(1-\cos \gamma)]}{(n+\zeta)(1-\cos\gamma)}+\frac{\ln^{-1-\rho}[(n-\zeta )(\cos \gamma+1)]}{(n-\zeta)(\cos\gamma+1)} \biggr\} \\ \leq& \int_{\frac{3}{2}}^{\infty} \biggl\{ \frac{\ln^{-1-\rho }[(y+\zeta )(1-\cos\gamma)]}{(y+\zeta)(1-\cos\gamma)}+ \frac{\ln^{-1-\rho }[(y-\zeta)(\cos\gamma+1)]}{(y-\zeta)(\cos\gamma+1)} \biggr\} \,dy \\ =&\frac{1}{\rho} \biggl\{ \frac{\ln^{-\rho}[(\frac{3}{2}+\zeta )(1-\cos \gamma)]}{1-\cos\gamma}+\frac{\ln^{-\rho}[(\frac{3}{2}-\zeta )(1+\cos \gamma)]}{1+\cos\gamma} \biggr\} \\ =&\frac{1}{\rho} \biggl\{ \frac{1}{1-\cos\gamma}+\frac {1}{1+\cos\gamma}+o_{1}(1) \biggr\} \quad \bigl(\rho\rightarrow0^{+} \bigr). \end{aligned}$$

By (9), we still can find that

$$\begin{aligned} &h_{\rho}(\zeta,\gamma) \\ &\quad =\sum_{n=2}^{\infty} \biggl\{ \frac{\ln^{-1-\rho}[(n+\zeta)(1-\cos \gamma)]}{(n+\zeta)(1-\cos\gamma)}+\frac{\ln^{-1-\rho}[(n-\zeta )(\cos \gamma+1)]}{(n-\zeta)(\cos\gamma+1)} \biggr\} \\ &\quad \geq \int_{2}^{\infty} \biggl\{ \frac{\ln^{-1-\rho}[(y+\zeta)(1-\cos \gamma)]}{(y+\zeta)(1-\cos\gamma)}+ \frac{\ln^{-1-\rho}[(y-\zeta)(\cos \gamma+1)]}{(y-\zeta)(\cos\gamma+1)} \biggr\} \,dy \\ &\quad = \frac{1}{\rho} \biggl\{ \frac{\ln^{-\rho}[(2+\zeta)(1-\cos \gamma)]}{1-\cos\gamma}+\frac{\ln^{-\rho}[(2-\zeta)(1+\cos\gamma )]}{1+\cos \gamma} \biggr\} \\ &\quad = \frac{1}{\rho} \biggl\{ \frac{1}{1-\cos\gamma}+\frac {1}{1+\cos\gamma}+o_{2}(1) \biggr\} \quad \bigl(\rho\rightarrow0^{+} \bigr). \end{aligned}$$

Hence, we prove that (16) is valid. □

Main results and a few particular cases

We also define

$$ H(\lambda_{1}):=H_{\beta}^{1/p}(\lambda _{1})H_{\alpha}^{1/q}(\lambda_{1})= \frac{2\pi\csc^{2/p}\beta\csc^{2/q}\alpha}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})}. $$
(17)

Theorem 1

Suppose that \(a_{m},b_{n}\geq0\) (\(\vert m \vert , \vert n \vert \in\mathbf{N}\backslash\{1\}\)) and

$$\begin{aligned} &0 < \sum_{ \vert m \vert =2}^{\infty}\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p}< \infty, \\ &0 < \sum_{ \vert n \vert =2}^{\infty}\frac{\ln^{q(1-\lambda _{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q}< \infty. \end{aligned}$$

