Skip to main content

Padé approximant related to inequalities involving the constant e and a generalized Carleman-type inequality

Abstract

Based on the Padé approximation method, in this paper we determine the coefficients \(a_{j}\) and \(b_{j}\) (\(1\leq j \leq k\)) such that

$$ \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}= \frac{x^{k}+a_{1}x^{k-1}+ \cdots +a_{k}}{x^{k}+b_{1}x^{k-1}+\cdots +b_{k}}+O \biggl( \frac{1}{x ^{2k+1}} \biggr) , \quad x\to \infty , $$

where \(k\geq 1\) is any given integer. Based on the obtained result, we establish new upper bounds for \(( 1+1/x ) ^{x}\). As an application, we give a generalized Carleman-type inequality.

Introduction

Let \(a_{n} \geq 0\) for \(n \in \mathbb{N}:=\{1, 2, \ldots \}\) and \(0<\sum_{n=1}^{\infty }a_{n}<\infty \). Then

$$ \sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n}< e \sum_{n=1}^{ \infty }a_{n}. $$
(1.1)

The constant e is the best possible. The inequality (1.1) was presented in 1922 in [1] by Carleman and it is called Carleman’s inequality. Carleman discovered this inequality during his important work on quasi-analytical functions.

Carleman’s inequality (1.1) was generalized by Hardy [2] (see also [3, p.256]) as follows: If \(a_{n} \geq 0\), \(\lambda_{n}>0\), \(\Lambda_{n}=\sum_{m=1}^{n}\lambda_{m}\) for \(n \in \mathbb{N}\), and \(0<\sum_{n=1}^{\infty }\lambda_{n}a_{n}< \infty \), then

$$ \sum_{n=1}^{\infty } \lambda_{n} \bigl(a_{1}^{\lambda_{1}}a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}} \bigr)^{1/ \Lambda_{n}}< e \sum _{n=1} ^{ \infty }\lambda_{n}a_{n}. $$
(1.2)

Note that inequality (1.2) is usually referred to as a Carleman-type inequality or weighted Carleman-type inequality. In [2], Hardy himself said that it was Pólya who pointed out this inequality to him.

In [420], some strengthened and generalized results of (1.1) and (1.2) have been given by estimating the weight coefficient \(( 1+1/n ) ^{n}\). For example, Yang [17] proved that, for \(n\in \mathbb{N}\),

$$ e \biggl( 1-\frac{1}{2(n+\frac{5}{6})} \biggr) < \biggl( 1+ \frac{1}{n} \biggr) ^{n}< e \biggl( 1-\frac{1}{2(n+1)} \biggr) , $$
(1.3)

and then used it to obtain the following strengthened Carleman inequality:

$$ \sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n}< e \sum_{n=1}^{ \infty } \biggl( 1-\frac{1}{2(n+1)} \biggr) a_{n}. $$
(1.4)

Xie and Zhong [15] proved that, for \(x\geq 1\),

$$ e \biggl( 1-\frac{7}{14x+12} \biggr) < \biggl( 1+ \frac{1}{x} \biggr) ^{x}< e \biggl( 1-\frac{6}{12x+11} \biggr) , $$
(1.5)

and then used it to improve the Carleman-type inequality (1.2) as follows. If \(0<\lambda_{n+1} \leq \lambda_{n}\), \(\Lambda_{n}=\sum_{m=1}^{n}\lambda_{m}\), \(a_{n} \geq 0\) for \(n \in \mathbb{N}\), and \(0<\sum_{n=1}^{\infty }\lambda_{n}a_{n}< \infty \), then

$$\begin{aligned} \sum_{n=1}^{\infty } \lambda_{n+1} \bigl(a_{1}^{\lambda_{1}}a_{2}^{ \lambda_{2}} \cdots a_{n}^{\lambda_{n}} \bigr)^{1/ \Lambda_{n}} < e\sum _{n=1} ^{\infty } \biggl( 1- \frac{6}{12(\frac{\Lambda_{n}}{\lambda_{n}})+11} \biggr) \lambda_{n}a _{n}. \end{aligned}$$
(1.6)

Taking \(\lambda_{n} \equiv 1\) in (1.6) yields

$$\begin{aligned} \sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n} < e\sum_{n=1}^{ \infty } \biggl( 1-\frac{6}{12n+11} \biggr) a_{n}, \end{aligned}$$
(1.7)

which improves (1.4).

Recently, Mortici and Hu [14] proved that, for \(x\geq 1\),

$$\begin{aligned} &\frac{x+\frac{5}{12}}{x+\frac{11}{12}}-\frac{5}{288x^{3}}+\frac{343}{8{,}640x^{4}} -\frac{2{,}621}{41{,}472x^{5}} \\ &\quad < \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr)^{x} < \frac{x+\frac{5}{12}}{x+\frac{11}{12}}-\frac{5}{288x^{3}}+\frac{343}{8{,}640x ^{4}}-\frac{2{,}621}{41{,}472x^{5}}+ \frac{300{,}901}{3{,}483{,}648x^{6}}, \end{aligned}$$
(1.8)

and then they used it to establish the following improvement of Carleman’s inequality:

$$\begin{aligned} &\sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n} \\ &\quad < e \sum_{n=1}^{ \infty } \biggl( \frac{12n+5}{12n+11}-\frac{5}{288n^{3}}+\frac{343}{8{,}640n ^{4}}- \frac{2{,}621}{41{,}472n^{5}}+\frac{300{,}901}{3{,}483{,}648n^{6}} \biggr) a _{n}, \end{aligned}$$

which can be written as

$$\begin{aligned} \sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n}< e \sum_{n=1}^{ \infty } ( 1-\varepsilon_{n} ) a_{n}, \end{aligned}$$
(1.9)

where

$$\begin{aligned} \varepsilon_{n}=\frac{104{,}509{,}440n^{6}+3{,}628{,}800n^{4}-4{,}971{,}456n^{3}+5{,}603{,}472n ^{2}-5{,}945{,}040n-16{,}549{,}555}{17{,}418{,}240n^{6}(12n+11)}. \end{aligned}$$
(1.10)

For information as regards the history of Carleman-type inequalities, please refer to [2124].

