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Abstract
Based on the Padé approximation method, in this paper we determine the
coefficients aj and bj (1≤ j ≤ k) such that

1
e

(
1 +

1
x

)x
=
xk + a1xk–1 + · · · + ak
xk + b1xk–1 + · · · + bk

+ O
( 1
x2k+1

)
, x → ∞,

where k ≥ 1 is any given integer. Based on the obtained result, we establish new
upper bounds for (1 + 1/x)x . As an application, we give a generalized Carleman-type
inequality.
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1 Introduction
Let an ≥  for n ∈N := {, , . . .} and  <

∑∞
n= an < ∞. Then

∞∑
n=

(aa · · ·an)/n < e
∞∑

n=

an. (.)

The constant e is the best possible. The inequality (.) was presented in  in [] by Car-
leman and it is called Carleman’s inequality. Carleman discovered this inequality during
his important work on quasi-analytical functions.

Carleman’s inequality (.) was generalized by Hardy [] (see also [, p.]) as follows:
If an ≥ , λn > , �n =

∑n
m= λm for n ∈N, and  <

∑∞
n= λnan < ∞, then

∞∑
n=

λn
(
aλ

 aλ
 · · ·aλn

n
)/�n < e

∞∑
n=

λnan. (.)

Note that inequality (.) is usually referred to as a Carleman-type inequality or weighted
Carleman-type inequality. In [], Hardy himself said that it was Pólya who pointed out this
inequality to him.
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In [–], some strengthened and generalized results of (.) and (.) have been given
by estimating the weight coefficient ( + /n)n. For example, Yang [] proved that, for
n ∈N,

e
(

 –


(n + 
 )

)
<

(
 +


n

)n

< e
(

 –


(n + )

)
, (.)

and then used it to obtain the following strengthened Carleman inequality:

∞∑
n=

(aa · · ·an)/n < e
∞∑

n=

(
 –


(n + )

)
an. (.)

Xie and Zhong [] proved that, for x ≥ ,

e
(

 –


x + 

)
<

(
 +


x

)x

< e
(

 –


x + 

)
, (.)

and then used it to improve the Carleman-type inequality (.) as follows. If  < λn+ ≤ λn,
�n =

∑n
m= λm, an ≥  for n ∈N, and  <

∑∞
n= λnan < ∞, then

∞∑
n=

λn+
(
aλ

 aλ
 · · ·aλn

n
)/�n < e

∞∑
n=

(
 –


( �n

λn
) + 

)
λnan. (.)

Taking λn ≡  in (.) yields

∞∑
n=

(aa · · ·an)/n < e
∞∑

n=

(
 –


n + 

)
an, (.)

which improves (.).
Recently, Mortici and Hu [] proved that, for x ≥ ,

x + 


x + 


–


x +


,x –
,

,x

<

e

(
 +


x

)x

<
x + 



x + 


–


x +


,x –
,

,x +
,

,,x , (.)

and then they used it to establish the following improvement of Carleman’s inequality:

∞∑
n=

(aa · · ·an)/n

< e
∞∑

n=

(
n + 
n + 

–


n +


,n –
,

,n +
,

,,n

)
an,

which can be written as

∞∑
n=

(aa · · ·an)/n < e
∞∑

n=

( – εn)an, (.)
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where

εn =
,,n + ,,n – ,,n + ,,n – ,,n – ,,

,,n(n + )
. (.)

For information as regards the history of Carleman-type inequalities, please refer to [–
].

It follows from (.) that


e

(
 +


x

)x

=
x + 



x + 


+ O
(


x

)
, x → ∞. (.)

Using the Padé approximation method, in Section  we derive (.) and the following
approximation formula:


e

(
 +


x

)x

=
x + 

 x + 


x + 
 x + 

,
+ O

(

x

)
, x → ∞. (.)

Equation (.) motivates us to present the following inequality:

(
 +


n

)n

< e
( n + 

 n + 


n + 
 n + 

,

)
= e

(
 –

(n + )
,n + ,n + 

)
, n ∈ N. (.)

Following the same method used in the proof of Theorem ., we can prove the inequality
(.). We here omit it.

