 Research
 Open Access
 Published:
Multivariate systems of nonexpansive operator equations and iterative algorithms for solving them in uniformly convex and uniformly smooth Banach spaces with applications
Journal of Inequalities and Applications volume 2018, Article number: 37 (2018)
Abstract
We prove some existence theorems for solutions of a certain system of multivariate nonexpansive operator equations and calculate the solutions by using the generalized Mann and Halpern iterative algorithms in uniformly convex and uniformly smooth Banach spaces. The results of this paper improve and extend the previously known ones in the literature.
Introduction and preliminaries
Multivariate mathematical analysis is an important branch in mathematical fields and applied science fields. A system of nonlinear operator equations is an essential tool in the broader fields of science and technology. It is also an important method in pure and applied mathematics. Many structures of mathematics can be expressed in the form of fixed point equations. For example, equilibrium problems, variational inequalities, convex optimization, split feasibility problems, and inclusion problems are equivalent to relatively fixed point problems. Furthermore, generalized equilibrium problems, generalized variational inequalities, generalized convex optimization, generalized split feasibility problems, and generalized inclusion problems are equivalent to relatively fixed point equation or systems of nonlinear operator equations (see [1–9]).
Recently, multivariate fixed point theorems of Nvariable nonlinear mappings have been studied by some authors. Many interesting results and their applications have been also given. In 2014, Lee and Kim [5] proved multivariate coupled fixed point theorems on ordered partial metric spaces. In 2016, Su, Petruşel, and Yao [7] presented the concept of a multivariate fixed point and proved a multivariate fixed point theorem for Nvariable contraction mappings, which further generalizes the Banach contraction mapping principle. In 2016, Luo, Su, and Gao [6] presented the concept of a multivariate best proximity point and proved multivariate best proximity point theorems in metric spaces for Nvariable contraction mappings. In 2017, Xu et al. [8] presented the concept of a multivariate contraction mapping in a locally convex topological vector space and proved the multivariate contraction mapping principle in such spaces. In 2017, Guan et al. [4] studied a certain system of Nfixed point operator equations with Npseudocontractive mapping in reflexive Banach spaces and proved existence theorems of solutions. In 2017, Tang et al. [9] studied a certain system of Nvariable variational inequalities and proved existence theorems of solutions.
Our purpose in this paper is to prove some existence theorems for solutions of a certain system of the multivariate nonexpansive operator equations and to calculate the solutions by using the generalized Mann and Halpern iterative algorithms in uniformly convex and uniformly smooth Banach spaces. The results of this paper improve and extend the previously known ones in the literature.
The following classical theorems are useful for the results of this paper.
Theorem 1.1
(Browder and Göhde fixed point theorem [10])
Let X be a real uniformly convex Banach space, and let C be a nonempty closed convex bounded subset of X. Then every nonexpansive mapping \(T: C\rightarrow C\) has a fixed point.
Mann’s iterative process was initially introduced in 1953 by Mann [11]. Mann’s iterative scheme is an important iterative scheme to study the class of nonexpansive mappings. The following is a representative result in recent years.
Theorem 1.2
Let C be a nonempty closed convex subset of a real uniformly convex Banach space X, and let \(T: C\rightarrow C\) be a nonexpansive mapping with nonempty fixed point set \(F(T)\). Let \(\{\alpha_{n}\} \subset[0,1]\) be a sequence of numbers such that \(0< a\leq\alpha_{n}\leq b<1\). Then, for any given \(x_{0} \in X\), the iterative processes \(\{x_{n}\}\) defined by
converges weakly to a fixed point of T.
Halpern’s iterative scheme is also an important iterative scheme to study the class of nonexpansive mappings. Halpern’s iterative process was initially introduced in 1967 by Halpern in the framework of Hilbert spaces [14]. For any \(u, x_{0} \in C\), the sequence \(\{x_{n}\}\) is defined by
where \(\{\alpha_{n}\} \subset[0,1]\). He proved that the sequence \(\{x_{n}\} \) converges weakly to a fixed point of T when \(\alpha_{n}=n^{\alpha}\), \(\alpha\in(0,1)\). In 1997, Lions [15] further proved that the sequence \(\{x_{n}\}\) converges strongly to a fixed point of T in a Hilbert space if \(\{\alpha_{n}\}\) satisfies the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{3}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha _{n}}{\alpha^{2}_{n+1}}=0\).