It follows from (1.8) that

$$ \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}=\frac{x+\frac{5}{12}}{x+ \frac{11}{12}}+O \biggl( \frac{1}{x^{3}} \biggr) ,\quad x\to \infty . $$
(1.11)

Using the Padé approximation method, in Section 3 we derive (1.11) and the following approximation formula:

$$ \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}=\frac{x^{2}+ \frac{87}{100}x+ \frac{37}{240}}{x^{2}+\frac{137}{100}x+ \frac{457}{1{,}200}}+O \biggl( \frac{1}{x ^{5}} \biggr) , \quad x\to \infty . $$
(1.12)

Equation (1.12) motivates us to present the following inequality:

$$ \biggl( 1+\frac{1}{n} \biggr) ^{n}< e \biggl( \frac{n^{2}+\frac{87}{100}n+ \frac{37}{240}}{n^{2}+\frac{137}{100}n+\frac{457}{1{,}200}} \biggr) =e \biggl( 1-\frac{8(75n+34)}{1{,}200n^{2}+1{,}644n+457} \biggr) , \quad n\in \mathbb{N}. $$
(1.13)

Following the same method used in the proof of Theorem 3.2, we can prove the inequality (1.13). We here omit it.

According to Pólya’s proof of (1.1) in [25],

$$ \sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n}\leq \sum_{n=1} ^{\infty } \biggl( 1+\frac{1}{n} \biggr) ^{n}a_{n}, $$
(1.14)

and then the following strengthened Carleman’s inequality is derived directly from (1.13):

$$ \sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n}< e \sum_{n=1}^{ \infty } \biggl( 1-\frac{8(75n+34)}{1{,}200n^{2}+1{,}644n+457} \biggr) a_{n}, $$
(1.15)

which improves (1.7).

Based on the Padé approximation method, we determine the coefficients \(a_{j}\) and \(b_{j}\) (\(1\leq j\leq k\)) such that

$$ \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}=\frac{x^{k}+a_{1}x^{k-1}+ \cdots +a_{k}}{x^{k}+b_{1}x^{k-1}+\cdots +b_{k}}+O \biggl( \frac{1}{x ^{2k+1}} \biggr) ,\quad x\to \infty , $$
(1.16)

where \(k\geq 1\) is any given integer. Based on the obtained result, we establish new upper bounds for \(( 1+1/x ) ^{x}\). As an application, we give a generalization to the Carleman-type inequality.

The numerical values given have been calculated using the computer program MAPLE 13.

A useful lemma

For later use, we introduce the following set of partitions of an integer \(n \in \mathbb{N} =\mathbb{N}_{0} \setminus \{ 0 \} := \{1,\,2,\,3,\,\ldots \}\):

$$ \mathcal{A}_{n} := \bigl\{ ( k_{1}, k_{2}, \ldots , k_{n} ) \in \mathbb{N}_{0}^{n} : k_{1}+2k_{2}+ \cdots +nk_{n}=n \bigr\} . $$
(2.1)

In number theory, the partition function \(p(n)\) represents the number of possible partitions of \(n \in \mathbb{N}\) (e.g., the number of distinct ways of representing n as a sum of natural numbers regardless of order). By convention, \(p(0) = 1\) and \(p(n) = 0\) if n is a negative integer. For more information on the partition function \(p(n)\), please refer to [26] and the references therein. The first values of the partition function \(p(n)\) are (starting with \(p(0)=1\)) (see [27]):

$$ 1, \,1,\,2, \,3,\,5,\,7,\,11,\,15,\,22,\,30, \,42,\,\ldots . $$

It is easy to see that the cardinality of the set \(\mathcal{A}_{n}\) is equal to the partition function \(p(n)\). Now we are ready to present a formula which determines the coefficients \(a_{j}\) in (2.2) with the help of the partition function given by the following lemma.

Lemma 2.1

[28]

The following approximation formula holds true:

$$ \biggl( 1+\frac{1}{x} \biggr) ^{x}=e \sum _{j=0}^{\infty } \frac{c _{j}}{x ^{j}} \quad \textit{as}\ x\to \infty , $$
(2.2)

where the coefficients \(c_{j}\) \((j \in \mathbb{N})\) are given by

$$ \begin{aligned}& c_{0}=1 \quad \textit{and}\quad c_{j}=(-1)^{j} \sum_{ ( k_{1}, k_{2}, \ldots , k_{j} ) \in \mathcal{A} _{j}} \frac{1}{k_{1}!k_{2}!\cdots k_{j}!} \biggl( \frac{1}{2} \biggr) ^{k_{1}} \biggl( \frac{1}{3} \biggr) ^{k_{2}}\cdots \biggl( \frac{1}{j+1} \biggr) ^{k_{j}},\end{aligned}$$
(2.3)

where the \(\mathcal{A}_{j}\) \((\textit{for}\ j \in \mathbb{N})\) are given in (2.1).