We have the following reverse equivalent inequalities:

$$\begin{aligned} &\begin{aligned}[b] I:={}&\sum_{ \vert n \vert =2}^{\infty} \sum_{ \vert m \vert =2}^{\infty}\frac{1}{\ln^{\lambda}A_{\alpha}(\xi,m)+\ln^{\lambda }B_{\beta}(\eta,n)}a_{m}b_{n} \\ >{}&H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(18)
$$\begin{aligned} &\begin{aligned}[b] J :={}& \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{p\lambda _{2}-1}B_{\beta}(\eta,n)}{B_{\beta}(\eta,n)} \Biggl( \sum_{ \vert m \vert =2}^{\infty} \frac{a_{m}}{\ln^{\lambda}A_{\alpha}(\xi ,m)+\ln^{\lambda}B_{\beta}(\eta,n)} \Biggr) ^{p} \Biggr] ^{\frac {1}{p}} \\ >{}&H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{1/p}, \end{aligned} \end{aligned}$$
(19)
$$\begin{aligned} &\begin{aligned}[b] L :={}& \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln^{q\lambda _{1}-1}A_{\alpha}(\xi,m)}{(1-\theta(\lambda_{2},m))^{q-1}A_{\alpha }(\xi ,m)} \\ &{}\times \Biggl( \sum_{ \vert n \vert =2}^{\infty} \frac{1}{\ln ^{\lambda}A_{\alpha}(\xi,m)+\ln^{\lambda}B_{\beta}(\eta,n)}b_{n} \Biggr) ^{q} \Biggr] ^{\frac{1}{q}} \\ >{}&H(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta ,n))^{1-q}}b_{n}^{q} \Biggr] ^{1/q}. \end{aligned} \end{aligned}$$
(20)

In particular, (i) for \(\alpha=\beta=\frac{\pi}{2}\), \(\xi,\eta\in {}[ 0,\frac{1}{2}]\), setting

$$\begin{aligned} \theta_{1}(\lambda_{2},m) :=&\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln(2+\eta)}{\ln \vert m-\xi \vert }}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}} \vert m-\xi \vert } \biggr) \in(0,1), \end{aligned}$$
(21)

we have the following reverse equivalent inequalities:

$$\begin{aligned} &\begin{aligned}[b] &\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}\frac{1}{\ln^{\lambda} \vert m-\xi \vert +\ln ^{\lambda} \vert n-\eta \vert }a_{m}b_{n} \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta_{1}(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1} \vert m-\xi \vert }{ \vert m-\xi \vert ^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1} \vert n-\eta \vert }{ \vert n-\eta \vert ^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(22)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl\{ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{p\lambda _{2}-1} \vert n-\eta \vert }{ \vert n-\eta \vert } \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{a_{m}}{\ln^{\lambda } \vert m-\xi \vert +\ln^{\lambda} \vert n-\eta \vert } \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta_{1}(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1} \vert m-\xi \vert }{ \vert m-\xi \vert ^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned} \end{aligned}$$
(23)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln^{q\lambda _{1}-1} \vert m-\xi \vert }{(1-\theta_{1}(\lambda_{2},m))^{q-1} \vert m-\xi \vert } \Biggl( \sum_{ \vert n \vert =2}^{\infty} \frac{1}{\ln ^{\lambda} \vert m-\xi \vert +\ln^{\lambda} \vert n-\eta \vert }b_{n} \Biggr) ^{q} \Biggr] ^{\frac{1}{q}} \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1} \vert n-\eta \vert }{ \vert n-\eta \vert ^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$
(24)

(ii) For \(\xi,\eta=0\), \(\alpha,\beta\in{[} \arccos\frac{1}{3},\frac{\pi}{2}]\), setting

$$\begin{aligned} \theta_{2}(\lambda_{2},m) :=&\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln2(1+\cos\beta)}{\ln( \vert m \vert +m\cos \alpha)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}}( \vert m \vert +m\cos \alpha)} \biggr) \in(0,1), \end{aligned}$$
(25)

we have the following equivalent inequalities:

