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Abstract
We prove some existence theorems for solutions of a certain system of multivariate
nonexpansive operator equations and calculate the solutions by using the
generalized Mann and Halpern iterative algorithms in uniformly convex and uniformly
smooth Banach spaces. The results of this paper improve and extend the previously
known ones in the literature.
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1 Introduction and preliminaries
Multivariate mathematical analysis is an important branch in mathematical fields and ap-
plied science fields. A system of nonlinear operator equations is an essential tool in the
broader fields of science and technology. It is also an important method in pure and ap-
plied mathematics. Many structures of mathematics can be expressed in the form of fixed
point equations. For example, equilibrium problems, variational inequalities, convex op-
timization, split feasibility problems, and inclusion problems are equivalent to relatively
fixed point problems. Furthermore, generalized equilibrium problems, generalized varia-
tional inequalities, generalized convex optimization, generalized split feasibility problems,
and generalized inclusion problems are equivalent to relatively fixed point equation or sys-
tems of nonlinear operator equations (see [1–9]).

Recently, multivariate fixed point theorems of N-variable nonlinear mappings have been
studied by some authors. Many interesting results and their applications have been also
given. In 2014, Lee and Kim [5] proved multivariate coupled fixed point theorems on or-
dered partial metric spaces. In 2016, Su, Petruşel, and Yao [7] presented the concept of a
multivariate fixed point and proved a multivariate fixed point theorem for N-variable con-
traction mappings, which further generalizes the Banach contraction mapping principle.
In 2016, Luo, Su, and Gao [6] presented the concept of a multivariate best proximity point
and proved multivariate best proximity point theorems in metric spaces for N-variable
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contraction mappings. In 2017, Xu et al. [8] presented the concept of a multivariate con-
traction mapping in a locally convex topological vector space and proved the multivariate
contraction mapping principle in such spaces. In 2017, Guan et al. [4] studied a certain sys-
tem of N-fixed point operator equations with N-pseudo-contractive mapping in reflexive
Banach spaces and proved existence theorems of solutions. In 2017, Tang et al. [9] studied
a certain system of N-variable variational inequalities and proved existence theorems of
solutions.

Our purpose in this paper is to prove some existence theorems for solutions of a certain
system of the multivariate nonexpansive operator equations and to calculate the solutions
by using the generalized Mann and Halpern iterative algorithms in uniformly convex and
uniformly smooth Banach spaces. The results of this paper improve and extend the pre-
viously known ones in the literature.

The following classical theorems are useful for the results of this paper.

Theorem 1.1 (Browder and Göhde fixed point theorem [10]) Let X be a real uniformly
convex Banach space, and let C be a nonempty closed convex bounded subset of X. Then
every nonexpansive mapping T : C → C has a fixed point.

Mann’s iterative process was initially introduced in 1953 by Mann [11]. Mann’s iterative
scheme is an important iterative scheme to study the class of nonexpansive mappings. The
following is a representative result in recent years.

Theorem 1.2 ([12, 13]) Let C be a nonempty closed convex subset of a real uniformly con-
vex Banach space X, and let T : C → C be a nonexpansive mapping with nonempty fixed
point set F(T). Let {αn} ⊂ [0, 1] be a sequence of numbers such that 0 < a ≤ αn ≤ b < 1.
Then, for any given x0 ∈ X, the iterative processes {xn} defined by

xn+1 = αnxn + (1 – αn)Txn

converges weakly to a fixed point of T .

Halpern’s iterative scheme is also an important iterative scheme to study the class of
nonexpansive mappings. Halpern’s iterative process was initially introduced in 1967 by
Halpern in the framework of Hilbert spaces [14]. For any u, x0 ∈ C, the sequence {xn} is
defined by

xn+1 = αnu + (1 – αn)Txn, u ∈ C, (H)

where {αn} ⊂ [0, 1]. He proved that the sequence {xn} converges weakly to a fixed point
of T when αn = n–α , α ∈ (0, 1). In 1997, Lions [15] further proved that the sequence {xn}
converges strongly to a fixed point of T in a Hilbert space if {αn} satisfies the following
conditions:

(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C3) limn→∞ |αn+1–αn|

α2
n+1

= 0.
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However, in [11], the real sequence {αn} excluded the canonical choice αn = 1
n+1 . In 1992,

Wittmann [16] proved, still in Hilbert spaces, the strong convergence of (H) to a fixed
point of T if {αn} satisfies the following conditions:

(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C4) limn→∞

∑∞
n=1 |αn+1 – αn| < +∞.

The strong convergence of Halpern’s iteration to a fixed point of T has also been proved
in Banach spaces [17–19]. In 1997, Shioji and Takahashi [18] extended Wittmann’s result
to Banach spaces. In 2002, Xu [19] obtained a strong convergence theorem where {αn}
satisfies conditions (C1), (C2), and the following condition:

(C5) limn→∞ αn+1–αn
αn

= 0.

