- Research
- Open access
- Published:

# Some new sharp bounds for the spectral radius of a nonnegative matrix and its application

*Journal of Inequalities and Applications*
**volumeÂ 2017**, ArticleÂ number:Â 260 (2017)

## Abstract

In this paper, we give some new sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix. Using these bounds, we obtain some new and improved bounds for the signless Laplacian spectral radius of a graph or a digraph.

## 1 Introduction

Let \(G=(V,E)\) be a graph with vertex set \(V(G)=\{v_{1}, \ldots, v_{n}\}\) and edge set \(E(G)\). Let \(N=\{1, \ldots, n\}\), for \(i \in N\). We assume that \(d_{i}\) is the degree of vertex \(v_{i}\). Let \(D(G) = \operatorname{diag}(d_{1}, d_{2}, \ldots, d_{n})\) be the degree diagonal matrix of the graph *G* and \(A(G) = (a_{ij})\) be the adjacency matrix of the graph *G*. Then the matrix \(Q(G) = D(G)+ A(G)\) is called the signless Laplacian matrix of the graph *G*. The largest modulus of eigenvalues of \(Q(G)\) is denoted by \(\rho(G)\), which is also called the signless Laplacian spectral radius of *G*.

Let \(\overrightarrow{G}=(V,E)\) be a digraph with vertex set \(V(\overrightarrow{G})=\{v_{1}, \ldots, v_{n}\}\) and arc set \(E(\overrightarrow{G})\). Let \(d_{i}^{+}\) be the out-degree of vertex \(v_{i}\), \(D(\overrightarrow{G}) = \operatorname{diag}(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+})\) be the out-degree diagonal matrix of the digraph \(\overrightarrow{G}\), and \(A(\overrightarrow{G}) = (a_{ij})\) be the adjacency matrix of the digraph \(\overrightarrow{G}\). Then the matrix \(Q(\overrightarrow{G}) = D(\overrightarrow{G})+ A(\overrightarrow{G})\) is called the signless Laplacian matrix of the digraph \(\overrightarrow{G}\). The largest modulus of eigenvalues of \(Q(\overrightarrow{G})\) is denoted by \(\rho (\overrightarrow{G})\), which is also called the signless Laplacian spectral radius of \(\overrightarrow{G}\).

In recent decades, there are many bounds on the signless Laplacian spectral radius of a graph (digraph) [1â€“3]. Let \(m_{i} = \frac{{\sum_{i\sim j} {d_{j} } }}{{d_{i} }}\) be the average degree of the neighbours of \(v_{i}\) in *G* and \(m_{i}^{+} = \frac{{\sum_{i\sim j} {d_{j}^{+} } }}{{d_{i}^{+} }}\) be the average out-degree of the out-neighbours of \(v_{i}\) in \(\overrightarrow{G}\). In this paper, we assume that the graph (digraph) is simple and connected (strong connected).

In 2013, Maden, Das, and Cevik [4] obtained the following bounds for the signless Laplacian spectral radius of a graph:

In 2016, Xi and Wang [5] obtained the following bounds for the signless Laplacian spectral radius of a digraph:

In this paper, we improve the bounds for the signless Laplacian spectral radius of a graph (digraph) that are given in (1) and (2).

## 2 Main result

In this section, some upper and lower bounds for the spectral radius of a nonnegative irreducible matrix are given. We need the following lemma.

### Lemma 2.1

([6])

*Let*
*A*
*be a nonnegative matrix with the spectral radius*
\(\rho(A)\)
*and the row sum*
\(r_{1}, r_{2}, \ldots, r_{n}\). *Then*
\(\mathop{\min} _{1 \le i \le n} r_{i} \le\rho(A) \le\mathop{\max} _{1 \le i \le n} r_{i}\). *Moreover*, *if the matrix*
*A*
*is irreducible*, *then the equalities hold if and only if*

### Theorem 2.1

*Let*
\(A=(a_{ij})\)
*be an irreducible and nonnegative matrix with*
\(a_{ii} = 0\)
*for all*
\(i \in N\)
*and the row sum*
\(r_{1}, r_{2}, \ldots, r_{n}\). *Let*
\(B = A + M\), *where*
\(M = \operatorname{diag}(t_{1}, t_{2}, \ldots, t_{n})\)
*with*
\(t_{i} \geq0\)
*for any*
\(i \in N\), \(s_{i} = \sum_{j = 1}^{n} {a_{ij} r_{j} }\), \(s_{ij} = s_{i}-a_{ij}r_{j}\). *Let*
\(\rho(B)\)
*be the spectral radius of*
*B*
*and let*

*for any*
\(i,j \in N\). *Then*

*Moreover*, *either of the equalities in* (3) *holds if and only if*
\(t_{i}+\frac{s_{i}}{r_{i}}= t_{j}+\frac{s_{j}}{r_{j}}\)
*for any distinct*
\(i,j \in N\).