$$\begin{aligned} &\begin{aligned}[b] &\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}\frac{a_{m}b_{n}}{\ln^{\lambda}( \vert m \vert +m\cos\alpha)+\ln^{\lambda}( \vert n \vert +n\cos\beta)} \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta_{2}(\lambda_{2},m) \bigr) \frac{\ln^{p(1-\lambda_{1})-1}( \vert m \vert +m\cos\alpha)}{( \vert m \vert +m\cos\alpha)^{1-p}} a_{m}^{p} \Biggr] ^{1/p} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}( \vert n \vert +n\cos\beta)}{( \vert n \vert +n\cos\beta)^{1-q}}b_{n}^{q} \Biggr] ^{1/q}, \end{aligned} \end{aligned}$$
(26)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl\{ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{p\lambda _{2}-1}( \vert n \vert +n\cos\beta)}{ \vert n \vert +n\cos\beta} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{a_{m}}{\ln^{\lambda}( \vert m \vert +m\cos\alpha)+\ln^{\lambda }( \vert n \vert +n\cos\beta)} \Biggr] ^{p} \Biggr\} ^{\frac {1}{p}} \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta_{2}(\lambda_{2},m) \bigr) \frac{\ln^{p(1-\lambda_{1})-1}( \vert m \vert +m\cos\alpha)}{( \vert m \vert +m\cos\alpha)^{1-p}} a_{m}^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned} \end{aligned}$$
(27)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln^{q\lambda _{1}-1}( \vert m \vert +m\cos\alpha)}{(1-\theta_{2}(\lambda _{2},m))^{q-1}( \vert m \vert +m\cos \alpha)} \\ &\qquad {}\times \Biggl( \sum_{ \vert n \vert =2}^{\infty} \frac{1}{\ln ^{\lambda}( \vert m \vert +m\cos\alpha)+\ln^{\lambda}( \vert n \vert +n\cos\beta)}b_{n} \Biggr) ^{q} \Biggr] ^{\frac{1}{q}} \\ &\quad > H(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1}( \vert n \vert +n\cos\beta)}{( \vert n \vert +n\cos \beta)^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$
(28)

Proof

By the reverse Hölder inequality with weight (cf. [28]) and (8), we find

$$\begin{aligned} & \Biggl( \sum_{ \vert m \vert =2}^{\infty}H(m,n)a_{m} \Biggr) ^{p} \\ &\quad = \Biggl\{ \sum_{ \vert m \vert =2}^{\infty}H(m,n) \biggl[ \frac{(A_{\alpha}(\xi,m))^{1/q}\ln^{(1-\lambda_{1})/q}A_{\alpha}(\xi ,m)}{\ln ^{(1-\lambda_{2})/p}B_{\beta}(\eta,n)}a_{m} \biggr] \\ &\qquad {}\times \biggl[ \frac{\ln^{(1-\lambda_{2})/p}B_{\beta}(\eta,n)}{(A_{\alpha}(\xi,m))^{1/q}\ln^{(1-\lambda_{1})/q}A_{\alpha}(\xi,m)} \biggr] \Biggr\} ^{p} \\ &\quad \geq \sum_{ \vert m \vert =2}^{\infty}H(m,n) \frac{(A_{\alpha }(\xi,m))^{p/q}\ln^{(1-\lambda_{1})p/q}A_{\alpha}(\xi,m)}{\ln ^{1-\lambda_{2}}B_{\beta}(\eta,n)}a_{m}^{p} \\ &\qquad {}\times \Biggl[ \sum_{ \vert m \vert =2}^{\infty}H(m,n) \frac{\ln ^{(1-\lambda_{2})q/p}B_{\beta}(\eta,n)}{A_{\alpha}(\xi,m)\ln ^{1-\lambda_{1}}A_{\alpha}(\xi,m)} \Biggr] ^{p-1} \\ &\quad =\frac{(\varpi(\lambda_{1},n))^{p-1}B_{\beta}(\eta,n)}{\ln ^{p\lambda _{2}-1}B_{\beta}(\eta,n)}\sum_{ \vert m \vert =2}^{\infty} \frac{H(m,n)(A_{\alpha}(\xi,m))^{\frac{p}{q}}\ln^{(1-\lambda_{1})\frac {p}{q}}A_{\alpha}(\xi,m)}{B_{\beta}(\eta,n)\ln^{1-\lambda_{2}}B_{\beta }(\eta,n)}a_{m}^{p}. \end{aligned}$$