According to Pólya’s proof of (.) in [],

∞∑
n=

(aa · · ·an)/n ≤
∞∑

n=

(
 +


n

)n

an, (.)

and then the following strengthened Carleman’s inequality is derived directly from (.):

∞∑
n=

(aa · · ·an)/n < e
∞∑

n=

(
 –

(n + )
,n + ,n + 

)
an, (.)

which improves (.).
Based on the Padé approximation method, we determine the coefficients aj and bj ( ≤

j ≤ k) such that


e

(
 +


x

)x

=
xk + axk– + · · · + ak

xk + bxk– + · · · + bk
+ O

(


xk+

)
, x → ∞, (.)

where k ≥  is any given integer. Based on the obtained result, we establish new upper
bounds for ( + /x)x. As an application, we give a generalization to the Carleman-type
inequality.

The numerical values given have been calculated using the computer program MAPLE
.
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2 A useful lemma
For later use, we introduce the following set of partitions of an integer n ∈ N = N \ {} :=
{, , , . . .}:

An :=
{

(k, k, . . . , kn) ∈N
n
 : k + k + · · · + nkn = n

}
. (.)

In number theory, the partition function p(n) represents the number of possible partitions
of n ∈ N (e.g., the number of distinct ways of representing n as a sum of natural numbers
regardless of order). By convention, p() =  and p(n) =  if n is a negative integer. For more
information on the partition function p(n), please refer to [] and the references therein.
The first values of the partition function p(n) are (starting with p() = ) (see []):

, , , , , , , , , , , . . . .

It is easy to see that the cardinality of the set An is equal to the partition function p(n).
Now we are ready to present a formula which determines the coefficients aj in (.) with
the help of the partition function given by the following lemma.

Lemma . ([]) The following approximation formula holds true:

(
 +


x

)x

= e
∞∑
j=

cj

xj as x → ∞, (.)

where the coefficients cj (j ∈ N) are given by

c =  and cj = (–)j
∑

(k,k,...,kj)∈Aj


k!k! · · ·kj!

(



)k( 


)k

· · ·
(


j + 

)kj

, (.)

where the Aj (for j ∈N) are given in (.).

3 Padé approximant related to asymptotics for the constant e
For later use, we introduce the Padé approximant (see [–]). Let f be a formal power
series

f (t) = c + ct + ct + · · · . (.)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

[p/q]f (t) =
∑p

j= ajtj

 +
∑q

j= bjtj
, (.)
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where p ≥  and q ≥  are two given integers, the coefficients aj and bj are given by (see
[–, , ])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = c,

a = cb + c,

a = cb + cb + c,
...

ap = cbp + · · · + cp–b + cp,

 = cp+ + cpb + · · · + cp–q+bq,
...

 = cp+q + cp+q–b + · · · + cpbq,

(.)

and the following holds:

[p/q]f (t) – f (t) = O
(
tp+q+). (.)

Thus, the first p + q +  coefficients of the series expansion of [p/q]f are identical to those
of f . Moreover, we have (see [])

[p/q]f (t) =

∣∣∣∣∣∣∣∣∣∣

tqfp–q(t) tq–fp–q+(t) · · · fp(t)
cp–q+ cp–q+ · · · cp+

...
...

. . .
...

cp cp+ · · · cp+q

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

tq tq– · · · 
cp–q+ cp–q+ · · · cp+

...
...

. . .
...

cp cp+ · · · cp+q

∣∣∣∣∣∣∣∣∣∣

, (.)

with fn(x) = c + cx + · · · + cnxn, the nth partial sum of the series f (fn is identically zero for
n < ).

Let

f (x) =

e

(
 +


x

)x

. (.)

It follows from (.) that, as x → ∞,

f (x) =
∞∑
j=

cj

xj =  –


x
+


x –


x +

,
,x –


,x +

,
,x – · · · , (.)

with the coefficients cj given by (.). In what follows, the function f is given in (.).
We now give a derivation of equation (.). To this end, we consider

[/]f (x) =
∑

j= ajx–j

 +
∑

j= bjx–j
.
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Noting that

c = , c = –



, c =



, c = –



, c =
,
,

(.)

holds, we have, by (.),

⎧⎪⎪⎨
⎪⎪⎩

a = ,

a = b – 
 ,

 = 
 – 

 b,

that is,

a = , a =



, b =



.