Theorem 1.3 ([19]) Let C be a nonempty closed convex subset of a real uniformly smooth
Banach space X, and let T : C → C be a nonexpansive mapping with nonempty fixed point
set F(T). Let {αn} ⊂ [0, 1] be a sequence of numbers satisfying the following conditions:

(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C5) limn→∞ αn+1–αn

αn
= 0.

Then, for any given x0 ∈ C, the iterative processes {xn} defined by

xn+1 = αnu + (1 – αn)Txn, u ∈ C

converges strongly to a fixed point of T .

2 Cartesian product of uniformly convex Banach spaces
Definition 2.1 A Banach space (X,‖ · ‖) is said to be uniformly convex if

xn, yn ∈ X, ‖xn‖ ≤ 1, ‖yn‖ ≤ 1, and lim
n→∞‖xn + yn‖ = 2

imply

lim
n→∞‖xn – yn‖ = 0.

Theorem 2.2 Let X be a Banach space with norm ‖ · ‖, and let XN = X × X × · · · × X be
the Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a Banach space. If (XN ,‖ · ‖∗) is uniformly convex, then X must be
uniformly convex.

Proof We only need to prove the uniformly convexity of (X,‖ · ‖). Let

xn, yn ∈ X, ‖xn‖ ≤ 1, ‖yn‖ ≤ 1, and lim
n→∞‖xn + yn‖ = 2
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for all n ≥ 1. Then

∥
∥(xn, 0, 0, . . . , 0)

∥
∥∗ = ‖xn‖ ≤ 1,

∥
∥(yn, 0, 0, . . . , 0)

∥
∥∗ = ‖yn‖ ≤ 1,

and

lim
n→∞

∥
∥(xn, 0, 0, . . . , 0) + (yn, 0, 0, . . . , 0)

∥
∥∗

= lim
n→∞

∥
∥(xn + yn, 0, 0, . . . , 0)

∥
∥∗

= lim
n→∞‖xn + yn‖ = 2.

Since (XN ,‖ · ‖∗) is uniformly convex, we have

lim
n→∞‖xn – yn‖

= lim
n→∞

∥
∥(xn, 0, 0, . . . , 0) – (yn, 0, 0, . . . , 0)

∥
∥∗

= lim
n→∞

∥
∥(xn – yn, 0, 0, . . . , 0)

∥
∥∗ = 0.

Hence X is uniformly convex. This completes the proof. �

From Theorem 2.2 we get the following corollary.

Corollary 2.3 Let X be a nonuniformly convex Banach space with norm ‖ · ‖. Let XN =
X × X × · · · × X be the Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a nonuniformly convex Banach space.

Theorem 2.4 Let X be a Banach space with norm ‖ · ‖, and let XN = X × X × · · · × X be
the Cartesian product space of X. Let

‖x‖∗ =
N∑

i=1

‖xi‖, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a nonuniformly convex Banach space.

Proof We only need to check that (XN ,‖ · ‖∗) is not uniformly convex. Let u ∈ X be such
that ‖u‖ = 1 and

xn = (u, 0, 0, . . . , 0), yn = (0, u, 0, 0, . . . , 0) ∈ XN
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for all n = 1, 2, . . . . Then

‖xn‖∗ = 1, ‖yn‖∗ = 1, ‖xn + yn‖∗ = 2

for all n ≥ 1. However, ‖xn – yn‖∗ = 2 for all n = 1, 2, . . . . Hence (XN ,‖ · ‖∗) is not uniformly
convex. This completes the proof. �

Theorem 2.5 Let X be a Banach space with norm ‖ · ‖, and let XN = X × X × · · · × X be
the Cartesian product space of X. Let

‖x‖∗ = max
1≤i≤N

‖xi‖, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a nonuniformly convex Banach space.

Proof We only need to check that (XN ,‖ · ‖∗) is not uniformly convex. Let u ∈ X be such
that ‖u‖ = 1 and

xn = (u, 0, 0, . . . , 0), yn = (u, u, 0, 0, . . . , 0) ∈ XN

for all n = 1, 2, . . . . Then

‖xn‖∗ = 1, ‖yn‖∗ = 1, ‖xn + yn‖∗ = 2

for all n ≥ 1. However, ‖xn – yn‖∗ = 1 for all n = 1, 2, . . . . Hence (XN ,‖ · ‖∗) is not uniformly
convex. This completes the proof. �

Open question 2.6 Let X be a Banach space with norm ‖ ·‖, and let XN = X ×X ×· · ·×X
be the Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2, x = (x1, x2, . . . , xN ) ∈ XN .

Under which conditions (XN ,‖ · ‖∗) is a uniformly convex Banach space?

3 Cartesian product of uniformly smooth Banach spaces
Definition 3.1 A Banach space (X,‖ · ‖) is said to be uniformly smooth if for any real
number ε > 0, there exists a real number δ > 0 such that

‖x‖ = 1, 0 < ‖y‖ < δ, x ∈ X, y ∈ X,

implies

‖x + y‖ + ‖x – y‖ – 2
‖y‖ < ε.
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Theorem 3.2 Let X be a Banach space with norm ‖ · ‖, and let XN = X × X × · · · × X be
the Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a Banach space. If (XN ,‖ · ‖∗) is uniformly smooth, then X must be
uniformly smooth.