### Proof

Let \(R = \operatorname{diag}(r_{1}, r_{2}, \ldots, r_{n})\). Since the matrix *A* is nonnegative irreducible, the matrix \(R^{-1}BR\) is also nonnegative and irreducible. By the famous Perron-Frobenius theorem [6], there is a positive eigenvector \(x =(x_{1}, x_{2}, \ldots, x_{n})^{T}\) corresponding to the spectral radius of \(R^{-1}BR\).

Upper bounds: Let \(x_{p}>0\) be an arbitrary component of *x*, \(x_{q}=\max\{ x_{k}, 1\leq k \leq n\}\). Obviously, \(p\neq q\), \(a_{pq}\neq0\). By \(R^{-1}BRx = \rho(B)x\), we have

Similarly, we have

By (4), (5), and \(\rho(B) - t_{p} > 0\), \(\rho(B) - t_{q} > 0\), we have

Therefore,

This must be true for every \(p\neq q\). Then

This must be true for any \(q\in N\). Then

Lower bounds: Let \(x_{p}>0\) be an arbitrary component of *x*, \(x_{q}=\min\{ x_{k}, 1\leq k \leq n\}\). Obviously, \(p\neq q\), \(a_{pq}\neq0\). By \(R^{-1}BRx = \rho(B)x\), we have

Similarly, we have

By (9), (10), and \(\rho(B) - t_{p} > 0\), \(\rho(B) - t_{q} > 0\), we have

Therefore,

This must be true for every \(p\neq q\). Then

This must be true for all \(q\in N\). Then

From (4), (5), and \(x_{p}>0\) as an arbitrary component of *x*, we get \(x_{k}=x_{q}=x_{p}\) for all *k*. Then we see easily that the right equality holds in (8) for \(t_{i}+\frac{s_{i}}{r_{i}}= t_{j}+\frac{s_{j}}{r_{j}}\) for any distinct \(i,j \in N\). The proof of the left equality in (3) is similar to the proof of the right equality, and we omit it here.

Thus, we complete the proof.â€ƒâ–¡

## 3 Signless Laplacian spectral radius of a graph

In this section, we will apply TheoremÂ 2.1 to obtain some new results on the signless Laplacian spectral radius \(\rho(G)\) of a graph.

### Theorem 3.1

*Let*
\(G = (V, E)\)
*be a simple connected graph on*
*n*
*vertices*. *Then*

*Moreover*, *one of the equalities in* (15) *holds if and only if*
*G*
*is a regular graph*.

### Proof

We apply TheoremÂ 2.1 to \(Q(G)\). Let \(t_{i}=0\) for any \(i \in N\). Then \(f(i,j)= \frac{d_{i}+ 2d_{j} -1+ \sqrt {(d_{i}-2d_{j}+1)^{2}+ 4d_{i}}}{2}\). Thus (15) holds.

And the equality holds in (15) for regular graphs if and only if *G* is a regular graph.â€ƒâ–¡

### Remark 3.1

Obviously, we have

That is to say, our upper bound in TheoremÂ 3.1 is always better than the upper bound (1) in [4].

### Theorem 3.2

*Let*
\(G = (V, E)\)
*be a simple connected graph on*
*n*
*vertices*. *Then*

*and*

*Moreover*, *one of the equalities in* (16), (17) *holds if and only if*
*G*
*is a regular graph or a bipartite semi*-*regular graph*.

### Proof

We apply TheoremÂ 2.1 to \(Q(G)\). Let \(t_{i}=d_{i}\), \(s_{i} =\sum_{j = 1}^{n} {a_{ij} r_{j} } = d_{i}m_{i}\) for any \(1 \leq i \leq n\). Then \(f(i,j)= {\frac{{d_{i} + d_{j} + m_{j} - {{d_{i} }/ {d_{j} + \sqrt{ ( {d_{i} - d_{j} - m_{j} + {{d_{i} }/ {d_{j} }}} ) + 4d_{i} } }}}}{2}}\). Thus (16), (17) hold.

And the equality holds if and only if *G* is a regular graph or a bipartite semi-regular graph.â€ƒâ–¡

## 4 Signless Laplacian spectral radius of a digraph

In this section, we will apply TheoremÂ 2.1 to obtain some new results on the signless Laplacian spectral radius \(\rho(\overrightarrow{G})\) of a digraph.