By (14), in view of \(p-1<0\), it follows that

$$\begin{aligned} J >&H_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert n \vert =2}^{\infty}\sum_{ \vert m \vert =2}^{\infty} \frac{H(m,n)(A_{\alpha}(\xi,m))^{p/q}\ln^{(1-\lambda_{1})p/q}A_{\alpha }(\xi ,m)}{B_{\beta}(\eta,n)\ln^{1-\lambda_{2}}B_{\beta}(\eta ,n)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&H_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert =2}^{\infty}\sum_{ \vert n \vert =2}^{\infty} \frac{H(m,n)(A_{\alpha}(\xi,m))^{p/q}\ln^{(1-\lambda_{1})p/q}A_{\alpha }(\xi ,m)}{B_{\beta}(\eta,n)\ln^{1-\lambda_{2}}B_{\beta}(\eta ,n)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&H_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert =2}^{\infty}\omega(\lambda_{2},m) \frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned}$$
(29)

By (11) and (17), we have (19).

Using the reverse Hölder inequality again, we have

$$\begin{aligned} I =&\sum_{ \vert n \vert =2}^{\infty} \Biggl[ \frac{\ln^{\lambda _{2}-(1/p)}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1/p}}\sum_{ \vert m \vert =2}^{\infty}H(m,n)a_{m} \Biggr] \biggl[ \frac{\ln ^{(1/p)-\lambda_{2}}B_{\beta}(\eta,n)}{(B_{\beta}(\eta ,n))^{-1/p}}b_{n} \biggr] \\ \geq&J \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(30)

and then by (19) we have (18).

On the other hand, assuming that (18) is valid, we set

$$ b_{n}:=\frac{\ln^{p\lambda_{2}-1}B_{\beta}(\eta,n)}{B_{\beta }(\eta,n)} \Biggl( \sum _{ \vert m \vert =2}^{\infty}H(m,n)a_{m} \Biggr) ^{p-1},\quad \vert n \vert \in\mathbf{N}\backslash\{1\}, $$

and find

$$ J= \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{p}}. $$

By (29) it follows that \(J>0\). If \(J=\infty\), then (19) is trivially valid; if \(J<\infty\), then we have

$$\begin{aligned} &\begin{aligned} &\sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda _{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \\ &\quad =J^{p}=I \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \\ &\begin{aligned} J &= \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{p}} \\ &> H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned} \end{aligned}$$

Hence (19) is valid, which is equivalent to (18).

We have proved that (18) is valid. Then we set

$$ a_{m}:= \frac{\ln^{q\lambda_{1}-1}A_{\alpha}(\xi,m)}{(1-\theta (\lambda _{2},m))^{q-1}A_{\alpha}(\xi,m)} \Biggl( \sum _{ \vert n \vert =2}^{\infty}H(m,n)b_{n} \Biggr) ^{q-1},\quad \vert m \vert \in\mathbf{N}\backslash\{ 1\}, $$

and find

$$ L= \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta( \lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha }(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{q}}. $$

If \(L=0\), then (20) is impossible, namely \(L>0\). If \(L=\infty \), then (20) is trivially valid; if \(L<\infty\), then we have

$$\begin{aligned} &\begin{aligned} &\sum_{ \vert m \vert =2}^{\infty} \bigl(1- \theta(\lambda _{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha}(\xi ,m))^{1-p}}a_{m}^{p} \\ &\quad =L^{q}=I \\ &\quad >H(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \\ &\begin{aligned} L &= \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\theta (\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha }(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{q}} \\ &>H(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta ,n))^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned} \end{aligned}$$

Hence, (20) is valid.