Padé approximant related to asymptotics for the constant e

For later use, we introduce the Padé approximant (see [2934]). Let f be a formal power series

$$\begin{aligned} f(t)=c_{0}+c_{1}t+c_{2}t^{2}+ \cdots . \end{aligned}$$
(3.1)

The Padé approximation of order \((p, q)\) of the function f is the rational function, denoted by

$$\begin{aligned}{} [p/q]_{f}(t)=\frac{\sum_{j=0}^{p}a_{j}t^{j}}{1+\sum_{j=1}^{q}b_{j}t ^{j}}, \end{aligned}$$
(3.2)

where \(p\geq 0\) and \(q\geq 1\) are two given integers, the coefficients \(a_{j}\) and \(b_{j}\) are given by (see [2931, 33, 34])

$$\begin{aligned} \textstyle\begin{cases} a_{0}=c_{0}, \\ a_{1}=c_{0}b_{1}+c_{1}, \\ a_{2}=c_{0}b_{2}+c_{1}b_{1}+c_{2}, \\ \vdots \\ a_{p} = c_{0}b_{p}+\cdots + c_{p-1}b_{1} + c_{p}, \\ 0 = c_{p+1} + c_{p}b_{1} + \cdots + c_{p-q+1}b_{q}, \\ \vdots & \\ 0 = c_{p+q} + c_{p+q-1}b_{1} + \cdots + c_{p}b_{q}, \end{cases}\displaystyle \end{aligned}$$
(3.3)

and the following holds:

$$\begin{aligned}{} [p/q]_{f}(t)- f (t) = O\bigl(t^{p+q+1} \bigr). \end{aligned}$$
(3.4)

Thus, the first \(p + q + 1\) coefficients of the series expansion of \([p/q]_{f}\) are identical to those of f. Moreover, we have (see [32])

$$ \begin{aligned} &[p/q]_{f}(t)= \frac{ \left \vert \begin{matrix}{} t^{q}f_{p-q}(t) & t^{q-1}f_{p-q+1}(t) &\cdots &f_{p}(t) \\ c_{p-q+1} & c_{p-q+2} &\cdots &c_{p+1} \\ \vdots &\vdots &\ddots &\vdots \\ c_{p} & c_{p+1} &\cdots &c_{p+q} \end{matrix} \right \vert } { \left \vert \begin{matrix}{} t^{q} & t^{q-1} &\cdots &1 \\ c_{p-q+1} & c_{p-q+2} &\cdots &c_{p+1} \\ \vdots &\vdots &\ddots &\vdots \\ c_{p} & c_{p+1} &\cdots &c_{p+q} \end{matrix} \right \vert } , \end{aligned} $$
(3.5)

with \(f_{n}(x) = c_{0}+ c_{1}x+ \cdots + c_{n}x^{n}\), the nth partial sum of the series f (\(f_{n}\) is identically zero for \(n < 0\)).

Let

$$\begin{aligned} f(x)=\frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}. \end{aligned}$$
(3.6)

It follows from (2.2) that, as \(x\to \infty \),

$$\begin{aligned} f(x) &=\sum_{j=0}^{\infty } \frac{c_{j}}{x^{j}}=1-\frac{1}{2x}+\frac{11}{24x ^{2}}-\frac{7}{16x^{3}}+ \frac{2{,}447}{5{,}760x^{4}}-\frac{959}{2{,}304x^{5}}+\frac{238{,}043}{580{,}608x ^{6}}-\cdots , \end{aligned}$$
(3.7)

with the coefficients \(c_{j}\) given by (2.3). In what follows, the function f is given in (3.6).

We now give a derivation of equation (1.11). To this end, we consider

$$\begin{aligned}{} [1/1]_{f}(x)=\frac{\sum_{j=0}^{1}a_{j}x^{-j}}{1+\sum_{j=1}^{1}b_{j}x ^{-j}}. \end{aligned}$$

Noting that

$$\begin{aligned} c_{0}=1, \qquad c_{1}=-\frac{1}{2},\qquad c_{2}=\frac{11}{24}, \qquad c _{3}=- \frac{7}{16}, \qquad c_{4}=\frac{2{,}447}{5{,}760} \end{aligned}$$
(3.8)

holds, we have, by (3.3),

$$\begin{aligned} \textstyle\begin{cases} a_{0}=1, \\a_{1}=b_{1}-\frac{1}{2}, \\0 =\frac{11}{24}- \frac{1}{2}b_{1}, \end{cases}\displaystyle \end{aligned}$$

that is,

$$\begin{aligned} a_{0}=1, \qquad a_{1}=\frac{5}{12},\qquad b_{1}=\frac{11}{12}. \end{aligned}$$

We thus obtain

$$ [1/1]_{f}(x)= \frac{1+\frac{5}{12x}}{1+\frac{11}{12x}}=\frac{x+ \frac{5}{12}}{x+\frac{11}{12}}, $$
(3.9)

and we have, by (3.4),

$$ \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}-\frac{x+\frac{5}{12}}{x+ \frac{11}{12}}= O \biggl( \frac{1}{x^{3}} \biggr) , \quad x\to \infty . $$
(3.10)

We now give a derivation of equation (1.12). To this end, we consider

$$\begin{aligned}{} [2/2]_{f}(x)=\frac{\sum_{j=0}^{2}a_{j}x^{-j}}{1+\sum_{j=1}^{2}b_{j}x ^{-j}}. \end{aligned}$$