### Theorem 4.1

*Let*
\(\overrightarrow{G} = (V, E)\)
*be a strong connected digraph on*
*n*
*vertices*. *Then*

*Moreover*, *one of the equalities in* (18) *holds if and only if*
\(\overrightarrow{G}\)
*is a regular digraph*.

### Proof

We apply TheoremÂ 2.1 to \(Q(\overrightarrow{G})\). Let \(t_{i}=0\) for any \(1 \leq i \leq n\). Then \(f(i,j)=\frac{d_{i}^{+}+ 2d_{j}^{+} -1+ \sqrt{(d_{i}^{+}-2d_{j}^{+}+1)^{2}+ 4d_{i}^{+}}}{2}\). Then the inequality (18) holds.

And the equality holds in (18) if and only if \(\overrightarrow{G}\) is a regular digraph.â€ƒâ–¡

### Remark 4.1

Obviously, we have

That is to say, our upper bound in TheoremÂ 4.1 is always better than the upper bound (2) in [5].

### Theorem 4.2

*Let*
\(\overrightarrow{G} = (V, E)\)
*be a strong connected digraph on*
*n*
*vertices*. *Then*

*and*

*Moreover*, *one of the equalities in* (19), (20) *holds if and only if*
\(\overrightarrow{G}\)
*is a regular digraph or a bipartite semi*-*regular digraph*.

### Proof

We apply TheoremÂ 2.1 to \(Q(\overrightarrow{G})\). Let \(t_{i}=d_{i}^{+}\), \(s_{i} =\sum_{j = 1}^{n} {a_{ij} r_{j} } = d_{i}^{+}m_{i}^{+}\) for any \(1 \leq i \leq n\). Then \(f(i,j)={\frac{{d_{i}^{+} + d_{j}^{+} + m_{j}^{+} - {{d_{i}^{+} }/ {d_{j}^{+} + \sqrt{ ( {d_{i}^{+} - d_{j}^{+} - m_{j}^{+} + {{d_{i}^{+} }/ {d_{j}^{+} }}} ) + 4d_{i}^{+} } }}}}{2}}\). Thus (19), (20) hold.

One sees easily that the equality holds if and only if \(\overrightarrow {G}\) is a regular digraph or a bipartite semi-regular digraph.â€ƒâ–¡

## 5 Conclusion

## References

Aouchiche, M, Hansen, P: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl.

**493**, 21-33 (2013)Bozkurt, SB, Bozkurt, D: On the signless Laplacian spectral radius of digraphs. Ars Comb.

**108**, 193-200 (2013)Cui, SY, Tian, GX, Guo, JJ: A sharp upper bound on the signless Laplacian spectral radius of graphs. Linear Algebra Appl.

**439**, 2442-2447 (2013)Maden, AD, Das, KC, Cevik, AS: Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph. Appl. Math. Comput.

**219**, 5025-5032 (2013)Xi, W, Wang, L: Sharp upper bounds on the signless Laplacian spectral radius of strongly connected digraphs. Discuss. Math., Graph Theory

**36**, 977-988 (2016)Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, Cambridge (1985)

## Acknowledgements

Jun He is supported by the Science and Technology Foundation of Guizhou Province (Qian ke he Ji Chu [2016]1161); Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2016]255); the Doctoral Scientific Research Foundation of Zunyi Normal College (BS[2015]09); High-level Innovative Talents of Guizhou Province (Zun Ke He Ren Cai[2017]8). Yan-Min Liu is supported by National Science Foundations of China (71461027); Science and Technology Talent Training Object of Guizhou Province outstanding youth (Qian ke he ren zi [2015]06); Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2014]295); 2013, 2014 and 2015 Zunyi 15851 Talents Elite Project funding; Zhunyi Innovative Talent Team (Zunyi KH(2015)38). Tian is supported by Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2015]451); Science and Technology Foundation of Guizhou Province (Qian ke he J zi [2015]2147). Xiang-Hu Liu is supported by the Guizhou Province Department of Education fund (KY[2015]391, [2016]046); Guizhou Province Department of Education Teaching Reform Project [2015]337; Guizhou Province Science and Technology fund (Qian Ke He Ji Chu[2016]1160).

## Author information

### Authors and Affiliations

### Contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

### Corresponding author

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

## Additional information

### Publisherâ€™s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

## About this article

### Cite this article

He, J., Liu, YM., Tian, JK. *et al.* Some new sharp bounds for the spectral radius of a nonnegative matrix and its application.
*J Inequal Appl* **2017**, 260 (2017). https://doi.org/10.1186/s13660-017-1536-3

Received:

Accepted:

Published:

DOI: https://doi.org/10.1186/s13660-017-1536-3