Skip to main content

On \((p,q)\)-Szász-Mirakyan operators and their approximation properties

Abstract

In the present paper, we introduce a new modification of Szász-Mirakyan operators based on \((p, q)\)-integers and investigate their approximation properties. We obtain weighted approximation and Voronovskaya-type theorem for new operators.

Introduction and preliminaries

In the last two decades, there has been intensive research on the approximation of functions by positive linear operators introduced by using q-calculus. Lupas [1] was the first who used q-calculus to define q-Bernstein polynomials, and later Phillips [2] proposed a generalization of Bernstein polynomials based on q-integers. Very recently, Mursaleen et al. applied \((p,q)\)-calculus in approximation theory and introduced the first \((p,q)\)-analogue of Bernstein operators [3]. They investigated the uniform convergence and convergence rate of the operators and also obtained a Voronovskaya-type theorem. Also, \((p,q)\)-analogues of Bernstein-Stancu operators [4], Bleimann-Butzer-Hahn operators [5], and Bernstein-Schurer operarors [6] were defined and their approximation properties were investigated. Most recently, the \((p,q)\)-analogues of some more operators were defined and their approximation properties were studied in [717], and [18]. In this paper, we introduce a \((p,q)\)-analogue of Szász-Mirakyan operators. Let us recall some notation and definitions of \((p,q)\)-calculus. Let \(0< q< p\leq1\). For nonnegative integers k and n such that \(n\geq k\geq0\), the \((p,q)\)-integer, \((p,q)\)-factorial, and \((p,q)\)-binomial are respectively defined by

$$ \begin{gathered} {}[ k]_{p,q}:=\frac{p^{k}-q^{k}}{p-q}, \\ {}[ k]_{p,q}!:=\left \{ \textstyle\begin{array}{l@{\quad}l} {}[ k]_{p,q}[k-1]_{p,q}\cdots1,& k\geq1, \\ 1, & k=0 ,\end{array}\displaystyle \right . \end{gathered} $$

and

$$ \left [ \textstyle\begin{array}{c} n \\ k\end{array}\displaystyle \right ] _{p,q}:= \frac{[n]_{p,q}!}{[k]_{p,q}![n-k]_{p,q}!}. $$

In the case of \(p=1\), these notations reduce to q-analogues, and we can easily see that \([n]_{p,q}=p^{n-1}[n]_{q/p}\). Further, the \((p,q)\)-power basis is defined by

$$ (x\oplus a)_{p,q}^{n}:=(x+a) (px+qa) \bigl(p^{2}x+q^{2}a \bigr)\cdots \bigl(p^{n-1}x+q^{n-1}a \bigr) $$

and

$$ (x\ominus a)_{p,q}^{n}:=(x-a) (px-qa) \bigl(p^{2}x-q^{2}a \bigr)\cdots \bigl(p^{n-1}x-q^{n-1}a \bigr). $$

Also the \((p,q)\)-derivative of a function f, denoted by \(D_{p,q}f\), is defined by

$$ (D_{p,q}f) (x):=\frac{f(px)-f(qx)}{(p-q)x},\quad x\neq 0,\qquad(D_{p,q}f) (0):=f^{{\prime}}(0) $$

provided that f is differentiable at 0. The formula for the \((p,q)\)-derivative of a product is

$$ D_{p,q} \bigl(u(x)v(x) \bigr):=D_{p,q} \bigl(u(x) \bigr)v(qx)+D_{p,q} \bigl(v(x) \bigr)u(qx). $$

For more details on \((p,q)\)-calculus, we refer the readers to [19, 20] and the references therein. There are two \((p,q)\)-analogues of the exponential function:

$$ e_{p,q}(x)=\sum_{n=0}^{\infty} \frac{p^{\frac{n(n-1)}{2}}x^{n}}{[n]_{p,q}!} $$
(1.1)

and

$$ E_{p,q}(x)=\sum_{n=0}^{\infty} \frac{q^{\frac{n(n-1)}{2}}x^{n}}{[n]_{p,q}!} $$

which satisfy the equality \(e_{p,q}(x)E_{p,q}(-x)=1\). For \(p=1\), \(e_{p,q}(x)\) and \(E_{p,q}(x)\) reduce to the q-exponential functions. Here we note that the interval of convergence of \(e_{p,q}(x)\) is \(| x|<1/(p-q)\) for \(| p|<1\) and \(| q|<1\), and series (1.1) converges for all \(x\in\mathbb{R}\), \(| p|<1\), and \(| q|<1\).

Construction of operators and auxiliary results

We first define the analogue of Szász-Mirakyan operators via \((p, q)\)-calculus as follows.

Definition 2.1

Let \(0< q< p\leq1\) and \(n\in\mathbb{N}\). For \(f:[0,\infty)\rightarrow\mathbb{R}\), we define the \((p, q)\)-analogue of Szász-Mirakyan operators by

$$ {S}_{n,p,q}(f;x)= \sum_{k=0}^{\infty} \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! }e_{p,q} \bigl(-[n]_{p,q}q ^{-k}x \bigr) f \biggl(\frac {[k]_{p,q}}{p^{k-1}[n]_{p,q}} \biggr). $$
(2.1)

Operators (2.1) are linear and positive. For \(p=1\), they turn out to be the q-Szász-Mirakyan operators defined in [21].