Noting that (3.8) holds, we have, by (3.3),

$$\begin{aligned} \textstyle\begin{cases} a_{0}=1, \\a_{1}=b_{1}-\frac{1}{2}, \\a_{2} =b_{2}-\frac{1}{2}b_{1}+ \frac{11}{24} , \\0 = - \frac{7}{16}+\frac{11}{24}b_{1}-\frac{1}{2}b_{2} , \\0 = \frac{2{,}447}{5{,}760}-\frac{7}{16}b_{1}+\frac{11}{24}b_{2}, \end{cases}\displaystyle \end{aligned}$$

that is,

$$\begin{aligned} a_{0}=1,\qquad a_{1}=\frac{87}{100},\qquad a_{2} = \frac{37}{240}, \qquad b_{1}=\frac{137}{100},\qquad b_{2}=\frac{457}{1{,}200}. \end{aligned}$$

We thus obtain

$$ [2/2]_{f}(x)= \frac{1+\frac{87}{100x}+\frac{37}{240x^{2}}}{1+ \frac{137}{100x}+\frac{457}{1{,}200x^{2}}}=\frac{x^{2}+\frac{87}{100}x+ \frac{37}{240}}{x^{2}+\frac{137}{100}x+\frac{457}{1{,}200}} $$
(3.11)

and we have, by (3.4),

$$ \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}-\frac{x^{2}+ \frac{87}{100}x+ \frac{37}{240}}{x^{2}+\frac{137}{100}x+ \frac{457}{1{,}200}}= O \biggl( \frac{1}{x ^{5}} \biggr) , \quad x\to \infty . $$
(3.12)

Using the Padé approximation method and the expansion (3.7), we now present a general result given by Theorem 3.1. As a consequence, we obtain (1.16).

Theorem 3.1

The Padé approximation of order \((p, q)\) of the asymptotic formula of the function \(f(x)=\frac{1}{e} ( 1+\frac{1}{x} ) ^{x}\) (at the point \(x=\infty \)) is the following rational function:

$$\begin{aligned}{} [p/q]_{f}(x)=\frac{1+\sum_{j=1}^{p}a_{j}x^{-j}}{1+\sum_{j=1}^{q}b_{j}x ^{-j}}=x^{q-p} \biggl( \frac{x^{p}+a_{1}x^{p-1}+\cdots +a_{p}}{x^{q}+b _{1}x^{q-1}+\cdots +b_{q}} \biggr) , \end{aligned}$$
(3.13)

where \(p\geq 1\) and \(q\geq 1\) are two given integers, the coefficients \(a_{j}\) and \(b_{j}\) are given by

$$\begin{aligned} \textstyle\begin{cases} a_{1}=b_{1}+c_{1}, \\ a_{2}=b_{2}+c_{1}b_{1}+c_{2}, \\ \vdots \\ a_{p} = b_{p}+\cdots + c_{p-1}b_{1} + c_{p}, \\ 0 = c_{p+1} + c_{p}b_{1} + \cdots + c_{p-q+1}b_{q}, \\ \vdots & \\ 0 = c_{p+q} + c_{p+q-1}b_{1} + \cdots + c_{p}b_{q}, \end{cases}\displaystyle \end{aligned}$$
(3.14)

\(c_{j}\) is given in (2.3), and the following holds:

$$\begin{aligned} f (x) -[p/q]_{f}(x) = O \biggl( \frac{1}{x^{p+q+1}} \biggr) ,\quad x\to \infty . \end{aligned}$$
(3.15)

Moreover, we have

$$ \begin{aligned} &[p/q]_{f}(x)= \frac{ \left \vert \begin{matrix}{} \frac{1}{x^{q}}f_{p-q}(x) & \frac{1}{x^{q-1}}f_{p-q+1}(x) &\cdots &f _{p}(x) \\c_{p-q+1} & c_{p-q+2} &\cdots &c_{p+1} \\ \vdots &\vdots &\ddots &\vdots \\ c_{p} & c_{p+1} &\cdots &c_{p+q} \end{matrix} \right \vert } { \left \vert \begin{matrix}{} \frac{1}{x^{q}} & \frac{1}{x^{q-1}} &\cdots &1 \\c_{p-q+1} & c_{p-q+2} &\cdots &c_{p+1} \\ \vdots &\vdots &\ddots &\vdots \\ c_{p} & c_{p+1} &\cdots &c_{p+q} \end{matrix} \right \vert } , \end{aligned} $$
(3.16)

with \(f_{n}(x)=\sum_{j=0}^{n}\frac{c_{j}}{x^{j}}\), the nth partial sum of the asymptotic series (3.7).

