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Abstract
We construct sequences of finite sums (̃ln)n≥0 and (ũn)n≥0 converging increasingly and
decreasingly, respectively, to the Euler-Mascheroni constant γ at the geometric rate
1/2. Such sequences are easy to compute and satisfy complete monotonicity-type
properties. As a consequence, we obtain an infinite product representation for 2γ

converging in a monotone and fast way at the same time. We use a probabilistic
approach based on a differentiation formula for the gamma process.
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1 Introduction
The Euler-Mascheroni constant γ was first introduced by Leonhard Euler (-) as

γ = lim
n→∞(Hn – log n) = . . . . , Hn =

n∑

k=


k

, n = , , . . . . ()

This constant appears in different mathematical subjects, such as number theory, spe-
cial functions, random matrix theory, random permutations, and mathematical physics,
among many others. We refer the interested reader to the survey paper by Lagarias [].

As far as we know, two main types of computations of the Euler constant have been
developed. The first one emphasizes the monotonicity of the corresponding convergent
sequences, but the rates of convergence are relatively slow (polynomial rates). The second
one emphasizes the speed of convergence (geometric rates), but looses the monotonicity
in the approximation.

In this paper, we gather both points of view by providing approximating sequences
that converge at the geometric rate / and satisfy complete monotonicity-type proper-
ties (monotonicity, convexity, etc.). In addition, such approximating sequences are easy to
compute.

With respect to the first type of computations, we mention that Xu and You [] and
Lu et al. [, ] have used continued fractions to obtain monotone convergence to γ . For
instance, it is shown in [], Theorem , that

C
(n + ) < γ – rn <

C
n ,

C�

(n + ) < r�
n – γ <

C�

n , ()

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1507-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1507-8&domain=pdf
mailto:adell@unizar.es


Adell and Lekuona Journal of Inequalities and Applications  (2017) 2017:224 Page 2 of 9

where C and C� are explicit constants, and (rn)n≥ and (r�
n)n≥ are sequences involving the

logarithm of a continued fraction, the first one being strictly increasing, and the second
one strictly decreasing. Yang [] has found the constants (ai)≤i≤s for a given s = , , . . .
such that

Hn – log

(
n +

s∑

i=

ai

ni

)
= γ + O

(


ns+

)
as n → ∞ ()

is the fastest sequence converging to γ , giving in this way a constructive answer to a prob-
lem posed by Chen and Mortici []. It turns out that, for small values of s, the sequence
on the left-hand side in () strictly increases to γ .

With regard to the second type of computations, K. and T. Hessami Pilehrood [] have
provided a rational approximation pn/qn converging to γ subexponentially. In fact, these
authors have shown that

pn

qn
– γ = e–

√
n(π + O

(
n–/)) as n → ∞, ()

where

qn =
n∑

k=

(
n
k

)

k!, pn =
n∑

k=

(
n
k

)

k!(Hn–k – Hk), n = , , . . . .

Exponential convergence to γ is possible at the price of using logarithms. In this respect,
Karatsuba [] showed that

γ =  –
n+∑

k=

(–)k–nk+

(k – )!(k + )

(
log n –


k + 

)
+ O

(
–n), ()

whereas Coffey [] gave the formula

γ =
log 


–


 log 

∞∑

k=


k

k∑

j=

(–)j
(

k
j

)
j log(j + )

j + 
, ()

where the series in () has actually the geometric rate /. On the other hand, Sondow []
obtained the expression

γ =
An – Ln(n

n
) + O

(
–nn–/) as n → ∞, ()

where, for any n = , , . . . ,

An =
n∑

i=

(
n
i

)

Hn+i, Ln = 
∑

≤i<j≤n

j–i∑

k=

(–)i+j–

j – i

(
n
i

)(
n
j

)
log(n + i + k).

As mentioned before, the aim of this paper is to compute Euler’s constant in a monotone
and fast way at the same time. To achieve this, we combine a formula obtained by Zhang
and Williams [] to compute Stieltjes constants (see also Coffey []) and a probabilistic
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perspective based on a differentiation formula for expectations of functions of the gamma
process (see formula () in Section ). More precisely, let

η(z) =
∞∑

m=

(–)m

(m + )z , �(z) > , ()

be the alternating zeta function. It was shown in Zhang and Williams [], Theorem  (see
also Coffey []) that

γ =
log 


+

η′()
log 

. ()

Our computation of η′() is mainly based on the probabilistic representation given in
Lemma . (Section ).

We point out that some authors have introduced probabilistic tools to deal with differ-
ent topics of analytic number theory. For instance, Sun [] described Stirling series in
terms of products of uniformly distributed random variables, Srivastava and Vignat []
have given representations of the Bernoulli, Euler, and Gegenbauer polynomials in terms
of moments of appropriate random variables, and Ta [] has recently introduced a nice
probabilistic approach to study Appell polynomials by connecting them to moments of
random variables. Finally, fast computations of the Stieltjes constants using differentia-
tion formulas for linear operators represented by stochastic processes can be found in
[] and the references therein.

