- Research
- Open access
- Published:
Monotone and fast computation of Euler’s constant
Journal of Inequalities and Applications volume 2017, Article number: 224 (2017)
Abstract
We construct sequences of finite sums \((\tilde{l}_{n})_{n\geq 0}\) and \((\tilde{u}_{n})_{n\geq 0}\) converging increasingly and decreasingly, respectively, to the Euler-Mascheroni constant γ at the geometric rate 1/2. Such sequences are easy to compute and satisfy complete monotonicity-type properties. As a consequence, we obtain an infinite product representation for \(2^{\gamma }\) converging in a monotone and fast way at the same time. We use a probabilistic approach based on a differentiation formula for the gamma process.
1 Introduction
The Euler-Mascheroni constant γ was first introduced by Leonhard Euler (1707-1783) as
This constant appears in different mathematical subjects, such as number theory, special functions, random matrix theory, random permutations, and mathematical physics, among many others. We refer the interested reader to the survey paper by Lagarias [1].
As far as we know, two main types of computations of the Euler constant have been developed. The first one emphasizes the monotonicity of the corresponding convergent sequences, but the rates of convergence are relatively slow (polynomial rates). The second one emphasizes the speed of convergence (geometric rates), but looses the monotonicity in the approximation.
In this paper, we gather both points of view by providing approximating sequences that converge at the geometric rate 1/2 and satisfy complete monotonicity-type properties (monotonicity, convexity, etc.). In addition, such approximating sequences are easy to compute.
With respect to the first type of computations, we mention that Xu and You [2] and Lu et al. [3, 4] have used continued fractions to obtain monotone convergence to γ. For instance, it is shown in [2], Theorem 2, that
where C and \(C^{\star }\) are explicit constants, and \((r_{n})_{n\geq 1}\) and \((r_{n}^{\star })_{n\geq 1}\) are sequences involving the logarithm of a continued fraction, the first one being strictly increasing, and the second one strictly decreasing. Yang [5] has found the constants \((a_{i})_{0\leq i\leq s}\) for a given \(s=0,1,\ldots \) such that
is the fastest sequence converging to γ, giving in this way a constructive answer to a problem posed by Chen and Mortici [6]. It turns out that, for small values of s, the sequence on the left-hand side in (3) strictly increases to γ.
With regard to the second type of computations, K. and T. Hessami Pilehrood [7] have provided a rational approximation \(p_{n}/q_{n}\) converging to γ subexponentially. In fact, these authors have shown that
where
Exponential convergence to γ is possible at the price of using logarithms. In this respect, Karatsuba [8] showed that
whereas Coffey [9] gave the formula
where the series in (6) has actually the geometric rate \(1/3\). On the other hand, Sondow [10] obtained the expression
where, for any \(n=1,2,\ldots\) ,
As mentioned before, the aim of this paper is to compute Euler’s constant in a monotone and fast way at the same time. To achieve this, we combine a formula obtained by Zhang and Williams [11] to compute Stieltjes constants (see also Coffey [9]) and a probabilistic perspective based on a differentiation formula for expectations of functions of the gamma process (see formula (20) in Section 3). More precisely, let
be the alternating zeta function. It was shown in Zhang and Williams [11], Theorem 4 (see also Coffey [9]) that
Our computation of \(\eta '(1)\) is mainly based on the probabilistic representation given in Lemma 3.1 (Section 3).
We point out that some authors have introduced probabilistic tools to deal with different topics of analytic number theory. For instance, Sun [12] described Stirling series in terms of products of uniformly distributed random variables, Srivastava and Vignat [13] have given representations of the Bernoulli, Euler, and Gegenbauer polynomials in terms of moments of appropriate random variables, and Ta [14] has recently introduced a nice probabilistic approach to study Appell polynomials by connecting them to moments of random variables. Finally, fast computations of the Stieltjes constants using differentiation formulas for linear operators represented by stochastic processes can be found in [15] and the references therein.
2 Main results
Denote by \(\mathbb{N}\) the set of nonnegative integers, and let \(\mathbb{N}_{+}=\mathbb{N}\setminus \{0\}\). The mth forward differences of any sequence \((v_{n})_{n\geq 0}\) of real numbers are recursively defined by \(\Delta ^{0} v_{n}=v_{n}\), \(\Delta ^{1} v_{n}=v_{n+1}-v_{n}\), \(n\in \mathbb{N}\), and
Let \(n\in \mathbb{N}\). We consider the coefficients
and define the following lower and upper approximants of \(\eta ' (1)\):
and
respectively, where \(\log 1/0:=1\). With these notations, we enunciate our first main result.