Lemma 2.1

Let \(0< q< p\leq1\) and \(n\in\mathbb{N}\). We have

$$ {S}_{n,p,q} \bigl(t^{m+1};x \bigr)= \sum _{j=0}^{m} \left ( \textstyle\begin{array}{c} m \\ j\end{array}\displaystyle \right ) \frac{q^{j}x }{p^{j} [n]_{p,q}^{m-j} }{S}_{n,p,q} \bigl(t^{j};q^{-1}x \bigr). $$
(2.2)

Proof

Using the identity

$$ [k+1]_{p,q}=p^{k}+q[k]_{p,q}, $$

we can write

$$ \begin{aligned} {S}_{n,p,q} \bigl(t^{m+1};x \bigr) ={}&\sum _{k=0}^{\infty} \frac{p^{ \frac{k(k-1)}{2}}}{q^{ \frac{k(k-1)}{2}}} \frac {([n]_{p,q}x)^{k} }{ [k]_{p,q}! } \biggl(\frac{[k]_{p,q}}{p^{k-1}[n]_{p,q}} \biggr)^{m+1} e_{p,q} \bigl(-[n]_{p,q}q ^{-k}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{p^{k} p^{ \frac{k(k-1)}{2}}}{q^{k} q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! } \frac{[k+1]_{p,q}^{m} x}{p^{k(m+1)}[n]_{p,q}^{m}}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{p^{k} p^{ \frac{k(k-1)}{2}}}{q^{k} q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! } \frac{[k+1]_{p,q}^{m} x}{p^{km+k}[n]_{p,q}^{m}}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{q^{k} q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! } \frac{(p^{k}+q[k]_{p,q})^{m} x}{p^{km}[n]_{p,q}^{m}}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{ x }{ p^{km} [n]_{p,q}^{m} } \frac{ p^{ \frac{k(k-1)}{2}}}{q^{k} q^{ \frac {k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! }\\ &\times\sum_{j=0}^{m} \left ( \textstyle\begin{array}{c} m \\ j\end{array}\displaystyle \right )p^{k(m-j)}q^{j}[k]_{p,q}^{j}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \sum_{j=0}^{m}\left ( \textstyle\begin{array}{c} m \\ j\end{array}\displaystyle \right ) \frac{ q^{j}x }{ p^{j} [n]_{p,q}^{m-j} }\\ &\times \sum _{k=0}^{\infty} \frac{ [k]_{p,q}^{j} }{ p^{j(k-1)} [n]_{p,q}^{j} } \frac{ p^{ \frac {k(k-1)}{2}}}{q^{k} q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k} }{ [k]_{p,q}! } e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \sum_{j=0}^{m} \left ( \textstyle\begin{array}{c} m \\ j\end{array}\displaystyle \right ) \frac{q^{j}x }{p^{j} [n]_{p,q}^{m-j} } {S}_{n,p,q} \bigl(t^{j};q^{-1}x \bigr), \end{aligned} $$

as desired. □

Lemma 2.2

Let \(0< q< p\leq1\) and \(n\in\mathbb{N}\). We have

  1. (i)

    \({S}_{n,p,q}(1;x)=1\),

  2. (ii)

    \({S}_{n,p,q}(t;x)=x\),

  3. (iii)

    \({S}_{n,p,q}(t^{2};x)= \frac{x^{2}}{p}+\frac{ x}{[n]_{p,q} } \),

  4. (iv)

    \({S}_{n,p,q}(t^{3};x)= \frac{x^{3}}{p^{3}}+ \frac{ 2p+q}{p^{2}[n]_{p,q} }x^{2} + \frac{ x}{[n]_{p,q}^{2} }\),

  5. (v)

    \({S}_{n,p,q}(t^{4};x)= \frac{x^{4}}{p^{6}}+ \frac{3p^{2}+ 2pq+q^{2}}{p^{5}[n]_{p,q} }x^{3} + \frac{3p^{2}+ 3pq+q^{2}}{p^{3}[n]_{p,q}^{2} }x^{2}+ \frac{ x}{[n]_{p,q}^{3} }\).

Proof

Since the proof of each equality uses the same method, we give the proof for only last three equalities. Using (2.2), we get