On the other hand, assuming that (20) is valid, using the reverse Hölder inequality, we have

$$\begin{aligned} I =&\sum_{ \vert m \vert =2}^{\infty} \biggl[ \frac{\ln ^{(1/q)-\lambda_{1}}A_{\alpha}(\xi,m)}{(1-\theta(\lambda _{2},m))^{-1/p}(A_{\alpha}(\xi,m))^{-1/q}}a_{m} \biggr] \\ &{}\times \Biggl[ \frac{\ln^{\lambda_{1}-(1/q)}A_{\alpha}(\xi,m)}{(1-\theta(\lambda_{2},m))^{1/p}(A_{\alpha}(\xi,m))^{1/q}}\sum _{ \vert n \vert =2}^{\infty}H(m,n)b_{n} \Biggr] \\ \geq& \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1- \theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi,m)}{(A_{\alpha }(\xi,m))^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}L, \end{aligned}$$
(31)

and then by (20) we have (18), which is equivalent to (20).

Therefore, inequalities (18), (19), and (20) are equivalent.

The theorem is proved. □

Theorem 2

With regards to the assumptions of Theorem 1, the constant factor \(H(\lambda_{1})\) in (18), (19), and (20) is the best possible.

Proof

For \(0<\varepsilon<p\lambda_{1}\), we set \(\widetilde {\lambda }_{1}=\lambda_{1}-\frac{\varepsilon}{p}\) (\(\in(0,1)\)), \(\widetilde {\lambda}_{2}=\lambda_{2}+\frac{\varepsilon}{p}\) (>0), and

$$\begin{aligned} &\widetilde{a}_{m}:=\frac{\ln^{\lambda_{1}-(\varepsilon /p)-1}A_{\alpha }(\xi,m)}{A_{\alpha}(\xi,m)}=\frac{\ln^{\widetilde{\lambda}_{1}-1}A_{\alpha}(\xi,m)}{A_{\alpha}(\xi,m)}\quad \bigl( \vert m \vert \in\mathbf{N}\backslash\{1\} \bigr), \\ &\widetilde{b}_{n}:=\frac{\ln^{\lambda_{2}-(\varepsilon /q)-1}B_{\beta }(\eta,n)}{B_{\beta}(\eta,n)}=\frac{\ln^{\widetilde{\lambda}_{2}-\varepsilon-1}B_{\beta}(\eta,n)}{B_{\beta}(\eta,n)}\quad \bigl( \vert n \vert \in\mathbf{N}\backslash\{ 1\} \bigr). \end{aligned}$$

By (16) and (14) we find

$$\begin{aligned} &\begin{aligned} \widetilde{I}_{1} := {}& \Biggl[ \sum _{ \vert m \vert =2}^{\infty } \bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda _{1})-1}A_{\alpha}(\xi ,m)}{(A_{\alpha}(\xi,m))^{1-p}} \widetilde{a}_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1}B_{\beta}(\eta,n)}{(B_{\beta}(\eta,n))^{1-q}}\widetilde{b}_{n}^{q} \Biggr] ^{\frac{1}{q}} \\ ={}& \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \frac{\ln ^{-1-\varepsilon}A_{\alpha}(\xi,m)}{A_{\alpha}(\xi,m)}-\sum_{ \vert m \vert =2}^{\infty} \frac{O(\ln^{-1-(\lambda_{2}+\varepsilon )}A_{\alpha}(\xi,m))}{A_{\alpha}(\xi,m)} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{-1-\varepsilon}B_{\beta}(\eta,n)}{B_{\beta}(\eta,n)} \Biggr] ^{\frac{1}{q}} \\ ={}&\frac{1}{\varepsilon} \bigl(2\csc^{2}\alpha+o(1)-\varepsilon O(1) \bigr)^{1/p} \bigl(2\csc^{2}\beta+\widetilde{o}(1) \bigr)^{1/q}\quad \bigl(\varepsilon\rightarrow0^{+} \bigr), \end{aligned} \\ &\begin{aligned} \widetilde{I} &:=\sum_{ \vert m \vert =2}^{\infty } \sum_{ \vert n \vert =2}^{\infty}H(m,n)\widetilde{a}_{m}\widetilde{b}_{n} \\ &=\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}H(m,n)\frac{\ln^{\widetilde{\lambda}_{1}-1}A_{\alpha }(\xi ,m)\ln^{\widetilde{\lambda}_{2}-\varepsilon-1}B_{\beta}(\eta,n)}{A_{\alpha}(\xi,m)B_{\beta}(\eta,n)} \\ &=\sum_{ \vert n \vert =2}^{\infty}\varpi(\widetilde{ \lambda}_{1},n)\frac{\ln^{-1-\varepsilon}B_{\beta}(\eta,n)}{B_{\beta }(\eta,n)}< H_{\alpha}( \widetilde{\lambda}_{1})\sum_{ \vert n \vert =2}^{\infty} \frac{\ln^{-1-\varepsilon}B_{\beta}(\eta,n)}{B_{\beta }(\eta,n)} \\ &=\frac{1}{\varepsilon}H_{\alpha} \biggl(\lambda_{1}- \frac{\varepsilon}{p} \biggr) \bigl(2\csc^{2}\beta+ \widetilde{o}(1) \bigr). \end{aligned} \end{aligned}$$