Theorem 2.1
Let \(n\in \mathbb{N}\). Then,
The sequences \((l_{n})_{n\geq 0}\) and \((u_{n})_{n\geq 0}\) satisfy the following complete monotonicity-type properties
In addition, we have
The sequences \((\tilde{l}_{n})_{n\geq 0}\) and \((\tilde{u}_{n})_{n\geq 0}\) in Theorem 2.1 provide monotone and fast computations of the Euler-Mascheroni constant γ. Moreover, such sequences are easy to compute. In this regard, let \(S_{j}\), \(j\in \mathbb{N}_{+}\), be a random variable having the negative binomial distribution with parameters j and \(1/2\), that is,
The coefficients \(a_{n}(j)\) in (10) can be represented as
Thus, the tail probabilities \(a_{n}(j)\) can be precomputed, as done in many statistical packages, such as R. Finally, recall that a sequence \((v_{n})_{n\geq 0}\) is said to be completely monotonic if \((-1)^{m}\Delta ^{m} v_{n} \geq 0\), \(m,n\in \mathbb{N}\). This is the reason why the inequalities in (14) are called complete monotonicity-type properties.
The approximating sequences to γ given in (2) and (3) are simpler to compute than those in Theorem 2.1. However, the sequences \((\tilde{l}_{n})_{n\geq 0}\) and \((\tilde{u}_{n})_{n\geq 0}\) in this theorem converge to γ in a much faster way and enjoy properties such as monotonicity, convexity, and so on. On the other hand, formulas (4), (5), (6), and (7) provide fast computations of γ at the price of loosing the monotonicity of the corresponding approximating sequences. Certainly, formula (7) computes γ in a faster way than that in (13). However, the sequences \((\tilde{l}_{n})_{n\geq 0}\) and \((\tilde{u}_{n})_{n\geq 0}\) in Theorem 2.1 are easier to compute than the main term in (7).
Denote
where (even)∏ (resp. (odd)∏) means that the product is extended to those even (resp. odd) integers j running from 0 to k. As a consequence of Theorem 2.1, we give the following:
Corollary 2.2
We have the infinite product representation
where \(P_{k}/Q_{k}>1\), \(k\in \mathbb{N}\).
Guillera and Sondow [16], Example 5.8, have obtained the product formula
where
However, the rate of convergence in Corollary 2.2 is faster than that in (17).
3 Auxiliary results
Let \((X_{t})_{t\geq 0}\) be a gamma process (see Çınlar [17], pp.279-281), that is, a stochastic process starting at the origin, having independent stationary increments, and such that for each \(t>0\), the random variable \(X_{t}\) has the gamma density
On the other hand, let V and T be two independent random variables such that V is uniformly distributed on \([0,1]\) and T has the exponential density \(\rho _{1} (\theta )\) defined in (19). We assume that V and T are independent of the gamma process \((X_{t})_{t\geq 0}\). Finally, let \(f:\mathbb{R}_{+}\to \mathbb{R}\) be a differentiable function such that \(f_{\star }(t):=Ef(X_{t})<\infty \), \(t\geq 0\), where E stands for mathematical expectation. It has been shown in [18], Theorem 7.1, that
This formula can be applied to the problem at hand as follows.
Lemma 3.1
Let η be the alternating zeta function. Then,
where the function g is defined in \(\mathbb{R}_{+}\) as
Proof
By (19) the Laplace transform of \(X_{t}\) is given by
Thus, interchanging the sum with expectation, from (8) we have
where
Therefore from (20) and (24) we have
This shows (21), since \(f'=g\), as follows from (25). Finally, the second equality in (22) follows by calculus. The proof is complete. □
In view of Lemma 3.1, we define, for any \(n\in \mathbb{N}\) and \(x\geq 0\),
It can be checked from (26) that
Such partial sums allow us to give the following probabilistic representations of the sequences \((l_{n})_{n\geq 0}\) and \((u_{n})_{n\geq 0}\) respectively defined in (11) and (12).
Lemma 3.2
For any \(n\in \mathbb{N}\), we have
Proof
By Fubini’s theorem the Laplace transform of VT is given by
Since \(X_{1}\) is independent of VT, from (23) and (28) we have
where the last equality follows from (10) and (11) after interchanging the order of summation. Similarly,
Therefore, the second equality in Lemma 3.2 follows from (12), (27), and (29). The proof is complete. □
Thanks to Lemma 3.2, the complete monotonicity-type properties of \((l_{n})_{n\geq 0}\) and \((u_{n})_{n\geq 0}\) are easily derived from the analogous properties satisfied by the sequences of functions \((L_{n}(x))_{n\geq 0}\) and \((U_{n}(x))_{n\geq 0}\).