  1. (iii)
    $$\begin{aligned} {S}_{n,p,q} \bigl(t^{2};x \bigr) ={}& \sum _{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac {[k]_{p,q}^{2}}{p^{2k-2}[n]_{p,q}^{2}}e_{p,q} \bigl(-[n]_{p,q}q ^{-k}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{ p^{k}p^{ \frac{k(k-1)}{2}}}{ q^{k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{[k+1]_{p,q}x}{p^{2k}[n]_{p,q}}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \sum_{k=0}^{\infty}\frac{ p^{k}p^{ \frac{k(k-1)}{2}}}{ q^{k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! }\frac{p^{k}x}{p^{2k}[n]_{p,q}}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ &+ \sum_{k=0}^{\infty}\frac{ p^{ \frac{k(k-1)}{2}}}{ q^{k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! }\frac{q [k]_{p,q}x }{p^{k}[n]_{p,q}}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \frac{ x}{[n]_{p,q} }+ \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{2k}q^{ \frac {k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! }\frac{x^{2} }{p} e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+2)}x \bigr) \\ ={}& \frac{x^{2}}{p}+\frac{ x}{[n]_{p,q} }. \end{aligned}$$
  2. (iv)
    $$\begin{aligned} {S}_{n,p,q} \bigl(t^{3};x \bigr) ={}& \sum _{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac {[k]_{p,q}^{3}}{p^{3k-3}[n]_{p,q}^{3}}e_{p,q} \bigl(-[n]_{p,q}q ^{-k}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac {(p^{2k}+2p^{k}q[k]_{p,q}+q^{2}[k]_{p,q}^{2})}{p^{2k}[n]_{p,q}^{2}}\\ &\times x e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{q^{k} q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{x}{[n]_{p,q}^{2}}e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ & +\sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{2q[k]_{p,q}}{p^{k}[n]_{p,q}^{2}}x e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ &+ \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{q^{2}[k]_{p,q}^{2}}{p^{2k}[n]_{p,q}^{2}}x e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \frac{ x}{[n]_{p,q}^{2} } +\frac{ 2x^{2}}{p[n]_{p,q} }\\ &+ \sum_{k=0}^{\infty} \frac{p^{k} p^{ \frac{k(k-1)}{2}}}{ q^{2k}q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{q x^{2} (p^{k}+ q[k]_{p,q})}{p^{2k+2}[n]_{p,q}} e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+2)}x \bigr) \\ ={}& \frac{ x}{[n]_{p,q}^{2} } +\frac{ 2x^{2}}{p[n]_{p,q} }+ \frac{ qx^{2}}{p^{2}[n]_{p,q} } \\ &+ \sum _{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{2k}q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{q^{2} x^{2} [k]_{p,q}}{p^{k+2}[n]_{p,q}} e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+2)}x \bigr) \\ ={}& \frac{x^{3}}{p^{3}}+ \frac{ 2p+q}{p^{2}[n]_{p,q} }x^{2} + \frac{ x}{[n]_{p,q}^{2} }. \end{aligned}$$
  3. (v)
    $$\begin{aligned} {S}_{n,p,q} \bigl(t^{4};x \bigr) ={}& \sum _{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{ \frac{k(k-1)}{2}}}\frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac {[k]_{p,q}^{4}}{p^{4k-4}[n]_{p,q}^{4}}e_{p,q} \bigl(-[n]_{p,q}q ^{-k}x \bigr) \\ ={}& \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{(p^{3k}+3p^{2k}q[k]_{p,q}+3p^{k}q^{2}[k]_{p,q}^{2}+q^{3}[k]_{p,q}^{3})}{ p^{3k}[n]_{p,q}^{3}}\\ &\times x e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+1)}x \bigr) \\ ={}& \frac{ x}{[n]_{p,q}^{3} } +\frac{ 3x^{2}}{p[n]_{p,q}^{2} }+ \frac{ 3qx^{2}}{p^{2}[n]_{p,q}^{2} }+ \frac{ 3x^{3}}{p^{3}[n]_{p,q} } \\ &+ \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{2k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{q^{2} x^{2} (p^{2k}+ 2p^{k}q[k]_{p,q}+q^{2} [k]_{p,q}^{2} )}{p^{2k+3}[n]_{p,q}^{2}}\\ &\times e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+2)}x \bigr) \\ ={}& \frac{ x}{[n]_{p,q}^{3} } +\frac{ 3x^{2}}{p[n]_{p,q}^{2} }+ \frac{ 3qx^{2}}{p^{2}[n]_{p,q}^{2} }+ \frac{ 3x^{3}}{p^{3}[n]_{p,q} }+\frac{ q^{2}x^{2}}{p^{3}[n]_{p,q}^{2} } + \frac{ 2qx^{3}}{p^{4}[n]_{p,q} } \\ &+ \sum_{k=0}^{\infty} \frac{ p^{ \frac{k(k-1)}{2}}}{ q^{3k}q^{ \frac{k(k-1)}{2}}} \frac{([n]_{p,q}x)^{k}}{ [k]_{p,q}! } \frac{q^{2} x^{3} (p^{k}+ q[k]_{p,q} )}{p^{k+5}[n]_{p,q}} e_{p,q} \bigl(-[n]_{p,q}q ^{-(k+3)}x \bigr) \\ ={}& \frac{x^{4}}{p^{6}}+ \frac{3p^{2}+ 2pq+q^{2}}{p^{5}[n]_{p,q} }x^{3} + \frac{3p^{2}+ 3pq+q^{2}}{p^{3}[n]_{p,q}^{2} }x^{2}+ \frac{ x}{[n]_{p,q}^{3} }. \end{aligned}$$

 □

Corollary 2.1

Using Lemma 2.2, we immediately have the following explicit formulas for the central moments:

$$\begin{aligned}& {S}_{n,p,q} \bigl((t-x)^{2};x \bigr) = \frac{ x}{[n]_{p,q} }+ \biggl(\frac{1}{p}-1 \biggr)x^{2}, \end{aligned}$$
(2.3)
$$\begin{aligned}& {S}_{n,p,q} \bigl((t-x)^{3};x \bigr)= \frac{ x}{[n]_{p,q}^{2} }+ \frac {2p+q-3p^{2}}{p^{2}[n]_{p,q}} x^{2} +\frac{1-3p^{2}+2p^{3}}{p^{3}} x^{3}, \end{aligned}$$
(2.4)
$$\begin{aligned}& \begin{aligned}[b] {S}_{n,p,q} \bigl((t-x)^{4};x \bigr) ={}& \frac{ x}{[n]_{p,q}^{3} }+ \frac{3p^{2}+3pq+ q^{2}-4p^{3}}{p^{3}[n]_{p,q}^{2}} x^{2} \\ &+\frac{3p^{2}+2pq+ q^{2}-8p^{4}-4p^{3}q+6p^{5}}{p^{5}[n]_{p,q}} x^{3}\\ &+ \frac{1-4p^{3}+6p^{5}-3p^{6}}{p^{6}}x^{4}. \end{aligned} \end{aligned}$$
(2.5)