However, in [11], the real sequence \(\{\alpha_{n}\}\) excluded the canonical choice \(\alpha_{n}=\frac{1}{n+1}\). In 1992, Wittmann [16] proved, still in Hilbert spaces, the strong convergence of (H) to a fixed point of T if \(\{\alpha_{n}\}\) satisfies the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{4}):

\(\lim_{n\rightarrow\infty}\sum_{n=1}^{\infty}\alpha _{n+1}\alpha_{n}<+ \infty\).
The strong convergence of Halpern’s iteration to a fixed point of T has also been proved in Banach spaces [17–19]. In 1997, Shioji and Takahashi [18] extended Wittmann’s result to Banach spaces. In 2002, Xu [19] obtained a strong convergence theorem where \(\{\alpha_{n}\}\) satisfies conditions (C_{1}), (C_{2}), and the following condition:
 (C_{5}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha_{n}}{\alpha_{n}}=0\).
Theorem 1.3
([19])
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X, and let \(T: C\rightarrow C\) be a nonexpansive mapping with nonempty fixed point set \(F(T)\). Let \(\{\alpha_{n}\} \subset[0,1]\) be a sequence of numbers satisfying the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{5}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha_{n}}{\alpha_{n}}=0\).
Then, for any given \(x_{0} \in C\), the iterative processes \(\{x_{n}\}\) defined by
converges strongly to a fixed point of T.
Cartesian product of uniformly convex Banach spaces
Definition 2.1
A Banach space \((X,\\cdot\)\) is said to be uniformly convex if
imply
Theorem 2.2
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a Banach space. If \((X^{N}, \\cdot\_{*})\) is uniformly convex, then X must be uniformly convex.
Proof
We only need to prove the uniformly convexity of \((X, \\cdot\)\). Let
for all \(n\geq1\). Then
and
Since \((X^{N}, \\cdot\_{*})\) is uniformly convex, we have
Hence X is uniformly convex. This completes the proof. □
From Theorem 2.2 we get the following corollary.
Corollary 2.3
Let X be a nonuniformly convex Banach space with norm \(\\cdot\\). Let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a nonuniformly convex Banach space.
Theorem 2.4
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a nonuniformly convex Banach space.
Proof
We only need to check that \((X^{N}, \\cdot\_{*})\) is not uniformly convex. Let \(u \in X\) be such that \(\u\=1\) and
for all \(n=1,2,\ldots\) . Then
for all \(n\geq1\). However, \(\x_{n}y_{n}\_{*}=2\) for all \(n=1,2,\ldots\) . Hence \((X^{N}, \\cdot\_{*})\) is not uniformly convex. This completes the proof. □
Theorem 2.5
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a nonuniformly convex Banach space.
Proof
We only need to check that \((X^{N}, \\cdot\_{*})\) is not uniformly convex. Let \(u \in X\) be such that \(\u\=1\) and
for all \(n=1,2,\ldots\) . Then
for all \(n\geq1\). However, \(\x_{n}y_{n}\_{*}=1\) for all \(n=1,2,\ldots\) . Hence \((X^{N}, \\cdot\_{*})\) is not uniformly convex. This completes the proof. □
Open question 2.6
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Under which conditions \((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space?
Cartesian product of uniformly smooth Banach spaces
Definition 3.1
A Banach space \((X,\\cdot\)\) is said to be uniformly smooth if for any real number \(\varepsilon>0\), there exists a real number \(\delta>0\) such that
implies
Theorem 3.2
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a Banach space. If \((X^{N}, \\cdot\_{*})\) is uniformly smooth, then X must be uniformly smooth.
Proof
We only need to prove the uniform smoothness of \((X, \\cdot\)\). Since \((X^{N}, \\cdot\_{*})\) is uniformly smooth, then for any real number \(\varepsilon>0\), there exists a real number \(\delta>0\) such that
implies
Hence X is uniformly smooth. This completes the proof. □
From Theorem 3.2 we get the following corollary.
Corollary 3.3
Let X be a nonuniformly smooth Banach space with norm \(\\cdot\\), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a nonuniformly smooth Banach space.
Theorem 3.4
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a nonuniformly smooth Banach space.