Proof We only need to prove the uniform smoothness of (X,‖ · ‖). Since (XN ,‖ · ‖∗) is
uniformly smooth, then for any real number ε > 0, there exists a real number δ > 0 such
that

‖x‖ =
∥
∥(x, 0, . . . , 0)

∥
∥∗ = 1, 0 < ‖y‖ =

∥
∥(y, 0, . . . , 0)

∥
∥∗ < δ, x ∈ X, y ∈ X,

implies

‖x + y‖ + ‖x – y‖ – 2
‖y‖ =

‖(x + y, 0, . . . , 0)‖∗ + ‖(x – y, 0, . . . , 0)‖∗ – 2
‖(y, 0)‖∗

< ε.

Hence X is uniformly smooth. This completes the proof. �

From Theorem 3.2 we get the following corollary.

Corollary 3.3 Let X be a nonuniformly smooth Banach space with norm ‖ · ‖, and let
XN = X × X × · · · × X be the Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a nonuniformly smooth Banach space.

Theorem 3.4 Let X be a Banach space with norm ‖ · ‖, and let XN = X × X × · · · × X be
the Cartesian product space of X. Let

‖x‖∗ =
N∑

i=1

‖xi‖, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a nonuniformly smooth Banach space.

Proof We only need to check that (XN ,‖ · ‖∗) is not uniformly smooth. Let u ∈ X be such
that ‖u‖ = 1 and

x = (u, 0, 0, . . . , 0), yn =
(

0,
1
n

u, 0, 0, . . . , 0
)

∈ XN
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for all n = 1, 2, . . . . In this case,

‖x + y‖∗ + ‖x – y‖∗ – 2
‖y‖∗

=
2 n+1

n – 2
1
n

= 2

for all n = 1, 2, . . . . Hence (XN ,‖ · ‖∗) is not uniformly smooth. This completes the proof.
�

Theorem 3.5 Let X be a Banach space with norm ‖ · ‖, and let XN = X × X × · · · × X be
the Cartesian product space of X. Let

‖x‖∗ = max
1≤i≤N

‖xi‖, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a nonuniformly smooth Banach space.

Proof We only need to check that, (XN ,‖ · ‖∗) is not uniformly smooth. Let u ∈ X be such
that ‖u‖ = 1 and

x = (u, u, 0, . . . , 0), yn =
(

1
n

u, ,
–1
n

u, 0, 0, . . . , 0
)

∈ XN

for all n = 1, 2, . . . . In this case,

‖x + y‖∗ + ‖x – y‖∗ – 2
‖y‖∗

=
2 n+1

n – 2
1
n

= 2

for all n = 1, 2, . . . . Hence (XN ,‖ · ‖∗) is not uniformly smooth. This completes the proof.
�

Open question 3.6 Let X be a Banach space with norm ‖ ·‖, and let XN = X ×X ×· · ·×X
be the Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2, x = (x1, x2, . . . , xN ) ∈ XN .

Under which conditions (XN ,‖ · ‖∗) is a uniformly smooth Banach space?

4 Results and discussion
Definition 4.1 Let X be a real normed space, and let C a nonempty subset of X. Let T :
CN → C be an N-variable mapping satisfying the following condition:

‖Tx – Ty‖ ≤
√
√
√
√ 1

N

N∑

j=1

‖xj – yj‖2,

where x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN ) ∈ CN . Then T is said to be nonexpansive.



Xu et al. Journal of Inequalities and Applications  (2018) 2018:37 Page 8 of 20

Theorem 4.2 Let (X,‖ · ‖) be a real uniformly convex Banach space, and let C be a
nonempty closed convex bounded subset of X. Let Ti : CN → C be an N-variable nonex-
pansive mapping for all i = 1, 2, . . . , N . Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2

for all x = (x1, x2, . . . , xN ) ∈ XN . Assume that (XN ,‖·‖∗) is a uniformly convex Banach space.
Then there exists an element p = (x1, x2, . . . , xN ) ∈ CN such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1(x1, x2, . . . , xN ) = x1,

T2(x1, x2, . . . , xN ) = x2,

. . . ,

Ti(x1, x2, . . . , xN ) = xi,

. . . ,

TN (x1, x2, . . . , xN ) = xN .

(4.1)

Proof The operator T∗ : CN → CN is defined by

T∗ : (x1, x2, . . . , xN ) 
→ (z1, z2, . . . , zN ),

for all x = (x1, x2, . . . , xN ) ∈ CN , where

z1 = T1(x1, x2, . . . , xN ),

z2 = T2(x1, x2, . . . , xN ),

. . . ,

zN = TN (x1, x2, . . . , xN ).