Remark 2.1

For \(q\in(0, 1)\) and \(p\in(q, 1]\) we easily see that \(\lim_{n\rightarrow\infty}[n]_{p,q}=\frac{1}{p-q}\). Hence, operators (2.1) are not approximation process with above form. To study convergence properties of the sequence of \((p, q)\)-Szász operators, we assume that \(q = (q_{n})\) and \(p = (p_{n})\) are such that \(0 < q_{n} < p_{n} \leq1\) and \(q_{n} \rightarrow1\), \(p_{n} \rightarrow1\), \(q_{n} ^{n} \rightarrow a\), \(p^{n}_{n} \rightarrow b\) as \(n \rightarrow\infty\). We also assume that

$$ \begin{gathered} \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}} \biggl( \frac{1}{p_{n}}-1 \biggr) = \alpha, \\ \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}} \frac {1-3p^{2}_{n}+2p^{3}_{n}}{p^{3}_{n}} = \gamma, \\ \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}} \frac{1-4p^{3}_{n}+6p^{5}_{n}-3p^{6}_{n}}{p^{6}_{n}} =\beta. \end{gathered} $$

It is natural to ask whether such sequences \((q_{n})\) and \((p_{n})\) exist. For example, let \(c, d \in\mathbb{R^{+}}\) be such that \(c > d\). If we choose \(q_{n}=\frac{n}{n+c}\) and \(p_{n}=\frac{n}{n+d}\), then \(q_{n} \rightarrow1\), \(p_{n} \rightarrow1\), \(q^{n}_{n} \rightarrow e^{-c}\), \(p^{n}_{n} \rightarrow e^{-d}\), and \(\lim_{n\rightarrow\infty}[n]_{p,q}=\infty\) as \(n \rightarrow \infty\). Also, we have \(\alpha=\frac{a(e^{-d}- e^{-c}) }{d-c}\), \(\gamma=e^{-d}- e^{-c}\), \(\beta=0\).

Corollary 2.2

According to Remark 2.1, we immediately have

$$\begin{aligned}& \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}}{S}_{n,p_{n},q_{n}} \bigl((t-x)^{2};x \bigr) = x+\alpha x^{2}, \end{aligned}$$
(2.6)
$$\begin{aligned}& \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}}{S}_{n,p_{n},q_{n}} \bigl((t-x)^{3};x \bigr)= \gamma x^{3}, \end{aligned}$$
(2.7)
$$\begin{aligned}& \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}}{S}_{n,p_{n},q_{n}} \bigl((t-x)^{4};x \bigr) = \beta x^{4}. \end{aligned}$$
(2.8)

Direct results

In this section, we present a local approximation theorem for the operators \(S_{n,p,q}\). By \(C_{B}[0,\infty)\) we denote the space of real-valued continuous and bounded functions f defined on the interval \([0,\infty)\). The norm \(\|\cdot\|\) on the space \(C_{B}[0,\infty)\) is given by

$$ \| f\|=\sup_{0\leq x< \infty}\big| f(x)\big|. $$

Further, let us consider the following K-functional:

$$ K_{2}(f,\delta)=\inf_{g\in W^{2}} \bigl\{ \| f-g \|+\delta \big\| g^{{\prime\prime}}\big\| \bigr\} , $$

where \(\delta>0\) and \(W^{2}=\{g\in C_{B}[0,\infty):g^{{\prime}},g^{{\prime\prime}}\in C_{B}[0,\infty)\}\). By Theorem 2.4 of [22] there exists an absolute constant \(C>0\) such that

$$ K_{2}(f,\delta)\leq C\omega_{2}(f,\sqrt{\delta}), $$
(3.1)

where

$$ \omega_{2} (f,\sqrt{\delta})=\sup_{0< h\leq\sqrt{\delta}} \sup _{x\in [0,\infty)}\big| f(x+2h)-2f(x+h)+f(x)\big| $$

is the second-order modulus of smoothness of \(f\in C_{B} [0,\infty)\). The usual modulus of continuity of \(f\in C_{B} [0,\infty)\) is defined by

$$ \omega(f,\delta)=\sup_{0< h\leq\delta} \sup_{x\in[0,\infty)}\big| f(x+h)-f(x)\big|. $$

Theorem 3.1

Let \(p,q \in(0,1)\) be such that \(q < p\). Then we have

$$ \big|{S}_{n,p,q}(f;x)-f(x)\big|\leq C \omega_{2} \bigl(f; \delta_{n}(x) \bigr) $$

for every \(x\in[0,\infty)\) and \(f\in C_{B} [0,\infty)\), where

$$ \delta_{n}^{2}(x)=\frac{ x}{[n]_{p,q} }+ \biggl( \frac{1}{p}-1 \biggr)x^{2}. $$

Proof

Let \(g\in\mathcal{W}^{2}\). Then from the Taylor expansion we get

$$ g(t)=g(x)+g^{\prime}(x) (t-x)+ \int_{x}^{t}(t-u)g^{\prime\prime}(u) \,\mathrm{d}u, \quad t\in[0,\mathcal{A}], \mathcal{A}>0. $$

Now by Corollary 2.1 we have

$$\begin{gathered} {S}_{n,p,q}(g;x)=g(x)+{S}_{n,p,q} \biggl( \int_{x}^{t}(t-u)g^{\prime\prime}(u)\,\mathrm{d}u;x \biggr), \\\begin{aligned}{\big|} {S}_{n,p,q}(g;x)-g(x) {\big|} &\leq{S}_{n,p,q} \biggl( {\bigg|}\int_{x}^{t}\big|(t-u)\big| \big| g^{\prime\prime}(u) \big| \mathrm{d}u;x {\bigg|} \biggr) \\ &\leq{S}_{n,p,q} \bigl( (t-x)^{2};x \bigr) \big\| g^{\prime\prime} \big\| . \end{aligned}\end{gathered}$$

Hence we get

$$ {\big|} {S}_{n,p,q}(g;x)-g(x) {\big|}\leq\big\| g^{\prime\prime}\big\| \biggl( \frac{x}{[n]_{p,q}}+ \biggl(\frac{1}{p}-1 \biggr)x^{2} \biggr) . $$