Proof
We only need to check that \((X^{N}, \\cdot\_{*})\) is not uniformly smooth. Let \(u \in X\) be such that \(\u\=1\) and
for all \(n=1,2,\ldots \) . In this case,
for all \(n=1,2,\ldots\) . Hence \((X^{N}, \\cdot\_{*})\) is not uniformly smooth. This completes the proof. □
Theorem 3.5
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) is a nonuniformly smooth Banach space.
Proof
We only need to check that, \((X^{N}, \\cdot\_{*})\) is not uniformly smooth. Let \(u \in X\) be such that \(\u\=1\) and
for all \(n=1,2,\ldots \) . In this case,
for all \(n=1,2,\ldots\) . Hence \((X^{N}, \\cdot\_{*})\) is not uniformly smooth. This completes the proof. □
Open question 3.6
Let X be a Banach space with norm \(\\cdot\ \), and let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Under which conditions \((X^{N}, \\cdot\_{*})\) is a uniformly smooth Banach space?
Results and discussion
Definition 4.1
Let X be a real normed space, and let C a nonempty subset of X. Let \(T: C^{N}\rightarrow C\) be an Nvariable mapping satisfying the following condition:
where \(x=(x_{1},x_{2},\ldots,x_{N}), y=(y_{1},y_{2},\ldots,y_{N}) \in C^{N}\). Then T is said to be nonexpansive.
Theorem 4.2
Let \((X, \\cdot\)\) be a real uniformly convex Banach space, and let C be a nonempty closed convex bounded subset of X. Let \(T_{i}: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping for all \(i=1,2,\ldots,N\). Let
for all \(x=(x_{1},x_{2},\ldots,x_{N}) \in X^{N}\). Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space. Then there exists an element \(p=(x_{1},x_{2}, \ldots, x_{N})\in C^{N}\) such that
Proof
The operator \(T^{*}: C^{N}\rightarrow C^{N}\) is defined by
for all \(x=(x_{1},x_{2},\ldots,x_{N}) \in C^{N}\), where
Then, for all \(x=(x_{1},x_{2},\ldots,x_{N}), y=(y_{1},y_{2},\ldots,y_{N}) \in C^{N}\), we have that
Hence \(T^{*}\) is a nonexpansive mapping from the nonempty closed convex bounded subset \(C^{N}\) into itself in the uniformly convex Banach space \((X^{N}, \\cdot\_{*})\). By Theorem 1.1 we claim that \(T^{*}\) has a fixed point
that is,
From the definition of \(T^{*}\) we have
This completes the proof. □
Lemma 4.3
([14])
\((X^{N},\\cdot\_{*})^{*}=((X,\\cdot\)^{*})^{N}\).
Lemma 4.4
Let \((X,\\cdot\)\) be a Banach space that satisfies Opial’s condition. Let \(X^{N}=X\times X\times \cdots\times X\) be the Cartesian product space of X. Let
Then \((X^{N}, \\cdot\_{*})\) satisfies Opial’s condition.
Proof
Let
be a sequence converging weakly to a point
in Banach space \((X^{N}, \\cdot\_{*})\). From Lemma 4.3 we know that \(\{x_{i,n}\}\) converges weakly to \(x_{i}\) for all \(i=1,2, \ldots, N\). Since \((X,\\cdot\)\) satisfies Opial’s condition, we have that
for any
not equal to x, which implies that
Then \((X^{N}, \\cdot\_{*})\) satisfies Opial’s condition. This completes the proof. □
Theorem 4.5
Let X be a real uniformly convex Banach space that satisfies Opial’s condition, and let C a nonempty closed convex bounded subset of X. Let \(T_{i}: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping for all \(i=1,2,\ldots,N\). Let
for all \(x=(x_{1},x_{2},\ldots,x_{N}) \in X^{N}\). Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space. Then

(1)
there exists an element \(p=(p_{1},p_{2}, \ldots, p_{N})\in C^{N}\) such that
$$\textstyle\begin{cases} T_{1}(p_{1},p_{2},\ldots,p_{N})=p_{1}, \\ T_{2}(p_{1},p_{2},\ldots,p_{N})=p_{2}, \\ \ldots, \\ T_{i}(p_{1},p_{2},\ldots,p_{N})=p_{i}, \\ \ldots, \\ T_{N}(p_{1},p_{2},\ldots,p_{N})=p_{N}; \end{cases} $$ 
(2)
for any \(x_{0}=(x_{1,0},x_{2,0},x_{3,0},\ldots,x_{N,0}) \in C^{N}\), the iterative sequence \(\{x_{i,n}\}\subset X\) defined by
$$x_{i, n+1}=\alpha_{n} x_{i,n}+(1\alpha_{n})T_{i}(x_{1,n},x_{2,n}, \ldots ,x_{N,n}),\quad n=0,1,2, \ldots, $$converges weakly to \(p_{i}\) for all \(i=1,2,\ldots,N\), where \(0< a\leq\alpha _{n}\leq b<1\) for two constants a, b.