Then, for all x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN ) ∈ CN , we have that

∥
∥T∗x – T∗y

∥
∥∗ =

√
√
√
√

N∑

i=1

‖Tix – Tiy‖2

≤
√
√
√
√

N∑

i=1

1
N

N∑

j=1

‖xj – yj‖2

≤
√
√
√
√

N∑

j=1

‖xj – yj‖2

= ‖x – y‖∗.

Hence T∗ is a nonexpansive mapping from the nonempty closed convex bounded subset
CN into itself in the uniformly convex Banach space (XN ,‖ · ‖∗). By Theorem 1.1 we claim
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that T∗ has a fixed point

p = (p1, p2, . . . , pN ) ∈ CN ,

that is,

T∗(p1, p2, p3, . . . , pN ) = (p1, p2, p3, . . . , pN ).

From the definition of T∗ we have

p1 = T1(p1, p2, . . . , pN ),

p2 = T2(p1, p2, . . . , pN ),

. . . ,

pN = TN (p1, p2, . . . , pN ).

This completes the proof. �

Lemma 4.3 ([14]) (XN ,‖ · ‖∗)∗ = ((X,‖ · ‖)∗)N .

Lemma 4.4 Let (X,‖ · ‖) be a Banach space that satisfies Opial’s condition. Let XN = X ×
X × · · · × X be the Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2, x = (x1, x2, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) satisfies Opial’s condition.

Proof Let

xn = (x1,n, x2,n, . . . , xN ,n), n = 1, 2, 3, . . . ,

be a sequence converging weakly to a point

x = (x1, x2, . . . , xN )

in Banach space (XN ,‖ · ‖∗). From Lemma 4.3 we know that {xi,n} converges weakly to xi

for all i = 1, 2, . . . , N . Since (X,‖ · ‖) satisfies Opial’s condition, we have that

lim sup
n→∞

‖xi,n – xi‖ < lim sup
n→∞

‖xi,n – yi‖

for any

y = (y1, y2, . . . , yN ) ∈ (
XN ,‖ · ‖∗

)
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not equal to x, which implies that

lim sup
n→∞

‖xn – x‖∗ = lim sup
n→∞

√
√
√
√

N∑

i=1

‖xi,n – xi‖

< lim sup
n→∞

√
√
√
√

N∑

i=1

‖xi,n – yi‖

= lim sup
n→∞

‖xn – y‖∗.

Then (XN ,‖ · ‖∗) satisfies Opial’s condition. This completes the proof. �

Theorem 4.5 Let X be a real uniformly convex Banach space that satisfies Opial’s con-
dition, and let C a nonempty closed convex bounded subset of X. Let Ti : CN → C be an
N-variable nonexpansive mapping for all i = 1, 2, . . . , N . Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2

for all x = (x1, x2, . . . , xN ) ∈ XN . Assume that (XN ,‖·‖∗) is a uniformly convex Banach space.
Then

(1) there exists an element p = (p1, p2, . . . , pN ) ∈ CN such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1(p1, p2, . . . , pN ) = p1,

T2(p1, p2, . . . , pN ) = p2,

. . . ,

Ti(p1, p2, . . . , pN ) = pi,

. . . ,

TN (p1, p2, . . . , pN ) = pN ;

(2) for any x0 = (x1,0, x2,0, x3,0, . . . , xN ,0) ∈ CN , the iterative sequence {xi,n} ⊂ X defined by

xi,n+1 = αnxi,n + (1 – αn)Ti(x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, . . . ,

converges weakly to pi for all i = 1, 2, . . . , N , where 0 < a ≤ αn ≤ b < 1 for two
constants a, b.

Proof Conclusion (1) is obtained from Theorem 3.2. Next, we prove conclusion (2). From
Lemma 4.4 we know that (XN ,‖ · ‖∗) is a uniformly convex Banach space that satisfies
Opial’s condition. It is easy to see that CN is a nonempty closed convex bounded subset
in Banach space (XN ,‖ · ‖∗). The nonexpansive mapping T∗ : CN → CN is defined as in
Theorem 4.2. By Theorem 1.2, for any given x0 ∈ CN , the iterative sequence defined by

xn+1 = αnxn + (1 – αn)T∗xn (4.2)
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converges weakly to a fixed point p = (p1, p2, . . . , pN ) of T∗, that is,

T∗(p1, p2, . . . , pN ) = (p1, p2, . . . , pN ).

Let

xn = (x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, 3, . . . .

Then iterative scheme (4.2) can be rewritten as

ui,n+1 = αnui,n + (1 – αn)Ti(u1,n, u2,n, . . . , uN ,n), n = 0, 1, 2, . . . ,

for all i = 1, 2, . . . , N .
By Lemma 4.4, for any f1, f2, . . . , fN ∈ (X,‖ · ‖)∗, we have that

F = (f1, f2, . . . , fN ) ∈ (
XN ,‖ · ‖∗

)∗.

Hence

F(xn) =
N∑

i=1

fi(xi,n), n = 0, 1, 2, 3, . . . ,

converges to

F(p) = F(p1, p2, . . . , pN ) =
N∑

i=1

fi(pi).