On the other hand, we have

$$ {\big|} {S}_{n,p,q}(f;x)-f(x) {\big|} \leq \big|{S}_{n,p,q} \bigl( (f-g);x \bigr) -(f-g) (x)\big|+ {\big|} {S}_{n,p,q}(g;x)-g(x) {\big|}. $$

Since

$$ \big|{S}_{n,p,q}(f;x)\big|\leq\| f\|, $$

we have

$$ {\big|} {S}_{n,p,q}(f;x)-f(x) {\big|} \leq \| f-g\| +\big\| g^{\prime\prime}\big\| \biggl( \frac{x}{[n]_{p,q}}+ \biggl(\frac {1}{p}-1 \biggr)x^{2} \biggr) . $$

Now taking the infimum on the right-hand side over all \(g\in\mathcal {W}^{2}\), we get

$$ {\big|} {S}_{n,p,q}(f;x)-f(x) {\big|} \leq \mathcal{C}K_{2} \bigl( f, \delta_{n}^{2}(x) \bigr) . $$

By the property of a K-functional we get

$$ {\big|} {S}_{n,p,q}(f;x)-f(x) {\big|} \leq \mathcal{C}\omega _{2} \bigl( f,\delta_{n}(x) \bigr) . $$

This completes the proof. □

Weighted approximation by \(S_{n,p,q}\)

Now we give approximation properties of the operators \(S_{n,p,q}\) on the interval \([0,\infty)\). Since

$$\begin{aligned} S_{n,p,q} \bigl(1+t^{2};x \bigr) &=1+ \biggl( \frac{1}{p}-1 \biggr)x^{2}+\frac{x}{[n]_{p,q}} \\ &\leq1+x^{2}+x, \end{aligned}$$

\(x\leq1\) for \(x\in{}[0,1]\), and \(x\leq x^{2}\) for \(x\in(1,\infty)\), we have

$$ S_{n,p,q} \bigl(1+t^{2};x \bigr)\leq2 \bigl(1+x^{2} \bigr), $$

which says that \(S_{n,p,q}\) are linear positive operators acting from \(C_{2}[0,\infty)\) to \(B_{2}[0,\infty)\). For more details, see [23, 24], and [25].

Theorem 4.1

Let the sequence of linear positive operators \((L_{n})\) acting from \(C_{2} [0,\infty)\) to \(B_{2} [0,\infty)\) satisfy the condition

$$ \lim_{n\rightarrow\infty}\| L_{n}e_{i}-e_{i} \|_{2}=0 ,\quad i=0, 1, 2. $$

Then, for any function \(f \in C_{2}^{\ast} [0,\infty) \),

$$ \lim_{n\rightarrow\infty}\| L_{n}f-f\|_{2}=0. $$

Theorem 4.2

Let \(q = q_{n}\in(0, 1)\) and \(p = p_{n}\in(q, 1)\) be such that \(q_{n}\rightarrow1\) and \(p_{n}\rightarrow1\) as \(n \rightarrow\infty\). Then, for each function \(f \in C_{2}^{\ast} [0,\infty)\), we get

$$ \lim_{n\rightarrow\infty}\| S_{n,p_{n},q_{n}}f-f\|_{2}=0. $$

Proof

According to Theorem 4.1, it is sufficient to verify the condition

$$ \lim_{n\rightarrow\infty}\| S_{n,p_{n},q_{n}}e_{i}-e_{i} \|_{2} = 0,\quad i=0, 1, 2. $$
(4.1)

By Lemma 2.1(i), (ii) it is clear that

$$\begin{gathered} \lim_{n\rightarrow\infty}\big\| S_{n,p_{n},q_{n}}(1;x)-1\big\| _{2} =0, \\ \lim_{n\rightarrow\infty}\big\| S_{n,p_{n},q_{n}}(t;x)-x \big\| _{2} =0, \end{gathered}$$

and by Lemma 2.1(iii) we have

$$\begin{aligned} \lim_{n\rightarrow\infty}\big\| S_{n,p_{n},q_{n}} \bigl(t^{2};x \bigr)-x^{2}\big\| _{2} &=\sup_{x\geq0} \frac {(\frac{1}{p_{n}}-1)x^{2}+\frac{x}{[n]_{p_{n},q_{n}}}}{1+x^{2}} \\ &\leq \biggl(\frac{1}{p_{n}}-1 \biggr)+\frac{1}{[n]_{p_{n},q_{n}}}. \end{aligned}$$

The last inequality means that (4.1) holds for \(i=2\). By Theorem 4.1 the proof is complete. □

The weighted modulus of continuity is given by

$$ \Omega(f; \delta) = \sup_{0\leq h < \delta,x\in[0, \infty) } \frac {| f(x+h)-f(x)|}{(1+h^{2})+(1+x^{2})} $$
(4.2)

for \(f \in C_{2} [0,\infty)\). We know that, for every \(f \in C_{2}^{\ast} [0,\infty)\), \(\Omega(\cdot; \delta)\) has the properties

$$ \lim_{\delta\rightarrow0}\Omega(f; \delta)=0 $$

and

$$ \Omega(f; \lambda\delta) \leq 2(1+\lambda) \bigl(1+ \delta^{2} \bigr) \Omega(f; \delta), \quad\lambda>0. $$
(4.3)

For \(f \in C_{2} [0,\infty)\), from (4.2) and (4.3) we can write

$$ \begin{aligned}[b] \big| f(t)-f(x)\big|&\leq \bigl(1+(t-x)^{2} \bigr) \bigl(1+x^{2} \bigr)\Omega\bigl(f; | t-x|\bigr) \\ &\leq 2 \biggl(1+\frac{| t-x|}{\delta} \biggr) \bigl(1+\delta^{2} \bigr) \Omega(f; \delta) \bigl(1+(t-x)^{2} \bigr) \bigl(1+x^{2} \bigr). \end{aligned} $$
(4.4)

All concepts mentioned can be found in [26].