Proof
Conclusion (1) is obtained from Theorem 3.2. Next, we prove conclusion (2). From Lemma 4.4 we know that \((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space that satisfies Opial’s condition. It is easy to see that \(C^{N}\) is a nonempty closed convex bounded subset in Banach space \((X^{N}, \\cdot\_{*})\). The nonexpansive mapping \(T^{*}: C^{N}\rightarrow C^{N}\) is defined as in Theorem 4.2. By Theorem 1.2, for any given \(x_{0} \in C^{N}\), the iterative sequence defined by
converges weakly to a fixed point \(p=(p_{1},p_{2},\ldots ,p_{N})\) of \(T^{*}\), that is,
Let
Then iterative scheme (4.2) can be rewritten as
for all \(i=1,2, \ldots,N\).
By Lemma 4.4, for any \(f_{1}, f_{2},\ldots,f_{N} \in(X, \\cdot\)^{*}\), we have that
Hence
converges to
For any \(1\leq i \leq N\), let \(f_{j}=0\) for \(j\neq i\). From the above result we have that \(f_{i}(x_{i,n})\rightarrow f_{i}(p_{i})\) as \(n\rightarrow \infty\). Hence \(\{x_{i,n}\}\) converges weakly to \(p_{i}\) for all \(i=1,2,\ldots,N\). This completes the proof. □
Theorem 4.6
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X, and let \(T_{i}: C^{N}\rightarrow C\) an Nvarible nonexpansive mapping for all \(i=1,2,\ldots,N\). Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly smooth Banach space and the solution set of the system of operator equations (4.1) is nonempty. Let \(\{\alpha_{n}\} \subset[0,1]\) be a sequence of numbers satisfying the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{3}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha_{n}}{\alpha_{n}}=0\).
Then, for any given \(x_{0}=(x_{1,0},x_{2,0},x_{3,0},\ldots ,x_{N,0}) \in C^{N}\), the iterative processes \(\{x_{n}\}\) defined by
converges strongly to an element \(p_{i} \in C\) for all \(i=1,2,\ldots,N\). The element \(p=(p_{1},p_{2}, \ldots,p_{N})\) is a solution of the system of operator equations (4.1).
Proof
It is easy to see that \(C^{N}\) is a nonempty closed convex subset in the uniformly smooth Banach space \((X^{N}, \\cdot\_{*})\). The nonexpansive mapping \(T^{*}: C^{N}\rightarrow C^{N}\) is defined as in Theorem 4.2. By Theorem 1.3, for any given \(x_{0} \in C^{N}\), the iterative sequence defined by
converges strongly to a fixed point \(p=(p_{1},p_{2},\ldots ,p_{N})\) of \(T^{*}\), that is,
Let
Then iterative scheme (4.3) can be rewritten as
for all \(i=1,2, \ldots,N\). Hence \(\{x_{i,n}\}\) converges strongly to \(p_{i}\) for all \(i=1,2,\ldots,N\). This completes the proof. □
The concept of a coupled fixed point was introduced by Chang and Ma [20] in 1991. Since then, the concept has been of interest to many researchers in metrical fixed point theory [21–24]. In 2006, Bhaskar and Lakshmikantham [24] introduced the concept of a coupled fixed point in the setting of singlevalued mappings and established some coupled fixed point results and found its application to the existence and uniqueness of solutions for periodic boundary value problems. In 2011, Berinde and Borcut [25] introduced the concept of a tripled fixed point for nonlinear mappings in complete metric spaces.