For any 1 ≤ i ≤ N , let fj = 0 for j �= i. From the above result we have that fi(xi,n) → fi(pi)
as n → ∞. Hence {xi,n} converges weakly to pi for all i = 1, 2, . . . , N . This completes the
proof. �

Theorem 4.6 Let C be a nonempty closed convex subset of a real uniformly smooth Banach
space X, and let Ti : CN → C an N-varible nonexpansive mapping for all i = 1, 2, . . . , N .
Assume that (XN ,‖ · ‖∗) is a uniformly smooth Banach space and the solution set of the
system of operator equations (4.1) is nonempty. Let {αn} ⊂ [0, 1] be a sequence of numbers
satisfying the following conditions:

(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C3) limn→∞ αn+1–αn

αn
= 0.

Then, for any given x0 = (x1,0, x2,0, x3,0, . . . , xN ,0) ∈ CN , the iterative processes {xn} defined by

xi,n+1 = αnu + (1 – αn)Ti(x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, . . . , u ∈ C,

converges strongly to an element pi ∈ C for all i = 1, 2, . . . , N . The element p = (p1, p2, . . . , pN )
is a solution of the system of operator equations (4.1).
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Proof It is easy to see that CN is a nonempty closed convex subset in the uniformly smooth
Banach space (XN ,‖ · ‖∗). The nonexpansive mapping T∗ : CN → CN is defined as in The-
orem 4.2. By Theorem 1.3, for any given x0 ∈ CN , the iterative sequence defined by

xn+1 = αnu + (1 – αn)T∗xn (4.3)

converges strongly to a fixed point p = (p1, p2, . . . , pN ) of T∗, that is,

T∗(p1, p2, . . . , pN ) = (p1, p2, . . . , pN ).

Let

xn = (x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, 3, . . . .

Then iterative scheme (4.3) can be rewritten as

ui,n+1 = αnui,n + (1 – αn)Ti(u1,n, u2,n, . . . , uN ,n), n = 0, 1, 2, . . . ,

for all i = 1, 2, . . . , N . Hence {xi,n} converges strongly to pi for all i = 1, 2, . . . , N . This com-
pletes the proof. �

The concept of a coupled fixed point was introduced by Chang and Ma [20] in 1991.
Since then, the concept has been of interest to many researchers in metrical fixed point
theory [21–24]. In 2006, Bhaskar and Lakshmikantham [24] introduced the concept of a
coupled fixed point in the setting of single-valued mappings and established some coupled
fixed point results and found its application to the existence and uniqueness of solutions
for periodic boundary value problems. In 2011, Berinde and Borcut [25] introduced the
concept of a tripled fixed point for nonlinear mappings in complete metric spaces.

Definition 4.7 ([20]) Let X be a nonempty set. An element (x1, x2) ∈ X × X is called a
coupled fixed point of mapping T : X × X → X if

⎧
⎨

⎩

T(x1, x2) = x1,

T(x2, x1) = x2.

Definition 4.8 ([25]) Let X be a nonempty set. An element (x1, x2, x3) ∈ X × X × X is
called a tripled fixed point of a mapping T : X × X × X → X if

⎧
⎪⎪⎨

⎪⎪⎩

T(x1, x2, x3) = x1,

T(x2, x3, x1) = x2,

T(x3, x1, x2) = x3.

Definition 4.9 ([7]) Let (X, d) be a metric space, and let T : XN → X be an N-variable
mapping. An element p ∈ X is called a multivariate fixed point if

p = T(p, p, . . . , p).
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Form the above results we get the following corollaries.

Corollary 4.10 Let X be a real uniformly convex Banach space, and let C a nonempty
closed convex bounded subset of X. Let T : C2 → C be a two-variable nonexpansive map-
ping. Let

‖x‖∗ =
√

‖x1‖2 + ‖x2‖2

for all x = (x1, x2) ∈ X2. Assume that (X2,‖ · ‖∗) is a uniformly convex Banach space. Then
T has a coupled fixed point.

Proof Let T1, T2 : C2 → C be defined by

T1(x1, x2) = T(x1, x2), T2(x1, x2) = T(x2, x1)

for all (x1, x2) ∈ C2. Then T1, T2 are two-variable nonexpansive mappings. By Theorem 4.2
there exists an element (x1, x2) ∈ C2 such that

⎧
⎨

⎩

T1(x1, x2) = x1,

T2(x1, x2) = x2,

that is,
⎧
⎨

⎩

T(x1, x2) = x1,

T(x2, x1) = x2.

Then (x1, x2) is a coupled fixed point of T . This completes the proof. �

By using the same way as in Corollary 4.10, we can get Corollary 4.11.