If there exists a positive number \(K\geq H(\lambda_{1})\) such that (18) is still valid when replacing \(H(\lambda_{1})\) by K, then, in particular, we have

$$ \varepsilon\widetilde{I}=\varepsilon\sum_{ \vert m \vert =2}^{\infty} \sum_{ \vert n \vert =2}^{\infty}H(m,n)\widetilde{a}_{m} \widetilde{b}_{n}>\varepsilon K\widetilde{I}_{1}. $$

In view of the above results, it follows that

$$\begin{aligned} &H_{\alpha} \biggl(\lambda_{1}-\frac{\varepsilon}{p} \biggr) \bigl(2\csc^{2}\beta+\widetilde{o}(1) \bigr) >K\cdot \bigl(2 \csc^{2}\alpha+o(1)-\varepsilon O(1) \bigr)^{1/p} \bigl(2 \csc^{2}\beta+\widetilde{o}(1) \bigr)^{1/q}, \end{aligned}$$

and then

$$ \frac{4\pi\csc^{2}\alpha}{\lambda\sin(\frac{\pi\lambda _{1}}{\lambda})}\csc^{2}\beta\geq2K\csc^{2/p}\alpha \csc^{2/q}\beta \quad \bigl(\varepsilon\rightarrow0^{+} \bigr), $$

namely

$$ H(\lambda_{1})=\frac{2\pi}{\lambda\sin(\frac{\pi\lambda _{1}}{\lambda})}\csc^{2/p}\beta\csc ^{2/q}\alpha\geq K. $$

Hence, \(K=H(\lambda_{1})\) is the best possible constant factor in (18).

The constant factor \(H(\lambda_{1})\) in (19) ((20)) is still the best possible. Otherwise we would reach a contradiction by (30) ((31)) that the constant factor in (18) is not the best possible. □

Remark 2

(i) For \(\xi=\eta=0\) in (22), setting

$$\begin{aligned} \widetilde{\theta}_{1}(\lambda_{2},m) :=& \frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda_{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln2}{\ln \vert m \vert }}\frac{u^{\lambda _{2}-1}}{1+u^{\lambda}}\,du \\ =&O \biggl( \frac{1}{\ln^{\lambda_{2}} \vert m \vert } \biggr) \in(0,1), \end{aligned}$$

we have the following new inequality with the best possible constant factor \(\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})}\):

$$\begin{aligned} &\sum_{ \vert n \vert =2}^{\infty}\sum _{ \vert m \vert =2}^{\infty}\frac{a_{m}b_{n}}{\ln^{\lambda} \vert m \vert +\ln ^{\lambda} \vert n \vert } \\ &\quad >\frac{2\pi}{\lambda\sin(\frac{\pi\lambda_{1}}{\lambda})} \Biggl[ \sum_{ \vert m \vert =2}^{\infty} \bigl(1-\widetilde{\theta}_{1}(\lambda_{2},m) \bigr)\frac{\ln^{p(1-\lambda_{1})-1} \vert m \vert }{ \vert m \vert ^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl[ \sum_{ \vert n \vert =2}^{\infty} \frac{\ln ^{q(1-\lambda_{2})-1} \vert n \vert }{ \vert n \vert ^{1-q}}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(32)