Remark 3.1

Using (3.16), we can also derive (3.9) and (3.11). Indeed, we have

$$ \begin{aligned}{} [1/1]_{f}(x) &=\frac{ \left \vert \begin{matrix}{} \frac{1}{x}f_{0}(x) &f_{1}(x) \\c_{1} &c_{2} \\\end{matrix} \right \vert } { \left \vert \begin{matrix}{} \frac{1}{x} &1 \\c_{1} &c_{2} \\\end{matrix} \right \vert } = \frac{ \left \vert \begin{matrix}{} \frac{1}{x} &1-\frac{1}{2x} \\-\frac{1}{2} &\frac{11}{24} \\\end{matrix} \right \vert } { \left \vert \begin{matrix}{} \frac{1}{x} &1 \\-\frac{1}{2} &\frac{11}{24} \\\end{matrix} \right \vert } \\ & =\frac{x+\frac{5}{12}}{x+\frac{11}{12}} \end{aligned} $$

and

$$ \begin{aligned}{} [2/2]_{f}(x) &=\frac{ \left \vert \begin{matrix}{} \frac{1}{x^{2}}f_{0}(x) & \frac{1}{x}f_{1}(x) &f_{2}(x) \\c_{1} &c_{2} &c_{3} \\c_{2} &c_{3} &c_{4} \\\end{matrix} \right \vert } { \left \vert \begin{matrix}{} \frac{1}{x^{2}} &\frac{1}{x} &1 \\c_{1} &c_{2} &c_{3} \\c_{2} &c_{3} &c_{4} \\\end{matrix} \right \vert } = \frac{ \left \vert \begin{matrix}{} \frac{1}{x^{2}} & \frac{1}{x} ( 1-\frac{1}{2x} ) &1- \frac{1}{2x}+\frac{11}{24x^{2}} \\-\frac{1}{2} &\frac{11}{24} &-\frac{7}{16} \\\frac{11}{24} &-\frac{7}{16} &\frac{2{,}447}{5{,}760} \\\end{matrix} \right \vert } { \left \vert \begin{matrix}{} \frac{1}{x^{2}} &\frac{1}{x} &1 \\-\frac{1}{2} &\frac{11}{24} &-\frac{7}{16} \\\frac{11}{24} &-\frac{7}{16} &\frac{2{,}447}{5{,}760} \\\end{matrix} \right \vert } \\ &=\frac{x^{2}+\frac{87}{100}x+\frac{37}{240}}{x^{2}+\frac{137}{100}x+ \frac{457}{1{,}200}}. \end{aligned} $$

Remark 3.2

Setting \((p, q)=(k, k)\) in (3.15), we obtain (1.16).

Setting

$$ (p, q)=(3, 3) \quad \text{and}\quad (p, q)=(4, 4), $$

respectively, we obtain by Theorem 3.1, as \(x\to \infty \),

$$ \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}=\frac{x^{3}+ \frac{162{,}713}{121{,}212}x^{2}+\frac{13{,}927}{26{,}936}x+\frac{41{,}501}{786{,}240}}{x ^{3}+\frac{223{,}319}{121{,}212}x^{2}+\frac{237{,}551}{242{,}424}x+ \frac{3{,}950{,}767}{29{,}090{,}880}}+O \biggl( \frac{1}{x^{7}} \biggr) $$
(3.17)

and

$$\begin{aligned} \frac{1}{e} \biggl( 1+\frac{1}{x} \biggr) ^{x}={}&\frac{x^{4}+ \frac{1{,}157{,}406{,}727}{634{,}301{,}284}x^{3}+\frac{8{,}452{,}872{,}239}{7{,}611{,}615{,}408}x^{2}+ \frac{81{,}587{,}251{,}465}{319{,}687{,}847{,}136}x+\frac{15{,}842{,}677}{924{,}376{,}320}}{x^{4}+ \frac{1{,}474{,}557{,}369}{634{,}301{,}284}x^{3}+\frac{13{,}811{,}559{,}391}{7{,}611{,}615{,}408}x^{2}+ \frac{170{,}870{,}679{,}559}{319{,}687{,}847{,}136}x+ \frac{1{,}724{,}393{,}461{,}793}{38{,}362{,}541{,}656{,}320}} \\ & {}+O \biggl( \frac{1}{x^{9}} \biggr) . \end{aligned}$$
(3.18)

Equations (3.17) and (3.18) motivate us to establish the following theorem.

Theorem 3.2

For \(x>0\),

$$\begin{aligned} \biggl( 1+\frac{1}{x} \biggr) ^{x} &< e \biggl( \frac{x^{3}+ \frac{162{,}713}{121{,}212}x^{2}+\frac{13{,}927}{26{,}936}x+\frac{41{,}501}{786{,}240}}{x ^{3}+\frac{223{,}319}{121{,}212}x^{2}+\frac{237{,}551}{242{,}424}x+ \frac{3{,}950{,}767}{29{,}090{,}880}} \biggr) \end{aligned}$$
(3.19)

and

$$\begin{aligned} &\biggl( 1+\frac{1}{x} \biggr) ^{x} \\ &\quad < e \biggl( \frac{x^{4}+ \frac{1{,}157{,}406{,}727}{634{,}301{,}284}x^{3}+\frac{8{,}452{,}872{,}239}{7{,}611{,}615{,}408}x^{2}+ \frac{81{,}587{,}251{,}465}{319{,}687{,}847{,}136}x+\frac{15{,}842{,}677}{924{,}376{,}320}}{x^{4}+ \frac{1{,}474{,}557{,}369}{634{,}301{,}284}x^{3}+\frac{13{,}811{,}559{,}391}{7{,}611{,}615{,}408}x^{2}+ \frac{170{,}870{,}679{,}559}{319{,}687{,}847{,}136}x+ \frac{1{,}724{,}393{,}461{,}793}{38{,}362{,}541{,}656{,}320}} \biggr) . \end{aligned}$$
(3.20)