We thus obtain

[/]f (x) =
 + 

x

 + 
x

=
x + 



x + 


, (.)

and we have, by (.),


e

(
 +


x

)x

–
x + 



x + 


= O
(


x

)
, x → ∞. (.)

We now give a derivation of equation (.). To this end, we consider

[/]f (x) =
∑

j= ajx–j

 +
∑

j= bjx–j
.

Noting that (.) holds, we have, by (.),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = ,

a = b – 
 ,

a = b – 
 b + 

 ,

 = – 
 + 

 b – 
 b,

 = ,
, – 

 b + 
 b,

that is,

a = , a =



, a =




, b =



, b =


,
.

We thus obtain

[/]f (x) =
 + 

x + 
x

 + 
x + 

,x
=

x + 
 x + 



x + 
 x + 

,
(.)
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and we have, by (.),


e

(
 +


x

)x

–
x + 

 x + 


x + 
 x + 

,
= O

(

x

)
, x → ∞. (.)

Using the Padé approximation method and the expansion (.), we now present a general
result given by Theorem .. As a consequence, we obtain (.).

Theorem . The Padé approximation of order (p, q) of the asymptotic formula of the
function f (x) = 

e ( + 
x )x (at the point x = ∞) is the following rational function:

[p/q]f (x) =
 +

∑p
j= ajx–j

 +
∑q

j= bjx–j
= xq–p

(
xp + axp– + · · · + ap

xq + bxq– + · · · + bq

)
, (.)

where p ≥  and q ≥  are two given integers, the coefficients aj and bj are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = b + c,

a = b + cb + c,
...

ap = bp + · · · + cp–b + cp,

 = cp+ + cpb + · · · + cp–q+bq,
...

 = cp+q + cp+q–b + · · · + cpbq,

(.)

cj is given in (.), and the following holds:

f (x) – [p/q]f (x) = O
(


xp+q+

)
, x → ∞. (.)

Moreover, we have

[p/q]f (x) =

∣∣∣∣∣∣∣∣∣∣


xq fp–q(x) 

xq– fp–q+(x) · · · fp(x)
cp–q+ cp–q+ · · · cp+

...
...

. . .
...

cp cp+ · · · cp+q

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣


xq


xq– · · · 

cp–q+ cp–q+ · · · cp+
...

...
. . .

...
cp cp+ · · · cp+q

∣∣∣∣∣∣∣∣∣∣

, (.)

with fn(x) =
∑n

j=
cj
xj , the nth partial sum of the asymptotic series (.).
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Remark . Using (.), we can also derive (.) and (.). Indeed, we have

[/]f (x) =

∣∣∣∣∣

x f(x) f(x)

c c

∣∣∣∣∣
∣∣∣∣∣


x 
c c

∣∣∣∣∣

=

∣∣∣∣∣

x  – 

x
– 





∣∣∣∣∣
∣∣∣∣∣


x 

– 





∣∣∣∣∣

=
x + 



x + 


and

[/]f (x) =

∣∣∣∣∣∣∣


x f(x) 

x f(x) f(x)
c c c

c c c

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣


x


x 

c c c

c c c

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣


x


x ( – 

x )  – 
x + 

x

– 



 – 



 – 


,
,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣


x


x 

– 



 – 



 – 


,
,

∣∣∣∣∣∣∣

=
x + 

 x + 


x + 
 x + 

,
.

Remark . Setting (p, q) = (k, k) in (.), we obtain (.).

Setting

(p, q) = (, ) and (p, q) = (, ),

respectively, we obtain by Theorem ., as x → ∞,


e

(
 +


x

)x

=
x + ,

, x + ,
, x + ,

,

x + ,
, x + ,

, x + ,,
,,

+ O
(


x

)
(.)

and


e

(
 +


x

)x

=
x + ,,,

,, x + ,,,
,,, x + ,,,

,,, x + ,,
,,

x + ,,,
,, x + ,,,

,,, x + ,,,
,,, x + ,,,,

,,,,

+ O
(


x

)
. (.)

Equations (.) and (.) motivate us to establish the following theorem.