Definition 4.7
([20])
Let X be a nonempty set. An element \((x_{1}, x_{2}) \in X \times X\) is called a coupled fixed point of mapping \(T : X \times X \rightarrow X\) if
Definition 4.8
([25])
Let X be a nonempty set. An element \((x_{1}, x_{2},x_{3}) \in X \times X \times X\) is called a tripled fixed point of a mapping \(T : X \times X \times X \rightarrow X\) if
Definition 4.9
([7])
Let \((X,d)\) be a metric space, and let \(T: X^{N}\rightarrow X\) be an Nvariable mapping. An element \(p\in X\) is called a multivariate fixed point if
Form the above results we get the following corollaries.
Corollary 4.10
Let X be a real uniformly convex Banach space, and let C a nonempty closed convex bounded subset of X. Let \(T: C^{2}\rightarrow C\) be a twovariable nonexpansive mapping. Let
for all \(x=(x_{1},x_{2}) \in X^{2}\). Assume that \((X^{2}, \\cdot\_{*})\) is a uniformly convex Banach space. Then T has a coupled fixed point.
Proof
Let \(T_{1}, T_{2}: C^{2}\rightarrow C\) be defined by
for all \((x_{1},x_{2}) \in C^{2}\). Then \(T_{1}\), \(T_{2}\) are twovariable nonexpansive mappings. By Theorem 4.2 there exists an element \((x_{1},x_{2}) \in C^{2}\) such that
that is,
Then \((x_{1},x_{2})\) is a coupled fixed point of T. This completes the proof. □
By using the same way as in Corollary 4.10, we can get Corollary 4.11.
Corollary 4.11
Let X be a real uniformly convex Banach space, and let C a nonempty closed convex bounded subset of X. Let \(T: C^{3}\rightarrow C\) be a threevariable nonexpansive mapping. Let
for all \(x=(x_{1},x_{2}, x_{3}) \in X^{3}\). Assume that \((X^{3}, \\cdot\ _{*})\) is a uniformly convex Banach space. Then T has a tripled fixed point.
Corollary 4.12
Let X be a real uniformly convex Banach space, and let C be a nonempty closed convex bounded subset of X. Let \(T: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping. Let
for all \(x=(x_{1},x_{2}, \ldots,x_{N}) \in X^{N}\). Assume that \((X^{N}, \ \cdot\_{*})\) is a uniformly convex Banach space. Then T has a multivariate fixed point.
Proof
Let \(T_{i}=T\) for \(i=1,2,\ldots,N\). By Theorem 4.2 there exists an element \(p=(p_{1},p_{2}, \ldots, p_{N})\in C^{N}\) such that
This implies that \(p_{1}=p_{2}=\cdots=p_{N}\). Then T has a multivariate fixed point. This completes the proof. □
By Theorem 4.5 we get the following three corollaries.
Corollary 4.13
Let X be a real uniformly convex Banach space that satisfies Opial’s condition, and let C be a nonempty closed convex bounded subset of X. Let \(T: C^{2}\rightarrow C\) be a twovariable nonexpansive mapping. Let
for all \(x=(x_{1},x_{2}) \in X^{2}\). Assume that \((X^{2}, \\cdot\_{*})\) is a uniformly convex Banach space. Then

(1)
T has a coupled fixed point;

(2)
for any given \(x_{0}=(x_{1,0},x_{2,0}) \in C^{2}\), the iterative sequences \(\{x_{1,n}\}, \{x_{2,n}\}\subset X\) defined by
$$x_{1,n+1}=\alpha_{n} x_{1,n}+(1\alpha_{n})T(x_{1,n},x_{2,n}) $$and
$$x_{2,n+1}=\alpha_{n} x_{2,n}+(1\alpha_{n})T(x_{2,n},x_{1,n}) $$converge weakly to two elements \(p_{1}\) and \(p_{2}\), respectively, and \((p_{1},p_{2})\) is a coupled fixed point of T, where \(0< a\leq\alpha _{n}\leq b<1\) for two constants a, b.