Proof

We only prove the inequality (3.20). The proof of (3.19) is analogous. In order to prove (3.20), it suffices to show that

$$\begin{aligned} F(x)< 0 \quad \text{for}\ x>0, \end{aligned}$$

where

$$\begin{aligned} F(x)={}&x\ln \biggl( 1+\frac{1}{x} \biggr) -1 \\ &{}-\ln \biggl( \frac{x^{4}+ \frac{1{,}157{,}406{,}727}{634{,}301{,}284}x^{3}+\frac{8{,}452{,}872{,}239}{7{,}611{,}615{,}408}x^{2}+ \frac{81{,}587{,}251{,}465}{319{,}687{,}847{,}136}x+\frac{15{,}842{,}677}{924{,}376{,}320}}{x^{4}+ \frac{1{,}474{,}557{,}369}{634{,}301{,}284}x^{3}+\frac{13{,}811{,}559{,}391}{7{,}611{,}615{,}408}x^{2}+ \frac{170{,}870{,}679{,}559}{319{,}687{,}847{,}136}x+ \frac{1{,}724{,}393{,}461{,}793}{38{,}362{,}541{,}656{,}320}} \biggr) . \end{aligned}$$

Differentiation yields

$$\begin{aligned} F'(x)=\ln \biggl( 1+\frac{1}{x} \biggr) -\frac{P_{8}(x)}{P_{9}(x)}, \end{aligned}$$

where

$$\begin{aligned} P_{8}(x) ={}&4{,}534{,}960{,}145{,}139{,}175{,}220{,}907{,}601+89{,}156{,}435{,}404{,}854{,}709{,}617{,}164{,}400x \\ & +753{,}611{,}422{,}427{,}554{,}143{,}580{,}166{,}880x^{2} \\ & +3{,}400{,}732{,}641{,}706{,}885{,}239{,}015{,}784{,}320x^{3} \\ & +8{,}959{,}898{,}009{,}119{,}992{,}740{,}647{,}591{,}680x^{4} \\ & +14{,}212{,}846{,}466{,}921{,}911{,}377{,}490{,}790{,}400x^{5} \\ & +13{,}355{,}464{,}865{,}044{,}929{,}241{,}744{,}281{,}600x^{6} \\ & +6{,}842{,}437{,}276{,}900{,}714{,}847{,}214{,}796{,}800x^{7} \\ & +1{,}471{,}684{,}602{,}332{,}887{,}248{,}995{,}942{,}400x^{8} \end{aligned}$$

and

$$\begin{aligned} P_{9}(x) ={}&\bigl(38{,}362{,}541{,}656{,}320x^{4}+69{,}999{,}958{,}848{,}960x^{3}+42{,}602{,}476{,}084{,}560x ^{2} \\ &{}+9{,}790{,}470{,}175{,}800x +657{,}486{,}938{,}177\bigr) \bigl(38{,}362{,}541{,}656{,}320x^{4} \\ &{}+89{,}181{,}229{,}677{,}120x^{3}+69{,}610{,}259{,}330{,}640x ^{2} +20{,}504{,}481{,}547{,}080x \\ &{}+1{,}724{,}393{,}461{,}793\bigr) (x+1). \end{aligned}$$

Differentiating \(F'(x)\), we find

$$\begin{aligned} F''(x)=-\frac{Q_{8}(x)}{Q_{19}(x)}, \end{aligned}$$

where

$$\begin{aligned} Q_{8}(x) ={}&1{,}285{,}425{,}745{,}031{,}439{,}744{,}924{,}351{,}944{,}181{,}267{,}498{,}830{,}297{,}392{,}321 \\ & +28{,}378{,}097{,}964{,}665{,}213{,}870{,}448{,}253{,}775{,}917{,}974{,}735{,}833{,}555{,}915{,}520x \\ & +247{,}639{,}239{,}538{,}550{,}650{,}618{,}428{,}925{,}475{,}351{,}177{,}418{,}903{,}828{,}519{,}360x^{2} \\ & +1{,}131{,}116{,}309{,}072{,}948{,}249{,}686{,}419{,}776{,}599{,}013{,}563{,}965{,}352{,}036{,}853{,}760x^{3} \\ & +2{,}998{,}129{,}273{,}934{,}033{,}621{,}834{,}452{,}343{,}529{,}577{,}599{,}070{,}175{,}646{,}117{,}120x^{4} \\ & +4{,}775{,}194{,}702{,}079{,}256{,}668{,}486{,}950{,}292{,}217{,}012{,}539{,}098{,}845{,}384{,}867{,}840x^{5} \\ & +4{,}503{,}188{,}365{,}939{,}207{,}771{,}317{,}966{,}173{,}833{,}346{,}921{,}724{,}385{,}791{,}590{,}400x^{6} \\ & +2{,}315{,}562{,}242{,}935{,}704{,}170{,}341{,}114{,}308{,}201{,}588{,}127{,}064{,}283{,}807{,}744{,}000x^{7} \\ & +500{,}009{,}489{,}498{,}922{,}911{,}594{,}629{,}442{,}997{,}057{,}334{,}195{,}586{,}408{,}448{,}000x^{8} \end{aligned}$$

and

$$\begin{aligned} Q_{19}(x) ={}&x\bigl(38{,}362{,}541{,}656{,}320x^{4}+69{,}999{,}958{,}848{,}960x^{3}+42{,}602{,}476{,}084{,}560x ^{2} \\ &+9{,}790{,}470{,}175{,}800x +657{,}486{,}938{,}177\bigr)^{2}\bigl(38{,}362{,}541{,}656{,}320x^{4} \\ &+89{,}181{,}229{,}677{,}120x^{3}+69{,}610{,}259{,}330{,}640x ^{2} +20{,}504{,}481{,}547{,}080x \\ &+1{,}724{,}393{,}461{,}793\bigr)^{2}(x+1)^{2}. \end{aligned}$$