Lemma 3.3
Let \(m\in \mathbb{N}_{+}\) and \(n\in \mathbb{N}\) with \(m\leq n+3\). Then,
Proof
Fix \(x\geq 0\). For any \(s\geq 0\), denote
Using induction on m, we can check that
thus implying that
since \(0\leq \tau (x)\leq 1/2\). On the other hand, from (26) and (30) we have
Therefore, the first inequality in Lemma 3.3 follows from (31). Finally, from (26) and (30) we have
This, together with (31), shows the second inequality in Lemma 3.3 and completes the proof. □
4 The proofs
Proof of Theorem 2.1
Let \(n\in \mathbb{N}\). By (26) and Lemmas 3.1 and 3.2 we get
This, in conjunction with (9), shows (13). On the other hand, let \(m\in \mathbb{N}_{+}\) with \(1\leq m\leq n+3\). By Lemmas 3.2 and 3.3 we have
The second inequality in (14) is shown in a similar way. Finally, we see from (27) and Lemma 3.2 that
The proof is complete. □
Proof of Corollary 2.2
Let \(k\in \mathbb{N}\). Using (16), (23), and (28), we can check that
which implies that \(P_{k}/Q_{k}>1\). Therefore, for any \(n\in \mathbb{N}\), we have
where the last equality follows from (10) and (11). This, together with (13) and (15), shows the result. □
References
Lagarias, JC: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. (N.S.) 50(4), 527-628 (2013). doi:10.1090/S0273-0979-2013-01423-X
Xu, H, You, X: Continued fraction inequalities for the Euler-Mascheroni constant. J. Inequal. Appl. 2014, Article ID 343 (2014). doi:10.1186/1029-242X-2014-343
Lu, D, Song, L, Yu, Y: Some new continued fraction approximation of Euler’s constant. J. Number Theory 147, 69-80 (2015). doi:10.1016/j.jnt.2014.07.002
Lu, D, Song, L, Yu, Y: Some quicker continued fraction approximations and inequalities towards Euler’s constant. J. Number Theory 175, 100-116 (2017). doi:10.1016/j.jnt.2016.11.024
Yang, S: On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant. J. Math. Anal. Appl. 396(2), 689-693 (2012). doi:10.1016/j.jmaa.2012.07.007
Chen, C-P, Mortici, C: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 64(4), 391-398 (2012). doi:10.1016/j.camwa.2011.03.099
Hessami Pilehrood, Kh, Hessami Pilehrood, T: On a continued fraction expansion for Euler’s constant. J. Number Theory 133(2), 769-786 (2013). doi:10.1016/j.jnt.2012.08.016
Karatsuba, EA: On the computation of the Euler constant γ. Numer. Algorithms 24(1-2), 83-97 (2000). doi:10.1023/A:1019137125281
Coffey, MW: The Stieltjes constants, their relation to the \(\eta_{j}\) coefficients, and representation of the Hurwitz zeta function. Analysis 30(4), 383-409 (2010). doi:10.1524/anly.2010.1048
Sondow, J: Criteria for irrationality of Euler’s constant. Proc. Am. Math. Soc. 131(11), 3335-3344 (2003). doi:10.1090/S0002-9939-03-07081-3
Zhang, NY, Williams, KS: Some results on the generalized Stieltjes constants. Analysis 14(2-3), 147-162 (1994)
Sun, P: Product of uniform distribution and Stirling numbers of the first kind. Acta Math. Sin. Engl. Ser. 21(6), 1435-1442 (2005). doi:10.1007/s10114-005-0631-4
Srivastava, HM, Vignat, C: Probabilistic proofs of some relationships between the Bernoulli and Euler polynomials. Eur. J. Pure Appl. Math. 5(2), 97-107 (2012)
Ta, BQ: Probabilistic approach to Appell polynomials. Expo. Math. 33(3), 269-294 (2015). doi:10.1016/j.exmath.2014.07.003
Adell, JA: Estimates of generalized Stieltjes constants with a quasi-geometric rate of decay. Proc. R. Soc., Math. Phys. Eng. Sci. 468(2141), 1356-1370 (2012). doi:10.1098/rspa.2011.0551
Guillera, J, Sondow, J: Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 16(3), 247-270 (2008). doi:10.1007/s11139-007-9102-0
Çınlar, E: Probability and Stochastics. Graduate Texts in Mathematics, vol. 261, p. xiv+557. Springer, Berlin (2011). doi:10.1007/978-0-387-87859-1.
Adell, JA: Differential calculus for linear operators represented by finite signed measures and applications. Acta Math. Hung. 138(1-2), 44-82 (2013). doi:10.1007/s10474-012-0230-7
Acknowledgements
The authors are partially supported by Research Projects DGA (E-64), MTM2015-67006-P, and by FEDER funds.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
Both authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
José A Adell and Alberto Lekuona contributed equally to this work.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Adell, J.A., Lekuona, A. Monotone and fast computation of Euler’s constant. J Inequal Appl 2017, 224 (2017). https://doi.org/10.1186/s13660-017-1507-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-017-1507-8