Corollary 4.14
Let X be a real uniformly convex Banach space that satisfies Opial’s condition, and let C be a nonempty closed convex bounded subset of X. Let \(T: C^{3}\rightarrow C\) be a threevariable nonexpansive mapping. Let
for all \(x=(x_{1},x_{2}, x_{3}) \in X^{3}\). Assume that \((X^{3}, \\cdot\ _{*})\) is a uniformly convex Banach space. Then

(1)
T has a tripled fixed point;

(2)
for any given \(x_{0}=(x_{1,0},x_{2,0},x_{3,0}) \in C^{3}\), the iterative sequences \(\{x_{1,n}\}, \{x_{2,n}\}, \{x_{3,n}\}\subset X\) defined by
$$\begin{aligned}& x_{1,n+1}=\alpha_{n} x_{1,n}+(1\alpha_{n})T(x_{1,n},x_{2,n}, x_{3,n}), \\& x_{2,n+1}=\alpha_{n} x_{2,n}+(1\alpha_{n})T(x_{2,n}, x_{3,n}, x_{1,n}), \\& x_{3,n+1}=\alpha_{n} x_{3,n}+(1\alpha_{n})T(x_{3,n}, x_{2,n},x_{1,n}) \end{aligned}$$converge weakly to three elements \(p_{1}\), \(p_{2}\), \(p_{3}\), respectively, and \((p_{1},p_{2},p_{3})\) is a tripled fixed point of T, where \(0< a\leq\alpha _{n}\leq b<1\) for two constants a, b.
Corollary 4.15
Let X be a real uniformly convex Banach space that satisfies Opial’s condition, and let C be a nonempty closed convex bounded subset of X. Let \(T: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping. Let
for all \(x=(x_{1},x_{2},\ldots,x_{N}) \in X^{N}\). Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space. Then

(1)
T has a multivariate fixed point;

(2)
for any given \(x_{0}=(x_{1,0},x_{2,0},x_{3,0},\ldots,x_{N,0}) \in C^{N}\), the iterative sequence \(\{x_{n}\}\subset X\) defined by
$$x_{n+1}=\alpha_{n} x_{n}+(1\alpha_{n})T(x_{1,n},x_{2,n}, \ldots ,x_{N,n}),\quad n=0,1,2, \ldots, $$converges weakly to a multivariate fixed point of T, where \(0< a\leq \alpha_{n}\leq b<1\) for two constants a, b.
By Theorem 4.6 we get the following three corollaries.
Corollary 4.16
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X, and let \(T: C^{2}\rightarrow C\) be a twovariable nonexpansive mapping. Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly smooth Banach space and the coupled fixed point set of T is nonempty. Let \(\{\alpha_{n}\} \subset[0,1]\) be a sequence of numbers satisfying the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{3}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha_{n}}{\alpha_{n}}=0\).
Then, for any given \(x_{0}=(x_{1,0},x_{2,0}) \in C^{2}\), the iterative sequences \(\{x_{1,n}\}, \{x_{2,n}\}\subset X\) defined by
converge strongly to two elements \(p_{1}\), \(p_{2}\), respectively, and \((p_{1},p_{2})\) is a coupled fixed point of T.
Corollary 4.17
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X, and let \(T: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping. Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly smooth Banach space and the tripled fixed point set of T is nonempty. Let \(\{\alpha_{n}\} \subset[0,1]\) be a sequence of numbers satisfying the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{3}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha_{n}}{\alpha_{n}}=0\).
Then, for any given \(x_{0}=(x_{1,0},x_{2,0},x_{3,0}) \in C^{3}\), the iterative sequences \(\{x_{1,n}\}\), \(\{x_{2,n}\}, \{x_{3,n}\}\subset X\) defined by
converge strongly to two elements \(p_{1}\), \(p_{2}\), \(p_{3}\), respectively, and \((p_{1},p_{2},p_{3})\) is a tripled fixed point of T.
Corollary 4.18
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X, and let \(T: C^{3}\rightarrow C\) be a threevariable nonexpansive mapping. Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly smooth Banach space and the fixed point set of T is nonempty. Let \(\{\alpha_{n}\} \subset[0,1]\) be a sequence of numbers satisfying the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{3}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha_{n}}{\alpha_{n}}=0\).
Then, for any given \(x_{0}=(x_{1,0},x_{2,0},x_{3,0},\ldots ,x_{N,0}) \in C^{N}\), the iterative processes \(\{x_{n}\}\) defined by
converges strongly to a multivariate fixed point of T.