Hence, \(F''(x)<0\) for \(x>0\), and we have

$$\begin{aligned} F'(x)>\lim_{t\to \infty }F'(t)=0 \quad \Longrightarrow \quad F(x)< \lim_{t\to \infty }F(t)=0 \quad \text{for}\ x>0. \end{aligned}$$

The proof is complete. □

The inequality (3.20) can be written as

$$\begin{aligned} \biggl( 1+\frac{1}{x} \biggr) ^{x}< e \bigl(1- \mathcal{E}(x) \bigr),\quad x>0, \end{aligned}$$
(3.21)

where

$$\begin{aligned} \mathcal{E}(x)={}& 48\bigl(399{,}609{,}808{,}920x^{3}+562{,}662{,}150{,}960x^{2} \\ &{}+223{,}208{,}570{,}235x+22{,}227{,}219{,}242\bigr) /\bigl(38{,}362{,}541{,}656{,}320x^{4} \\ &{}+89{,}181{,}229{,}677{,}120x^{3}+69{,}610{,}259{,}330{,}640x^{2}+20{,}504{,}481{,}547{,}080x \\ &{}+1{,}724{,}393{,}461{,}793\bigr). \end{aligned}$$
(3.22)

A generalized Carleman-type inequality

Theorem 4.1

Let \(0<\lambda_{n+1} \leq \lambda_{n}\), \(\Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}\) \((\Lambda_{n}\geq 1)\), \(a_{n} \geq 0\) \((n \in \mathbb{N})\) and \(0<\sum_{n=1}^{\infty }\lambda_{n}a_{n}<\infty \). Then, for \(0< p \leq 1\),

$$\begin{aligned} & \sum_{n=1}^{\infty } \lambda_{n+1}\bigl(a_{1}^{\lambda_{1}}a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\bigr)^{1/ \Lambda_{n}} \\ &\quad{} < \frac{e^{p}}{p} \sum_{n=1}^{\infty } \biggl( 1-\mathcal{E} \biggl( \frac{\Lambda_{n}}{ \lambda _{n}} \biggr) \biggr) ^{p} \lambda_{n}a_{n}^{p} \Lambda_{n}^{p-1} \Biggl( \sum_{k=1}^{n} \lambda_{k}(c_{k}a_{k})^{p} \Biggr) ^{(1-p)/p}, \end{aligned}$$
(4.1)

where \(\mathcal{E}(x)\) is given in (3.22) and

$$ c_{n}^{\lambda_{n}}=\frac{(\Lambda_{n+1})^{\Lambda_{n}}}{(\Lambda_{n})^{ \Lambda_{n-1}}}. $$

Proof

The inequality

$$\begin{aligned} & \sum_{n=1}^{\infty } \lambda_{n+1}\bigl(a_{1}^{\lambda_{1}}a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\bigr)^{1/ \Lambda_{n}} \\ &\quad \leq \frac{1}{p}\sum_{m=1}^{\infty } \biggl( 1+\frac{1}{\Lambda_{m}/ \lambda_{m}} \biggr) ^{p \Lambda_{m} / \lambda_{m}} \lambda_{m}a_{m} ^{p}\Lambda_{m}^{p-1} \Biggl( \sum _{k=1}^{m}\lambda_{k}(c_{k}a_{k})^{p} \Biggr) ^{(1-p)/p} \end{aligned}$$
(4.2)

has been proved in Theorem 2.2 of [9] (see also [11, p.96]). From the above inequality and (3.20), we obtain (4.1). The proof is complete. □

Remark 4.1

In Theorem 2.2 of [9], \(c_{k}^{\lambda_{n}}=\frac{( \Lambda_{n+1})^{\Lambda_{n}}}{(\Lambda_{n})^{\Lambda_{n-1}}}\) should be \(c_{n}^{\lambda_{n}}=\frac{(\Lambda_{n+1})^{\Lambda_{n}}}{(\Lambda_{n})^{ \Lambda_{n-1}}}\); see [9, p.44, line 3]. Likewise, \(c_{s}^{\lambda_{n}}=\frac{(\Lambda_{n+1})^{\Lambda_{n}}}{(\Lambda_{n})^{ \Lambda_{n-1}}}\) in Theorem 3.1 of [11] should be \(c_{n}^{\lambda_{n}}=\frac{(\Lambda_{n+1})^{\Lambda_{n}}}{(\Lambda_{n})^{ \Lambda_{n-1}}}\); see [11, p.96, equation (9)].

Remark 4.2

Taking \(p=1\) in (4.1) yields

$$\begin{aligned} \sum_{n=1}^{\infty } \lambda_{n+1}\bigl(a_{1}^{\lambda_{1}}a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\bigr)^{1/ \Lambda_{n}} < e\sum _{n=1}^{ \infty } \biggl( 1-\mathcal{E} \biggl( \frac{\Lambda_{n}}{\lambda_{n}} \biggr) \biggr) \lambda_{n}a_{n}, \end{aligned}$$
(4.3)

which improves (1.6). Taking \(\lambda_{n} \equiv 1\) in (4.3) yields

$$\begin{aligned} \sum_{n=1}^{\infty }(a_{1}a_{2} \cdots a_{n})^{1/n} < e\sum_{n=1}^{ \infty } \bigl(1-\mathcal{E}(n) \bigr)a_{n}, \end{aligned}$$
(4.4)

which improves (1.9).