It follows that (20) ((22)) is an extension of (29).

(ii) If \(a_{-m}=a_{m}\) and \(b_{-n}=b_{n}\) (\(m,n\in\mathbf{N}\backslash\{1\}\)), setting

$$\begin{aligned} & \theta_{2}(\lambda_{2},m) :=\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln(2+\eta)}{\ln(m-\xi)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du =O \biggl( \frac{1}{\ln^{\lambda_{2}}(m-\xi)} \biggr) \in(0,1), \\ & \theta_{3}(\lambda_{2},m) :=\frac{\lambda}{\pi}\sin \biggl(\frac{\pi\lambda _{1}}{\lambda} \biggr) \int_{0}^{\frac{\ln(2+\eta)}{\ln(m+\xi)}}\frac{u^{\lambda_{2}-1}}{1+u^{\lambda}}\,du =O \biggl( \frac{1}{\ln^{\lambda_{2}}(m+\xi)} \biggr) \in(0,1), \end{aligned}$$

then (22) reduces to

$$\begin{aligned} &\sum_{n=2}^{\infty}\sum _{m=2}^{\infty} \biggl[ \frac{1}{\ln^{\lambda }(m-\xi)+\ln^{\lambda}(n-\eta)}+ \frac{1}{\ln^{\lambda}(m-\xi)+\ln ^{\lambda}(n+\eta)} \\ &\qquad {} +\frac{1}{\ln^{\lambda}(m+\xi)+\ln^{\lambda}(n-\eta)}+\frac{1 }{\ln^{\lambda}(m+\xi)+\ln^{\lambda}(n+\eta)} \biggr] a_{m}b_{n} \\ &\quad >\frac{2\pi}{\lambda\sin(\pi\lambda_{1}/\lambda)} \Biggl\{ \sum_{m=2}^{\infty} \biggl[ \bigl(1-\theta_{2}(\lambda_{2},m) \bigr) \frac{\ln ^{p(1-\lambda_{1})-1}(m-\xi)}{(m-\xi)^{1-p}} \\ &\qquad {} + \bigl(1-\theta_{3}(\lambda_{2},m) \bigr) \frac{\ln^{p(1-\lambda _{1})-1}(m+\xi)}{(m+\xi)^{1-p}} \biggr] a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\qquad {}\times \Biggl\{ \sum_{n=2}^{\infty} \biggl[ \frac{\ln^{q(1-\lambda _{2})-1}(n-\eta)}{(n-\eta)^{1-q}}+\frac{\ln^{q(1-\lambda _{2})-1}(n+\eta)}{(n+\eta)^{1-q}} \biggr] b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(33)

In particular, for \(\xi=\eta=0\), \(\lambda=1\), \(\lambda_{1}=\lambda _{2}=\frac{1}{2}\) in (33), setting

$$ \theta(m):=\frac{1}{\pi} \int_{0}^{\frac{\ln2}{\ln m}}\frac{u^{-1/2}}{1+u}\,du=O \biggl( \frac{1}{\ln^{1/2}m} \biggr) \in(0,1), $$

we have the following reverse Mulholland inequality (2) with the best possible constant π:

$$\begin{aligned} \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln mn} >&\pi \Biggl[ \sum_{m=2}^{\infty} \bigl(1-\theta(m) \bigr) \frac{\ln^{\frac{p}{2}-1}m}{m^{1-p}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{} \times \Biggl( \sum_{n=2}^{\infty} \frac{\ln^{\frac{q}{2}-1}n}{n^{1-q}}b_{n}^{q} \Biggr) ^{\frac{1}{q}}. \end{aligned}$$
(34)