Applied example 4.19
We consider the system of equations of trigonometric functions
Let
Then \(T_{1}\), \(T_{2}\), \(T_{3}\) are three nonlinear mappings from \([\pi, +\pi]^{3}\) into \([\pi, +\pi]\). On the other hand, we have that
for all \((x_{1},x_{2},x_{3}), (y_{1},y_{2}, y_{3}) \in[\pi, +\pi]^{3}\). Hence \(T_{1}\), \(T_{2}\), \(T_{3}\) are threevariable nonexpansive mappings from \([\pi, +\pi]^{3}\) into \([\pi, +\pi]\) in the uniformly convex Banach space \(R=(\infty ,+\infty)\). Since \(R^{3}\) with norm
is a uniformly convex Banach space, by Theorem 4.5 the system of operator equations
has a solution \((p_{1}, p_{2}, p_{3})\), and the iterative sequences \(\{x_{1,n}\}, \{x_{2,n}\}, \{x_{3,n}\}\subset X\) defined by
converge to elements \(p_{1}\), \(p_{2}\), \(p_{3}\), respectively, where \(0< a\leq \alpha_{n}\leq b<1\) for two constants a, b. Then the system of equations of trigonometric functions (4.4) has a solution \((p_{1}, p_{2}, p_{3})\), and the iterative sequences \(\{x_{1,n}\}, \{x_{2,n}\}, \{x_{3,n}\}\subset X\) defined by
converge to elements \(p_{1}\), \(p_{2}\), \(p_{3}\), respectively.
Discussion 4.20
An important contribution of this paper is to prove some existence theorems for solutions of certain systems of the multivariate nonexpansive operator equations and to calculate the solutions by using the generalized Mann and Halpern iterative algorithms in uniformly convex and uniformly smooth Banach spaces. To get the desired results, we first need to study the convexity and smoothness of Cartesian products of uniformly convex Banach spaces and uniformly smooth Banach spaces, respectively. On the other hand, we used a clever way to prove the main results. This method converts a nonselfmapping into a selfmapping such that the classical results can be used. Of course, in the main theorems, the assumptions that “\((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space” and “\((X^{N}, \\cdot\_{*})\) is a uniformly smooth Banach space” are still a limitation.
Conclusions
Conclusion 5.1
Let \((X, \\cdot\)\) be a real uniformly convex Banach space, and let C be a nonempty closed convex bounded subset of X. Let \(T_{i}: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping for all \(i=1,2,\ldots,N\). Let
for all \(x=(x_{1},x_{2},\ldots,x_{N}) \in X^{N}\). Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space. Then the system of operator equations
has a solution \(p=(p_{1},p_{2}, \ldots, p_{N})\in C^{N}\).
Conclusion 5.2
Let X be a real uniformly convex Banach space that satisfies Opial’s condition, and let C be a nonempty closed convex bounded subset of X. Let \(T_{i}: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping for all \(i=1,2,\ldots,N\). Let
for all \(x=(x_{1},x_{2},\ldots,x_{N}) \in X^{N}\). Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly convex Banach space. Then the system of operator equations (5.1) has a solution \(p=(p_{1},p_{2}, \ldots, p_{N})\in C^{N}\), and for any \(x_{0}=(x_{1,0},x_{2,0},x_{3,0},\ldots,x_{N,0}) \in C^{N}\), the iterative sequence \(\{x_{i,n}\}\subset X\) defined by
converges weakly to \(p_{i}\) for all \(i=1,2,\ldots,N\), where \(0< a\leq \alpha_{n}\leq b<1\) for two constants a, b.
Conclusion 5.3
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X, and let \(T_{i}: C^{N}\rightarrow C\) be an Nvariable nonexpansive mapping for all \(i=1,2,\ldots,N\). Assume that \((X^{N}, \\cdot\_{*})\) is a uniformly smooth Banach space and the solution set of the system of operator equations (5.1) is nonempty. Let \(\{\alpha_{n}\} \subset[0,1]\) be a sequence of numbers satisfying the following conditions:
 (C_{1}):

\(\sum_{n=1}^{\infty}\alpha_{n}=\infty\);
 (C_{2}):

\(\lim_{n\rightarrow\infty}\alpha_{n}=0\);
 (C_{3}):

\(\lim_{n\rightarrow\infty}\frac{\alpha_{n+1}\alpha_{n}}{\alpha_{n}}=0\).
Then, for any given \(x_{0}=(x_{1,0},x_{2,0},x_{3,0},\ldots ,x_{N,0}) \in C^{N}\), the iterative processes \(\{x_{n}\}\) defined by
converges strongly to an element \(p_{i} \in C\) for all \(i=1,2,\ldots,N\). The element \(p=(p_{1},p_{2}, \ldots, p_{N})\) is a solution of the system of operator equations (5.1).