2 Main results
Denote by N the set of nonnegative integers, and let N+ = N \ {}. The mth forward dif-
ferences of any sequence (vn)n≥ of real numbers are recursively defined by �vn = vn,
�vn = vn+ – vn, n ∈N, and

�mvn = �(�m–vn
)

=
m∑

j=

(
m
j

)
(–)m–jvn+j, m ∈N+, n ∈N.

Let n ∈N. We consider the coefficients

an(j) =
n∑

k=j

(
k + 
j + 

)


k+ , j = , , . . . , n, ()

and define the following lower and upper approximants of η′():

ln =
n∑

j=

an(j)
(–)j log(j + )

j + 
()

and

un = ln +
n + 
n+

n+∑

j=

(
n + 

j

)
(–)j log(j + )

(j + )j
, ()

respectively, where log / := . With these notations, we enunciate our first main result.
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Theorem . Let n ∈N. Then,

l̃n :=
log 


+

ln

log 
< γ <

log 


+
un

log 
=: ũn. ()

The sequences (ln)n≥ and (un)n≥ satisfy the following complete monotonicity-type prop-
erties

(–)m–�mln ≥ , (–)m–�mun ≤ ,  ≤ m ≤ n + . ()

In addition, we have

un – ln ≤ n + 
n+ . ()

The sequences (l̃n)n≥ and (ũn)n≥ in Theorem . provide monotone and fast computa-
tions of the Euler-Mascheroni constant γ . Moreover, such sequences are easy to compute.
In this regard, let Sj, j ∈N+, be a random variable having the negative binomial distribution
with parameters j and /, that is,

P(Sj = l) =
(

j –  + l
j – 

)


j+l , l ∈N.

The coefficients an(j) in () can be represented as

an(j) =
n–j∑

l=

(
j +  + l

j + 

)


j++l = P(Sj+ ≤ n – j), n ∈N, j = , . . . , n.

Thus, the tail probabilities an(j) can be precomputed, as done in many statistical packages,
such as R. Finally, recall that a sequence (vn)n≥ is said to be completely monotonic if
(–)m�mvn ≥ , m, n ∈N. This is the reason why the inequalities in () are called complete
monotonicity-type properties.

The approximating sequences to γ given in () and () are simpler to compute than those
in Theorem .. However, the sequences (l̃n)n≥ and (ũn)n≥ in this theorem converge to γ

in a much faster way and enjoy properties such as monotonicity, convexity, and so on. On
the other hand, formulas (), (), (), and () provide fast computations of γ at the price
of loosing the monotonicity of the corresponding approximating sequences. Certainly,
formula () computes γ in a faster way than that in (). However, the sequences (l̃n)n≥

and (ũn)n≥ in Theorem . are easier to compute than the main term in ().
Denote

Pk = (even)
k∏

j=

(j + )(
k+
j+), Qk = (odd)

k∏

j=

(j + )(
k+
j+), k ∈N, ()

where (even)
∏

(resp. (odd)
∏

) means that the product is extended to those even (resp.
odd) integers j running from  to k. As a consequence of Theorem ., we give the follow-
ing:
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Corollary . We have the infinite product representation

γ –log / = lim
n→∞

n∏

k=

(
Pk

Qk

)/(k+)k+

,

where Pk/Qk > , k ∈N.

Guillera and Sondow [], Example ., have obtained the product formula

eγ –log / = lim
n→∞

n∏

k=

(
Q�

k
P�

k

)/(k+)

, ()

where

P�
k = (even)

k+∏

j=

(j + )(
k+

j ), Q�
k = (odd)

k+∏

j=

(j + )(
k+

j ), k ∈ Z+. ()

However, the rate of convergence in Corollary . is faster than that in ().

3 Auxiliary results
Let (Xt)t≥ be a gamma process (see Çınlar [], pp.-), that is, a stochastic process
starting at the origin, having independent stationary increments, and such that for each
t > , the random variable Xt has the gamma density

ρt(θ ) =


	(t)
θ t–e–θ , θ > . ()

On the other hand, let V and T be two independent random variables such that V is
uniformly distributed on [, ] and T has the exponential density ρ(θ ) defined in ().
We assume that V and T are independent of the gamma process (Xt)t≥. Finally, let f :
R+ → R be a differentiable function such that f�(t) := Ef (Xt) < ∞, t ≥ , where E stands
for mathematical expectation. It has been shown in [], Theorem ., that

f ′
�(t) = Ef ′(Xt + VT), t ≥ . ()

This formula can be applied to the problem at hand as follows.