References

  1. 1.

    Carleman, T: Sur les fonctions quasi-analytiques. In: Comptes rendus du V e Congres des Mathematiciens Scandinaves. Helsingfors, pp. 181-196 (1922)

    Google Scholar 

  2. 2.

    Hardy, GH: Notes on some points in the integral calculus. Messenger Math. 54, 150-156 (1925)

    Google Scholar 

  3. 3.

    Hardy, GH, Littlewood, JE, Pólya, G: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  4. 4.

    Čižmešija, A, Pečarić, J, Persson, LE: On strengthened Carleman’s inequality. Bull. Aust. Math. Soc. 68, 481-490 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Chen, HW: On an infinite series for \((1+1/x)^{x}\) and its application. Int. J. Math. Math. Sci. 29, 675-680 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Chen, CP: Generalization of weighted Carleman-type inequality. East J. Approx. 12, 63-69 (2006)

    MathSciNet  Google Scholar 

  7. 7.

    Chen, CP, Qi, F: Generalization of Hardy’s inequality. Proc. Jangjeon Math. Soc. 7, 57-61 (2004)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Chen, CP, Cheung, WS, Qi, F: Note on weighted Carleman type inequality. Int. J. Math. Math. Sci. 3, 475-481 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Dragomir, SS, Kim, YH: The strengthened Hardy inequalities and their new generalizations. Filomat 20, 39-49 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Hu, Y: A strengthened Carleman’s inequality. Commun. Math. Anal. 1, 115-119 (2006)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Lü, Z, Gao, Y, Wei, Y: Note on the Carleman’s inequality and Hardy’s inequality. Comput. Math. Appl. 59, 94-97 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Li, JL: Notes on an inequality involving the constant e. J. Math. Anal. Appl. 250, 722-725 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Liu, HP, Zhu, L: New strengthened Carleman’s inequality and Hardy’s inequality. J. Inequal. Appl. 2007, Article ID 84104 (2007). http://link.springer.com/article/10.1155/2007/84104/fulltext.html

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Mortici, C, Hu, Y: On some convergences to the constant e and improvements of Carleman’s inequality. Carpath. J. Math. 31, 249-254 (2015)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Xie, Z, Zhong, Y: A best approximation for constant e and an improvement to Hardy’s inequality. J. Math. Anal. Appl. 252, 994-998 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Yan, P, Sun, GZ: A strengthened Carleman’s inequality. J. Math. Anal. Appl. 240, 290-293 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Yang, BC, Debnath, L: Some inequalities involving the constant e, and an application to Carleman’s inequality. J. Math. Anal. Appl. 223, 347-353 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Yang, BC: On Hardy’s inequality. J. Math. Anal. Appl. 234, 717-722 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Yang, XJ: On Carleman’s inequality. J. Math. Anal. Appl. 253, 691-694 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Yang, XJ: Approximations for constant e and their applications. J. Math. Anal. Appl. 262, 651-659 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Johansson, M, Persson, LE, Wedestig, A: Carleman’s inequality - history, proofs and some new generalizations. J. Inequal. Pure Appl. Math. 4(3), Article ID 53 (2003). http://jipam.vu.edu.au/article.php?sid=291

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Kaijser, S, Persson, LE, Öberg, A: On Carleman and Knopp’s inequalities. J. Approx. Theory 117, 140-151 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Kufner, A, Persson, LE: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003)

    Google Scholar 

  24. 24.

    Pečarić, J, Stolarsky, KB: Carleman’s inequality: history and new generalizations. Aequ. Math. 61, 49-62 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Pólya, G: Proof of an inequality. Proc. Lond. Math. Soc. 24, 57 (1926)

    MATH  Google Scholar 

  26. 26.

    Wikipedia contributors: Partition (number theory), Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Partition_function_(number_theory)#Partition_function

  27. 27.

    Sloane, NJA: \(a(n)\) = number of partitions of n (the partition numbers). Maintained by The OEIS Foundation. http://oeis.org/A000041

  28. 28.

    Chen, CP, Choi, J: Asymptotic formula for \((1+1/x)^{x}\) based on the partition function. Am. Math. Mon. 121, 338-343 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Bercu, G: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016 99 (2016). http://www.doc88.com/p-0037658479714.html

    Article  MATH  Google Scholar 

  30. 30.

    Bercu, G: The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 11, 181-191 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Bercu, G, Wu, S: Refinements of certain hyperbolic inequalities via the Padé approximation method. J. Nonlinear Sci. Appl. 9, 5011-5020 (2016)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Brezinski, C, Redivo-Zaglia, M: New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 284, 69-77 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Li, X, Chen, CP: Padé approximant related to asymptotics for the gamma function. J. Inequal. Appl. 2017, 53 (2017). http://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-017-1315-1

    Article  MATH  Google Scholar 

  34. 34.

    Liu, J, Chen, CP: Padé approximant related to inequalities for Gauss lemniscate functions. J. Inequal. Appl. 2016, 320 (2016). http://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-016-1262-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao-Ping Chen.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, H. Padé approximant related to inequalities involving the constant e and a generalized Carleman-type inequality. J Inequal Appl 2017, 205 (2017). https://doi.org/10.1186/s13660-017-1479-8

Download citation

MSC

  • 26D15
  • 41A60

Keywords

  • Carleman’s inequality
  • weight coefficient
  • Padé approximant