References
Chang, S., Wang, L., Zhao, Y.: On a class of split equality fixed point problems in Hilbert spaces. J. Nonlinear Var. Anal. 1, 201–212 (2017)
Cho, Y.: Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space. J. Appl. Anal. Comput. 8, 19–31 (2018)
Tang, J., Chang, S., Dong, J.: Split equality fixed point problem for two quasiasymptotically pseudocontractive mappings. J. Nonlinear Funct. Anal. 2017, Article ID 26 (2017)
Guan, J., Tang, Y., Xu, Y., Su, Y.: System of Nfixed point operator equations with Npseudocontractive mapping in reflexive Banach spaces. J. Nonlinear Sci. Appl. 10, 2457–2470 (2017)
Lee, H., Kim, S.: Multivariate coupled fixed point theorems on ordered partial metric spaces. J. Korean Math. Soc. 51, 1189–1207 (2014)
Luo, Y., Su, Y., Gao, W.: Multivariate best proximity point theorems in metric spaces. J. Nonlinear Sci. Appl. 9, 5756–5765 (2016)
Su, Y., Petruşel, A., Yao, J.: Multivariate fixed point theorems for contractions and nonexpansive mappings with applications. Fixed Point Theory Appl. 2016, 9 (2016)
Xu, X., Guan, J., Tang, Y., Su, Y.: Multivariate contraction mapping principle with the error estimate formulas in locally convex topological vector spaces and application. J. Nonlinear Sci. Appl. 10, 1064–1074 (2017)
Tang, Y., Guan, J., Xu, Y., Su, Y.: A kind of system of multivariate variational inequalities and the existence theorem of solutions. J. Inequal. Appl. 2017, 208 (2017)
Agarwal, R., O’Regan, D., Sahu, D.: Fixed Point Theory for LipschitzianType Mappings with Applications. Springer, New York (2009)
Mann, R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)
Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)
Su, Y., Qin, X.: General iteration algorithm and convergence rate optimal model for common fixed points of nonexpansive mappings. Appl. Math. Comput. 86, 271–278 (2007)
Halpern, B.: Fixed points of nonexpansive maps. Bull. Am. Math. Soc. 73, 957–961 (1967)
Lions, L.: Approximation de points de contractions. C. R. Acad. Sci. 284, A1357–A1359 (1997)
Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)
Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)
Shioji, N., Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 125, 3641–3645 (1997)
Xu, H.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Chang, S., Ma, H.: Coupled fixed point of mixed monotone condensing operators and existence theorem of the solution for a class of functional equations arising in dynamic programming. J. Math. Anal. Appl. 160, 468–479 (1991)
Petruşel, A., Petruşel, G., Samet, B., Yao, C.: Coupled fixed point theorems for symmetric contractions in bmetric spaces with applications to operator equation systems. Fixed Point Theory 17(2), 459–478 (2016)
Rus, D.: The fixed point problem for systems of coordinatewise uniformly monotone operators and applications. Mediterr. J. Math. 11(1), 109–122 (2014)
Petrusel, A., Petrusel, G.: A study of a general system of operator equations in bmetric spaces via the vector approach in fixed point theory. J. Fixed Point Theory Appl. 19(3), 1793–1814 (2017)
Bhaskar, T., Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379–1393 (2006)
Berinde, V., Borcut, M.: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 74, 4889–4897 (2011)
Acknowledgements
The authors wish to thank the referees for their valuable comments on an earlier version of this paper. This project is supported by the major project of Hebei North University under grant No. ZD201304.
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript. YS found the main reference of this paper in the literature study and read it with YT. Then JG put forward the main problem and some ideas and methods to deal with the problem. Finally, YX and YS carried out concretely the above ideas and methods, and YT accomplished this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Xu, Y., Guan, J., Tang, Y. et al. Multivariate systems of nonexpansive operator equations and iterative algorithms for solving them in uniformly convex and uniformly smooth Banach spaces with applications. J Inequal Appl 2018, 37 (2018). https://doi.org/10.1186/s1366001816297
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366001816297
Keywords
 Uniformly convex
 Uniformly smooth
 Banach space
 Systems of nonexpansive operator equations
 Solution
 Iterative algorithms