Theorem 4.3

Let \(0< q = q_{n} < p = p_{n}\leq1\) be such that \(q_{n}\rightarrow 1\) and \(p_{n}\rightarrow1\) as \(n \rightarrow\infty\). Then, for each function \(f \in C_{2}^{\ast} [0,\infty)\), there exists a positive constant A such that

$$ \sup_{x\in[0, \infty) } \frac{| S_{n,p,q}(f;x)-f(x)| }{(1+x^{2})^{\frac{5}{2}}} \leq A\Omega \biggl(f; \frac{1}{ \sqrt{\beta_{p,q}(n)}} \biggr), $$

where \(\beta_{p,q}(n)= \max \{\frac{1}{p}-1 ,\frac{1}{[n]_{p,q}} \}\), and A is a positive constant.

Proof

Since \(S_{n,p,q}(1; x) = 1\), using the monotonicity of \(S_{n,p,q}\), we can write

$$ \big| S_{n,p,q}(f;x)-f(x)\big|\leq S_{n,p,q} \bigl(\big| f(t)-f(x) \big|;x \bigr). $$

On the other hand, from (4.4) we have that

$$\begin{aligned} \big| S_{n,p,q}(f;x)-f(x)\big|\leq{}& 2 \bigl(1+\delta^{2} \bigr) \Omega(f; \delta) \bigl(1+x^{2} \bigr) \biggl[S_{n,p,q} \biggl( \biggl(1+\frac{| t-x| }{\delta} \biggr) \bigl(1+(t-x)^{2} \bigr);x \biggr) \biggr] \\ \leq{}& 2 \bigl(1+\delta^{2} \bigr)\Omega(f; \delta) \bigl(1+x^{2} \bigr) \biggl\{ S_{n,p,q}(1;x)+S_{n,p,q} \bigl((t-x)^{2};x \bigr) \\ &+\frac{1}{\delta}S_{n,p,q}\bigl(| t-x|;x \bigr)+\frac{1}{\delta}S_{n,p,q} \bigl(| t-x|(t-x)^{2} ;x \bigr) \biggr\} . \end{aligned}$$

Using the Cauchy-Schwarz inequality, we can write

$$\begin{aligned} \big| S_{n,p,q}(f;x)-f(x)\big|\leq{}& 2 \bigl(1+\delta^{2} \bigr) \Omega(f; \delta) \bigl(1+x^{2} \bigr) \biggl\{ S_{n,p,q}(1;x)+S_{n,p,q} \bigl((t-x)^{2};x \bigr) \\ &+ \frac{1}{\delta} \sqrt{S_{n,p,q} \bigl((t-x)^{2} ;x \bigr)} +\frac{1}{\delta }\sqrt{S_{n,p,q} \bigl( (t-x)^{4} ;x \bigr)} \sqrt{S_{n,p,q} \bigl( (t-x)^{2} ;x \bigr)} \biggr\} . \end{aligned}$$

On the other hand, using (2.3), we have

$$\begin{aligned} S_{n,p,q} \bigl((t-x)^{2} ;x \bigr) &\leq \frac{ x}{[n]_{p,q} }+ \biggl(\frac {1}{p}-1 \biggr)x^{2} \\ &\leq C_{1}O \bigl(\beta_{p,q}(n) \bigr) \bigl(1+x^{2} \bigr), \end{aligned}$$

where \(C_{1} > 0\) and \(\beta_{p,q}(n)= \max \{\frac{1}{p}-1 ,\frac {1}{[n]_{p,q}} \}\). Since \(\lim_{n\rightarrow\infty}\frac {1}{p_{n}}=1\) and \(\lim_{n\rightarrow\infty}\frac{1}{[n]_{p,q}}=0\), there exists a positive constant \(A_{2}\) such that

$$ S_{n,p,q} \bigl((t-x)^{2} ;x \bigr) \leq A_{2} \bigl(1+x^{2} \bigr). $$

Also, using (2.5), we get

$$ S_{n,p,q} \bigl( (t-x)^{4} ;x \bigr)^{\frac{1}{2}} \leq A_{3} \bigl(1+x^{2} \bigr) $$

and

$$ S_{n,p,q} \biggl( \frac{(t-x)^{2}}{\delta^{2}} ;x \biggr)^{\frac{1}{2}} \leq \frac{A_{4}}{\delta} O \bigl(\beta_{p,q}(n) \bigr)^{\frac{1}{2}} \bigl(1+x^{2} \bigr)^{\frac{1}{2}} $$

for \(A_{3} > 0\) and \(A_{4} > 0\). So we have

$$\begin{aligned} \big| S_{n,p,q}(f;x)-f(x)\big|\leq{}& 2 \biggl(1+\frac{1}{\beta_{p,q}(n)} \biggr) \Omega \biggl(f; \frac{1}{\sqrt{\beta_{p,q}(n)}} \biggr) \bigl(1+x^{2} \bigr) \biggl\{ 1+ A_{2} \bigl(1+x^{2} \bigr) \\ &+ \frac{A_{4}}{\delta} O \bigl(\beta_{p,q}(n) \bigr)^{\frac{1}{2}} \bigl(1+x^{2} \bigr)^{\frac{1}{2}} \\ &+A_{3} \bigl(1+x^{2} \bigr)\frac{A_{4}}{\delta}O \bigl(\beta_{p,q}(n) \bigr)^{\frac{1}{2}} \bigl(1+x^{2} \bigr)^{\frac{1}{2}} \biggr\} . \end{aligned}$$