Theorem . For x > ,

(
 +


x

)x

< e
( x + ,

, x + ,
, x + ,

,

x + ,
, x + ,

, x + ,,
,,

)
(.)



Chen and Zhang Journal of Inequalities and Applications  (2017) 2017:205 Page 9 of 12

and

(
 +


x

)x

< e
( x + ,,,

,, x + ,,,
,,, x + ,,,

,,, x + ,,
,,

x + ,,,
,, x + ,,,

,,, x + ,,,
,,, x + ,,,,

,,,,

)
. (.)

Proof We only prove the inequality (.). The proof of (.) is analogous. In order to
prove (.), it suffices to show that

F(x) <  for x > ,

where

F(x) = x ln

(
 +


x

)
– 

– ln

( x + ,,,
,, x + ,,,

,,, x + ,,,
,,, x + ,,

,,

x + ,,,
,, x + ,,,

,,, x + ,,,
,,, x + ,,,,

,,,,

)
.

Differentiation yields

F ′(x) = ln

(
 +


x

)
–

P(x)
P(x)

,

where

P(x) = ,,,,,,,, + ,,,,,,,,x

+ ,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

and

P(x) =
(
,,,,x + ,,,,x + ,,,,x

+ ,,,,x + ,,,
)(

,,,,x

+ ,,,,x + ,,,,x + ,,,,x

+ ,,,,
)
(x + ).
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Differentiating F ′(x), we find

F ′′(x) = –
Q(x)
Q(x)

,

where

Q(x) = ,,,,,,,,,,,,,,,,

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

and

Q(x) = x
(
,,,,x + ,,,,x + ,,,,x

+ ,,,,x + ,,,
)(,,,,x

+ ,,,,x + ,,,,x + ,,,,x

+ ,,,,
)(x + ).

Hence, F ′′(x) <  for x > , and we have

F ′(x) > lim
t→∞ F ′(t) =  	⇒ F(x) < lim

t→∞ F(t) =  for x > .

The proof is complete. �

The inequality (.) can be written as

(
 +


x

)x

< e
(
 – E(x)

)
, x > , (.)

where

E(x) = 
(
,,,x + ,,,x

+ ,,,x + ,,,
)
/
(
,,,,x

+ ,,,,x + ,,,,x + ,,,,x

+ ,,,,
)
. (.)
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4 A generalized Carleman-type inequality
Theorem . Let  < λn+ ≤ λn, �n =

∑n
m= λm (�n ≥ ), an ≥  (n ∈ N) and  <∑∞

n= λnan < ∞. Then, for  < p ≤ ,

∞∑
n=

λn+
(
aλ

 aλ
 · · ·aλn

n
)/�n

<
ep

p

∞∑
n=

(
 – E

(
�n

λn

))p

λnap
n�

p–
n

( n∑
k=

λk(ckak)p

)(–p)/p

, (.)

where E(x) is given in (.) and

cλn
n =

(�n+)�n

(�n)�n–
.

Proof The inequality

∞∑
n=

λn+
(
aλ

 aλ
 · · ·aλn

n
)/�n

≤ 
p

∞∑
m=

(
 +


�m/λm

)p�m/λm

λmap
m�p–

m

( m∑
k=

λk(ckak)p

)(–p)/p

(.)

has been proved in Theorem . of [] (see also [, p.]). From the above inequality and
(.), we obtain (.). The proof is complete. �

Remark . In Theorem . of [], cλn
k = (�n+)�n

(�n)�n– should be cλn
n = (�n+)�n

(�n)�n– ; see [, p.,

line ]. Likewise, cλn
s = (�n+)�n

(�n)�n– in Theorem . of [] should be cλn
n = (�n+)�n

(�n)�n– ; see [,
p., equation ()].

Remark . Taking p =  in (.) yields

∞∑
n=

λn+
(
aλ

 aλ
 · · ·aλn

n
)/�n < e

∞∑
n=

(
 – E

(
�n

λn

))
λnan, (.)

which improves (.). Taking λn ≡  in (.) yields

∞∑
n=

(aa · · ·an)/n < e
∞∑

n=

(
 – E(n)

)
an, (.)

which improves (.).
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