Corollary 4.11 Let X be a real uniformly convex Banach space, and let C a nonempty
closed convex bounded subset of X. Let T : C3 → C be a three-variable nonexpansive map-
ping. Let

‖x‖∗ =
√

‖x1‖2 + ‖x2‖2 + ‖x3‖2

for all x = (x1, x2, x3) ∈ X3. Assume that (X3,‖ · ‖∗) is a uniformly convex Banach space.
Then T has a tripled fixed point.

Corollary 4.12 Let X be a real uniformly convex Banach space, and let C be a nonempty
closed convex bounded subset of X. Let T : CN → C be an N-variable nonexpansive map-
ping. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2

for all x = (x1, x2, . . . , xN ) ∈ XN . Assume that (XN ,‖·‖∗) is a uniformly convex Banach space.
Then T has a multivariate fixed point.
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Proof Let Ti = T for i = 1, 2, . . . , N . By Theorem 4.2 there exists an element p = (p1, p2, . . . ,
pN ) ∈ CN such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(p1, p2, . . . , pN ) = p1,

T(p1, p2, . . . , pN ) = p2,

. . . ,

T(p1, p2, . . . , pN ) = pi,

. . . ,

T(p1, p2, . . . , pN ) = pN .

This implies that p1 = p2 = · · · = pN . Then T has a multivariate fixed point. This completes
the proof. �

By Theorem 4.5 we get the following three corollaries.

Corollary 4.13 Let X be a real uniformly convex Banach space that satisfies Opial’s con-
dition, and let C be a nonempty closed convex bounded subset of X. Let T : C2 → C be a
two-variable nonexpansive mapping. Let

‖x‖∗ =
√

‖x1‖2 + ‖x2‖2

for all x = (x1, x2) ∈ X2. Assume that (X2,‖ · ‖∗) is a uniformly convex Banach space. Then
(1) T has a coupled fixed point;
(2) for any given x0 = (x1,0, x2,0) ∈ C2, the iterative sequences {x1,n}, {x2,n} ⊂ X defined by

x1,n+1 = αnx1,n + (1 – αn)T(x1,n, x2,n)

and

x2,n+1 = αnx2,n + (1 – αn)T(x2,n, x1,n)

converge weakly to two elements p1 and p2, respectively, and (p1, p2) is a coupled
fixed point of T , where 0 < a ≤ αn ≤ b < 1 for two constants a, b.

Corollary 4.14 Let X be a real uniformly convex Banach space that satisfies Opial’s con-
dition, and let C be a nonempty closed convex bounded subset of X. Let T : C3 → C be a
three-variable nonexpansive mapping. Let

‖x‖∗ =
√

‖x1‖2 + ‖x2‖2 + ‖x3‖2

for all x = (x1, x2, x3) ∈ X3. Assume that (X3,‖ · ‖∗) is a uniformly convex Banach space.
Then

(1) T has a tripled fixed point;
(2) for any given x0 = (x1,0, x2,0, x3,0) ∈ C3, the iterative sequences {x1,n}, {x2,n}, {x3,n} ⊂ X

defined by

x1,n+1 = αnx1,n + (1 – αn)T(x1,n, x2,n, x3,n),
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x2,n+1 = αnx2,n + (1 – αn)T(x2,n, x3,n, x1,n),

x3,n+1 = αnx3,n + (1 – αn)T(x3,n, x2,n, x1,n)

converge weakly to three elements p1, p2, p3, respectively, and (p1, p2, p3) is a tripled
fixed point of T , where 0 < a ≤ αn ≤ b < 1 for two constants a, b.

Corollary 4.15 Let X be a real uniformly convex Banach space that satisfies Opial’s con-
dition, and let C be a nonempty closed convex bounded subset of X. Let T : CN → C be an
N-variable nonexpansive mapping. Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2

for all x = (x1, x2, . . . , xN ) ∈ XN . Assume that (XN ,‖·‖∗) is a uniformly convex Banach space.
Then

(1) T has a multivariate fixed point;
(2) for any given x0 = (x1,0, x2,0, x3,0, . . . , xN ,0) ∈ CN , the iterative sequence {xn} ⊂ X

defined by

xn+1 = αnxn + (1 – αn)T(x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, . . . ,

converges weakly to a multivariate fixed point of T , where 0 < a ≤ αn ≤ b < 1 for two
constants a, b.

By Theorem 4.6 we get the following three corollaries.

Corollary 4.16 Let C be a nonempty closed convex subset of a real uniformly smooth Ba-
nach space X, and let T : C2 → C be a two-variable nonexpansive mapping. Assume that
(XN ,‖ · ‖∗) is a uniformly smooth Banach space and the coupled fixed point set of T is
nonempty. Let {αn} ⊂ [0, 1] be a sequence of numbers satisfying the following conditions:

(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C3) limn→∞ αn+1–αn

αn
= 0.

Then, for any given x0 = (x1,0, x2,0) ∈ C2, the iterative sequences {x1,n}, {x2,n} ⊂ X defined by

x1,n+1 = αnu + (1 – αn)T(x1,n, x2,n), u ∈ C,

x2,n+1 = αnu + (1 – αn)T(x2,n, x1,n), u ∈ C,

converge strongly to two elements p1, p2, respectively, and (p1, p2) is a coupled fixed point
of T .