Lemma . Let η be the alternating zeta function. Then,

η′() = Eg(X + VT), ()

where the function g is defined in R+ as

g(x) =
∞∑

k=

k + 
k+

(
 – e–x)ke–x =




–
∞∑

k=

k
k+

(
 – e–x)k+. ()
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Proof By () the Laplace transform of Xt is given by

Ee–λXt =


(λ + )t , λ ≥ , t ≥ . ()

Thus, interchanging the sum with expectation, from () we have

η(t) =
∞∑

m=

E
(
–e–Xt

)m = Ef (Xt), t ≥ , ()

where

f (x) =


 + e–x =
∞∑

k=

( – e–x)k

k+ , x ≥ . ()

Therefore from () and () we have

η′() = Ef ′(X + VT).

This shows (), since f ′ = g , as follows from (). Finally, the second equality in () fol-
lows by calculus. The proof is complete. �

In view of Lemma ., we define, for any n ∈N and x ≥ ,

Ln(x) =
n∑

k=

k + 
k+

(
 – e–x)ke–x, Un(x) =




–
n–∑

k=

k
k+

(
 – e–x)k+. ()

It can be checked from () that

Ln(x) = Un(x) –
n + 
n+

(
 – e–x)n+. ()

Such partial sums allow us to give the following probabilistic representations of the se-
quences (ln)n≥ and (un)n≥ respectively defined in () and ().

Lemma . For any n ∈N, we have

ln = ELn(X + VT), un = EUn(X + VT).

Proof By Fubini’s theorem the Laplace transform of VT is given by

Ee–λVT = E


λV + 
=

log(λ + )
λ

, λ ≥ . ()

Since X is independent of VT , from () and () we have

ELn(X + VT) =
n∑

k=

k + 
k+

k∑

j=

(
k
j

)
(–)jEe–(j+)(X+VT)

=
n∑

k=

k + 
k+

k∑

j=

(
k
j

)
(–)j log(j + )

(j + )(j + )
= ln, ()
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where the last equality follows from () and () after interchanging the order of summa-
tion. Similarly,

E
(
 – e–(X+VT))n+ =

n+∑

j=

(
n + 

j

)
(–)j log(j + )

(j + )j
.

Therefore, the second equality in Lemma . follows from (), (), and (). The proof
is complete. �

Thanks to Lemma ., the complete monotonicity-type properties of (ln)n≥ and (un)n≥

are easily derived from the analogous properties satisfied by the sequences of functions
(Ln(x))n≥ and (Un(x))n≥.

Lemma . Let m ∈N+ and n ∈N with m ≤ n + . Then,

(–)m–�mLn(x) ≥ , (–)m–�mUn(x) ≤ , x ≥ .

Proof Fix x ≥ . For any s ≥ , denote

vn(s) = (n + s)τ n(x), τ (x) =
 – e–x


, n ∈ N. ()

Using induction on m, we can check that

(–)m�mvn(s) = τ n(x)
(
 – τ (x)

)m–(n + s – (n + s + m)τ (x)
)
, n, m ∈N,

thus implying that

(–)m�mvn(s) ≥ , m, n ∈N, m ≤ n + s, ()

since  ≤ τ (x) ≤ /. On the other hand, from () and () we have

�Ln(x) =
e–x


(n + )τ n+(x) =

e–x


vn+().

Therefore, the first inequality in Lemma . follows from (). Finally, from () and ()
we have

�Un(x) = –
n


τ n+(x) = –
τ (x)


vn().

This, together with (), shows the second inequality in Lemma . and completes the
proof. �

4 The proofs

Proof of Theorem . Let n ∈N. By () and Lemmas . and . we get

ln = ELn(X + VT) < Eg(X + VT) = η′() < EUn(X + VT) = un.
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This, in conjunction with (), shows (). On the other hand, let m ∈N+ with  ≤ m ≤ n+.
By Lemmas . and . we have

(–)m–�mln = E(–)m–�mLn(X + VT) ≥ .

The second inequality in () is shown in a similar way. Finally, we see from () and
Lemma . that

un – ln =
n + 
n+ E

(
 – e–(X+VT))n+ ≤ n + 

n+ .

The proof is complete. �

Proof of Corollary . Let k ∈ N. Using (), (), and (), we can check that

log
Pk

Qk
=

k∑

j=

(
k + 
j + 

)
(–)j log(j + )

= (k + )(k + )E
{(

 – e–(X+VT))ke–(X+VT)} > ,

which implies that Pk/Qk > . Therefore, for any n ∈N, we have

log
n∏

k=

(
Pk

Qk

)/(k+)k+

=
n∑

k=


k+

k∑

j=

(
k + 
j + 

)
(–)j log(j + )

j + 
= ln,

where the last equality follows from () and (). This, together with () and (), shows
the result. �
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