Choosing \(\delta= \beta_{p,q}(n)^{\frac{1}{2}}\), we obtain

$$\begin{aligned} \big| S_{n,p,q}(f;x)-f(x)\big|\leq{}& 2 \bigl(1+\beta_{p,q}(n) \bigr) \Omega \biggl(f; \frac {1}{\sqrt{\beta_{p,q}(n)}} \biggr) \bigl(1+x^{2} \bigr) \bigl\{ 1+ A_{2} \bigl(1+x^{2} \bigr) \\ &+ CA_{4} \bigl(1+x^{2} \bigr)^{\frac{1}{2}} +C_{1}A_{3}A_{4} \bigl(1+x^{2} \bigr)^{\frac {3}{2}} \bigr\} . \end{aligned}$$

For \(0 < q < p \leq1\), we have \(\beta_{p,q}(n) \leq1\). Hence we can write

$$ \sup_{x\in[0, \infty) } \frac{| S_{n,p,q}(f;x)-f(x)| }{(1+x^{2})^{\frac{5}{2}}} \leq A\Omega \biggl(f; \frac{1}{ \sqrt{\beta_{p,q}(n)}} \biggr), $$

where \(A = 4 (1 + A_{2} + CA_{4} + C_{1}A_{3}A_{4})\), and the result follows. □

Voronovskaya-type theorem for \(S_{n,p,q}\)

Here we give a Voronovskaya-type theorem for \(S_{n,p,q}\).

Theorem 5.1

Let \(0< q_{n} < p_{n}\leq1\) be such that \(q_{n}\rightarrow 1\), \(p_{n}\rightarrow1\), \(q_{n}^{n}\rightarrow a\), and \(p_{n}^{n}\rightarrow b\) as \(n \rightarrow\infty\). Then, for each function \(f \in C_{2}^{\ast} [0,\infty)\) such that \(f^{{\prime}},f^{{\prime\prime}} \in C_{2}^{\ast} [0,\infty)\), we have

$$ \lim_{n\rightarrow\infty} [n]_{p_{n},q_{n}} \bigl( S_{n,p_{n},q_{n}}(f;x)-f(x) \bigr)= \bigl(x+\alpha x^{2} \bigr)f^{{\prime\prime}}(x) $$

uniformly on any \([0,A] \), \(A > 0\).

Proof

Let \(f,f^{{\prime}},f^{{\prime\prime}} \in C_{2}^{\ast} [0,\infty )\) and \(x \in[0,\infty)\). By the Taylor formula we can write

$$ f(t) = f(x)+f^{{\prime}}(x) (t-x)+\frac{1}{2}f^{{\prime\prime }}(x) (t-x)^{2}+h(t,x) (t-x)^{2}, $$
(5.1)

where \(h (t, x)\) is the remainder of the Peano form. Then \(h (\cdot, x) \in C_{2}^{\ast} [0,\infty)\) and \(\lim_{t\rightarrow x}h (t, x)=0\) for n large enough. Applying operators (2.1) to both sides of (5.1), we get

$$\begin{aligned} [n]_{p_{n},q_{n}} \bigl( S_{n,p_{n},q_{n}}(f;x)-f(x) \bigr)={}&[n]_{p_{n},q_{n}}f^{{\prime }}(x)S_{n,p_{n},q_{n}} \bigl((t-x);x \bigr)\\ & + [n]_{p_{n},q_{n}}f^{{\prime \prime}}(x)S_{n,p_{n},q_{n}} \bigl((t-x)^{2};x \bigr) \\ &+S_{n,p_{n},q_{n}} \bigl(h (t, x) (t-x)^{2};x \bigr). \end{aligned}$$

By the Cauchy-Schwarz inequality we have

$$ S_{n,p_{n},q_{n}} \bigl(h (t, x) (t-x)^{2};x \bigr) \leq \sqrt{S_{n,p_{n},q_{n}} \bigl(h^{2} (t, x);x \bigr)} \sqrt{S_{n,p_{n},q_{n}} \bigl((t-x)^{4};x \bigr)} . $$
(5.2)

Observe that \(h^{2} (x, x) = 0\) and \(h^{2} (\cdot, x)\in C_{2}^{\ast} [0,\infty)\). Then it follows from Theorem 4.3 that

$$ \lim_{n\rightarrow\infty} S_{n,p_{n},q_{n}} \bigl(h^{2} (t, x);x \bigr) = h^{2} (x, x)=0 $$
(5.3)

uniformly with respect to \(x \in[0,A]\). Hence, from (5.2), (5.3), and (2.8) we obtain

$$ \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}} S_{n,p_{n},q_{n}} \bigl(h (t, x) (t-x)^{2};x \bigr) = 0 $$
(5.4)

and

$$ S_{n,p,q} \bigl((t-x);x \bigr) = 0. $$

Then using (2.6) and (5.4), we have

$$\begin{aligned} \lim_{n\rightarrow\infty} [n]_{p_{n},q_{n}} \bigl( S_{n,p_{n},q_{n}}(f;x)-f(x) \bigr) ={}&f^{{\prime }}(x)\lim_{n\rightarrow\infty} [n]_{p_{n},q_{n}}S_{n,p_{n},q_{n}} \bigl((t-x);x \bigr) \\ &+ f^{{\prime\prime}}(x)\lim_{n\rightarrow\infty} [n]_{p_{n},q_{n}}S_{n,p_{n},q_{n}} \bigl((t-x)^{2};x \bigr) \\ &+ \lim_{n\rightarrow\infty}[n]_{p_{n},q_{n}}S_{n,p_{n},q_{n}} \bigl(h (t, x) (t-x)^{2};x \bigr) \\ ={}& \bigl(x+\alpha x^{2} \bigr)f^{{\prime\prime}}(x), \end{aligned}$$

as desired. □

Conclusion

In this paper, we have constructed a new modification of Szász-Mirakyan operators based on \((p,q)\)-integers and investigated their approximation properties. We have obtained a weighted approximation and Voronovskaya-type theorem for our new operators.