Corollary 4.17 Let C be a nonempty closed convex subset of a real uniformly smooth
Banach space X, and let T : CN → C be an N-variable nonexpansive mapping. Assume
that (XN ,‖ · ‖∗) is a uniformly smooth Banach space and the tripled fixed point set of T is
nonempty. Let {αn} ⊂ [0, 1] be a sequence of numbers satisfying the following conditions:
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(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C3) limn→∞ αn+1–αn

αn
= 0.

Then, for any given x0 = (x1,0, x2,0, x3,0) ∈ C3, the iterative sequences {x1,n}, {x2,n}, {x3,n} ⊂ X
defined by

x1,n+1 = αnu + (1 – αn)T(x1,n, x2,n, x3,n), u ∈ C,

x2,n+1 = αnu + (1 – αn)T(x2,n, x3,n, x1,n), u ∈ C,

x3,n+1 = αnu + (1 – αn)T(x3,n, x2,n, x1,n), u ∈ C,

converge strongly to two elements p1, p2, p3, respectively, and (p1, p2, p3) is a tripled fixed
point of T .

Corollary 4.18 Let C be a nonempty closed convex subset of a real uniformly smooth Ba-
nach space X, and let T : C3 → C be a three-variable nonexpansive mapping. Assume that
(XN ,‖ · ‖∗) is a uniformly smooth Banach space and the fixed point set of T is nonempty.
Let {αn} ⊂ [0, 1] be a sequence of numbers satisfying the following conditions:

(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C3) limn→∞ αn+1–αn

αn
= 0.

Then, for any given x0 = (x1,0, x2,0, x3,0, . . . , xN ,0) ∈ CN , the iterative processes {xn} defined by

xn+1 = αnu + (1 – αn)T(x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, . . . , u ∈ C,

converges strongly to a multivariate fixed point of T .

Applied example 4.19 We consider the system of equations of trigonometric functions

⎧
⎪⎪⎨

⎪⎪⎩

sin(x1 + x2 + x3) = x1,

cos(x1 + x2 + x3) = x2,

sin2(x1 + x2 + x3) = 2x3.

(4.4)

Let

⎧
⎪⎪⎨

⎪⎪⎩

T1(x1, x2, x3) = sin(x1 + x2 + x3),

T2(x1, x2, x3) = cos(x1 + x2 + x3),

T3(x1, x2, x3) = 1
2 sin2(x1 + x2 + x3).

Then T1, T2, T3 are three nonlinear mappings from [–π , +π ]3 into [–π , +π ]. On the other
hand, we have that

∣
∣T1(x1, x2, x3) – T1(y1, y2, y3)

∣
∣

=
∣
∣sin(x1 + x2 + x3) – sin(y1 + y2 + y3)

∣
∣

≤ ∣
∣(x1 + x2 + x3) – (y1 + y2 + y3)

∣
∣
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≤ |x1 – y1| + |x2 – y2| + |x3 – y3|

≤
√

1
3
(|x1 – y1|2 + |x2 – y2|2 + |x3 – y3|2

)
,

∣
∣T2(x1, x2, x3) – T2(y1, y2, y3)

∣
∣

=
∣
∣cos(x1 + x2 + x3) – cos(y1 + y2 + y3)

∣
∣

≤ ∣
∣(x1 + x2 + x3) – (y1 + y2 + y3)

∣
∣

≤ |x1 – y1| + |x2 – y2| + |x3 – y3|

≤
√

1
3
(|x1 – y1|2 + |x2 – y2|2 + |x3 – y3|2

)
,

∣
∣T3(x1, x2, x3) – T3(y1, y2, y3)

∣
∣

=
1
2
∣
∣sin2(x1 + x2 + x3) – sin2(y1 + y2 + y3)

∣
∣

≤ 1
2
∣
∣sin(x1 + x2 + x3) + sin(y1 + y2 + y3)

∣
∣
∣
∣sin(x1 + x2 + x3) – sin(y1 + y2 + y3)

∣
∣

=
∣
∣sin(x1 + x2 + x3) – sin(y1 + y2 + y3)

∣
∣

≤ ∣
∣(x1 + x2 + x3) – (y1 + y2 + y3)

∣
∣

≤ |x1 – y1| + |x2 – y2| + |x3 – y3|

≤
√

1
3
(|x1 – y1|2 + |x2 – y2|2 + |x3 – y3|2

)

for all (x1, x2, x3), (y1, y2, y3) ∈ [–π , +π ]3. Hence T1, T2, T3 are three-variable nonexpan-
sive mappings from [–π , +π ]3 into [–π , +π ] in the uniformly convex Banach space R =
(–∞, +∞). Since R3 with norm

∥
∥(x1, x2, x3)

∥
∥ =

√
|x1|2 + |x2|2 + |x3|2

is a uniformly convex Banach space, by Theorem 4.5 the system of operator equations