Conclusions

In this paper, by introducing multi-parameters, applying the weight coefficients, and using Hermite–Hadamard’s inequality, we give a reverse of the extension of Mulholland’s inequality in the whole plane with the best possible constant factor in Theorems 12. The equivalent forms and a few particular cases are considered. The technique of real analysis is very important as it is the key to proving the reverse equivalent inequalities with the best possible constant factor. The lemmas and theorems provide an extensive account of this type of inequalities.

References

  1. 1.

    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  2. 2.

    Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

    Google Scholar 

  3. 3.

    Yang, B.: A new Hilbert’s type integral inequality. Soochow J. Math. 33(4), 849–859 (2007)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Gao, M., Yang, B.: On the extended Hilbert’s inequality. Proc. Am. Math. Soc. 126(3), 751–759 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Laith, E.A.: On some extensions of Hardy–Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546828 (2008)

    MathSciNet  Google Scholar 

  7. 7.

    Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Rassias, M.T., Yang, B.: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Vandanjav, A., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Yang, B.: On a more accurate Hardy–Hilbert’s type inequality and its applications. Acta Math. Sin. 49(2), 363–368 (2006)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007)

    Article  MATH  Google Scholar 

  13. 13.

    Zhong, W.: A Hilbert-type linear operator with the norm and its applications. J. Inequal. Appl. 2009, Article ID 494257 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Huang, Q.: On a multiple Hilbert’s inequality with parameters. J. Inequal. Appl. 2010, Article ID 309319 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Krnić, M., Vukovic, P.: On a multidimensional version of the Hilbert type inequality. Anal. Math. 38(4), 291–303 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Huang, Q.: A new extension of Hardy–Hilbert-type inequality. J. Inequal. Appl. 2015, 397 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Huang, Q., Wang, A., Yang, B.: A more accurate half-discrete Hilbert-type inequality with a general nonhomogeneous kernel and operator expressions. Math. Inequal. Appl. 17(1), 367–388 (2014)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Huang, Q., Wu, S., Yang, B.: Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, Article ID 169061 (2014)

    Google Scholar 

  20. 20.

    Rassias, M.T., Yang, B.: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408–418 (2014)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Yang, B., Chen, Q.: A more accurate multidimensional Hardy–Hilbert type inequality with a general homogeneous kernel. J. Math. Inequal. 12(1), 113–128 (2018)

    Google Scholar 

  22. 22.

    Batbold, T., Sawano, Y.: Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces. Math. Inequal. Appl. 20, 263–283 (2017)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Garayev, M.T., Gurudal, M., Okudan, A.: Hardy–Hilbert’s inequality and power inequalities for Berezin numbers of operators. Math. Inequal. Appl. 19, 883–891 (2016)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Xin, D., Yang, B., Chen, Q.: A discrete Hilbert-type inequality in the whole plane. J. Inequal. Appl. 2016, 133 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Chen, Q., Yang, B.: On a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function. SpringerPlus 5, 1317 (2016)

    Article  Google Scholar 

  28. 28.

    Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinesse)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation (Nos. 61370186, 61640222), and the Science and Technology Planning Project Item of Guangzhou City (No. 201707010229). We are grateful for this help.

Author information

Affiliations

Authors

Contributions

BY carried out the mathematical studies, participated in the sequence alignment, and drafted the manuscript. AW participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aizhen Wang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Yang, B. On a reverse Mulholland’s inequality in the whole plane. J Inequal Appl 2018, 38 (2018). https://doi.org/10.1186/s13660-018-1634-x

Download citation

MSC

  • 26D15
  • 47A07

Keywords

  • Mulholland’s inequality
  • Parameter
  • Weight coefficient
  • Equivalent form
  • Reverse