References

  1. Lupaş, A: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus (Cluj-Napoca, 1987), vol. 9, pp. 85-92. “Babeş-Bolyai” University, Cluj-Napoca (1987)

    Google Scholar 

  2. Phillips, GM: Bernstein polynomials based on the q-integers, the heritage of P. L. Chebyshev. Ann. Numer. Math. 4, 511-518 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Mursaleen, M, Ansari, KJ, Khan, A: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874-882 (2015). Erratum: Appl. Math. Comput. 278, 70-71 (2016)

    MathSciNet  Google Scholar 

  4. Mursaleen, M, Ansari, KJ, Khan, A: Some approximation results by \((p,q)\)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 264, 392-402 (2015). Corrigendum: Appl. Math. Comput. 269, 744-746 (2015)

    MathSciNet  Google Scholar 

  5. Mursaleen, M, Nasiruzzaman, M, Khan, A, Ansari, KJ: Some approximation results on Bleimann-Butzer-Hahn operators defined by \((p,q)\)-integers. Filomat 30(3), 639-648 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  6. Mursaleen, M, Nasiuzzaman, M, Nurgali, A: Some approximation results on Bernstein-Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, Article ID 249 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  7. Acar, T: \((p,q)\)-generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685-2695 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  8. Acar, T, Aral, A, Mohiuddine, SA: On Kantorovich modifications of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  9. Acar, T, Aral, A, Mohiuddine, SA: Approximation by bivariate \((p,q)\)-Bernstein-Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. (2016). doi:10.1007/s40995-016-0045-4

    MATH  Google Scholar 

  10. Aral, A, Gupta, V: \((p,q)\)-Variant of Szász-beta operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 111, 719-733 (2017). doi:10.1007/s13398-016-0325-z

    Article  Google Scholar 

  11. Cai, Q-B, Zhou, G: On \((p,q)\)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 276, 12-20 (2016)

    MathSciNet  Google Scholar 

  12. Ilarslan, HG, Acar, T: Approximation by bivariate \((p,q) \)-Baskakov-Kantorovich operators. Georgian Math. J. (2016). doi:10.1515/gmj-2016-0057

    Google Scholar 

  13. Khan, K, Lobiyal, DK: Bèzier curves based on Lupaş \((p,q)\)-analogue of Bernstein functions. J. Comput. Appl. Math. 317, 458-477 (2017). doi:10.1016/j.cam.2016.12.016

    MathSciNet  Article  MATH  Google Scholar 

  14. Mursaleen, M, Alotaibi, A, Ansari, KJ: On a Kantorovich variant of \((p,q)\)-Szász-Mirakjan operators. J. Funct. Spaces 2016, Article ID 1035253 (2016)

    MATH  Google Scholar 

  15. Mursaleen, M, Ansari, KJ, Khan, A: Some approximation results for Bernstein-Kantorovich operators based on \((p,q)\)-calculus. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 78(4), 129-142 (2016)

    MathSciNet  Google Scholar 

  16. Mursaleen, M, Khan, F, Khan, A: Approximation by \((p,q)\)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10(8), 1725-1740 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  17. Acar, T, Aral, A, Mohiuddine, SA: On Kantorovich modification of \((p, q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. (2017). doi:10.1007/s40995-017-0154-8

    MATH  Google Scholar 

  18. Mursaleen, M, Sarsenbi, AM, Khan, T: On \((p,q)\)-analogue of two parametric Stancu-beta operators. J. Inequal. Appl. 2016, Article ID 190 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  19. Hounkonnou, MN, Dsir, J, Kyemba, B: \(R(p,q)\)-calculus: differentiation and integration. SUT J. Math. 49(2), 145-167 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Sahai, V, Yadav, S: Representations of two parameter quantum algebras and \(p,q\)-special functions. J. Math. Anal. Appl. 335, 268-279 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  21. Mahmudov, NI: Approximation by the q-Szász-Mirakjan operators. Abstr. Appl. Anal. 2012, Article ID 754217 (2012)

    Article  MATH  Google Scholar 

  22. Devore, RA, Lorentz, GG: Constructive Approximation. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  23. Gadzhiev, AD: Theorems of the type of P.P. Korovkin type theorems. Mat. Zametki 20(5), 781-786 (1976). English translation: Math. Notes 20(5-6), 996-998 (1976)

    MathSciNet  Google Scholar 

  24. Mohiuddine, SA: An application of almost convergence in approximation theorems. Appl. Math. Lett. 24, 1856-1860 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  25. Braha, NL, Srivastava, HM, Mohiuddine, SA: A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de La Vallée Poussin mean. Appl. Math. Comput. 228, 162-169 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Ispir, N: On modified Baskakov operators on weighted spaces. Turk. J. Math. 25, 355-365 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mursaleen.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors of the manuscript have read and agreed to its content and are accountable for all aspects of the accuracy and integrity of the manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mursaleen, M., Al-Abied, A. & Alotaibi, A. On \((p,q)\)-Szász-Mirakyan operators and their approximation properties. J Inequal Appl 2017, 196 (2017). https://doi.org/10.1186/s13660-017-1467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1467-z

MSC

  • 41A10
  • 41A25
  • 41A36

Keywords

  • q-integers
  • \((p, q)\)-integers
  • q-Szász-Mirakyan operators
  • \((p, q)\)-Szász-Mirakyan operators
  • weighted approximation
  • Voronovskaya theorem