⎧
⎪⎪⎨

⎪⎪⎩

T1(x1, x2, x3) = x1,

T2(x1, x2, x3) = x2,

T3(x1, x2, x3) = x3

has a solution (p1, p2, p3), and the iterative sequences {x1,n}, {x2,n}, {x3,n} ⊂ X defined by

x1,n+1 = αnx1,n + (1 – αn)T1(x1,n, x2,n, x3,n),

x2,n+1 = αnx2,n + (1 – αn)T2(x1,n, x2,n, x3,n),

x3,n+1 = αnx3,n + (1 – αn)T3(x1,n, x2,n, x3,n)

converge to elements p1, p2, p3, respectively, where 0 < a ≤ αn ≤ b < 1 for two con-
stants a, b. Then the system of equations of trigonometric functions (4.4) has a solution
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(p1, p2, p3), and the iterative sequences {x1,n}, {x2,n}, {x3,n} ⊂ X defined by

x1,n+1 = αnx1,n + (1 – αn) sin(x1,n + x2,n + x3,n),

x2,n+1 = αnx2,n + (1 – αn) cos(x1,n + x2,n + x3,n),

x3,n+1 = αnx3,n + (1 – αn)
1
2

sin2(x1,n + x2,n + x3,n)

converge to elements p1, p2, p3, respectively.

Discussion 4.20 An important contribution of this paper is to prove some existence the-
orems for solutions of certain systems of the multivariate nonexpansive operator equa-
tions and to calculate the solutions by using the generalized Mann and Halpern iterative
algorithms in uniformly convex and uniformly smooth Banach spaces. To get the desired
results, we first need to study the convexity and smoothness of Cartesian products of uni-
formly convex Banach spaces and uniformly smooth Banach spaces, respectively. On the
other hand, we used a clever way to prove the main results. This method converts a non-
self-mapping into a self-mapping such that the classical results can be used. Of course, in
the main theorems, the assumptions that “(XN ,‖ · ‖∗) is a uniformly convex Banach space”
and “(XN ,‖ · ‖∗) is a uniformly smooth Banach space” are still a limitation.

5 Conclusions
Conclusion 5.1 Let (X,‖ · ‖) be a real uniformly convex Banach space, and let C be a
nonempty closed convex bounded subset of X. Let Ti : CN → C be an N-variable nonex-
pansive mapping for all i = 1, 2, . . . , N . Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2

for all x = (x1, x2, . . . , xN ) ∈ XN . Assume that (XN ,‖·‖∗) is a uniformly convex Banach space.
Then the system of operator equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1(x1, x2, . . . , xN ) = x1,

T2(x1, x2, . . . , xN ) = x2,

. . . ,

Ti(x1, x2, . . . , xN ) = xi,

. . . ,

TN (x1, x2, . . . , xN ) = xN

(5.1)

has a solution p = (p1, p2, . . . , pN ) ∈ CN .

Conclusion 5.2 Let X be a real uniformly convex Banach space that satisfies Opial’s con-
dition, and let C be a nonempty closed convex bounded subset of X. Let Ti : CN → C be
an N-variable nonexpansive mapping for all i = 1, 2, . . . , N . Let

‖x‖∗ =

√
√
√
√

N∑

i=1

‖xi‖2
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for all x = (x1, x2, . . . , xN ) ∈ XN . Assume that (XN ,‖·‖∗) is a uniformly convex Banach space.
Then the system of operator equations (5.1) has a solution p = (p1, p2, . . . , pN ) ∈ CN , and
for any x0 = (x1,0, x2,0, x3,0, . . . , xN ,0) ∈ CN , the iterative sequence {xi,n} ⊂ X defined by

xi,n+1 = αnxi,n + (1 – αn)Ti(x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, . . . ,

converges weakly to pi for all i = 1, 2, . . . , N , where 0 < a ≤ αn ≤ b < 1 for two constants
a, b.

Conclusion 5.3 Let C be a nonempty closed convex subset of a real uniformly smooth
Banach space X, and let Ti : CN → C be an N-variable nonexpansive mapping for all i =
1, 2, . . . , N . Assume that (XN ,‖ · ‖∗) is a uniformly smooth Banach space and the solution
set of the system of operator equations (5.1) is nonempty. Let {αn} ⊂ [0, 1] be a sequence
of numbers satisfying the following conditions:

(C1)
∑∞

n=1 αn = ∞;
(C2) limn→∞ αn = 0;
(C3) limn→∞ αn+1–αn

αn
= 0.

Then, for any given x0 = (x1,0, x2,0, x3,0, . . . , xN ,0) ∈ CN , the iterative processes {xn} defined
by

xi,n+1 = αnu + (1 – αn)Ti(x1,n, x2,n, . . . , xN ,n), n = 0, 1, 2, . . . , u ∈ C,

converges strongly to an element pi ∈ C for all i = 1, 2, . . . , N . The element p = (p1, p2, . . . ,
pN ) is a solution of the system of operator equations (5.1).
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